李方暉+肖琳+覃飛+劉承宜
摘要:觀察8周中等強度低負荷量訓練對老齡雌性大鼠腓腸肌Bax和Bcl-2蛋白水平及去乙酰化酶1(SIRT1)/去乙酰化酶3(SIRT3)軸基因信使核糖核酸(mRNA)表達的影響。16只18月齡雌性SD大鼠隨機分為對照組和運動組(各8只)。運動組在跑臺上以15 km/h(60%~75%VO2max)進行有氧運動,15 min/d,5 d/周,持續運動8周;對照組自由生活。第8周末運動后24 h宰殺并測定腓腸肌指數、蛋白免疫印跡法測定腓腸肌Bax和Bcl-2蛋白水平;逆轉錄聚合酶鏈式反應(RT-PCR)測定SIRT3、SIRT1、錳超氧化物歧化酶(MnSOD)、半胱氨酸蛋白酶-3(Caspase-3)、過氧化物酶體增殖活化受體γ輔助活化因子-1α(PGC-1α)、線粒體轉錄因子A(TFAM)和核呼吸因子1(NRF1) mRNA水平。結果顯示,運動組腓腸肌質量(P<0.05)和腓腸肌指數均顯著增加(P<0.01)、Bax蛋白水平顯著降低(P<0.05),Bcl-2蛋白水平和Bcl-2/Bax值顯著增加(P<0.05);運動組SIRT3、SIRT1、PGC-1α、NRF1、TFAM、MnSOD mRNA水平顯著增加(P<0.05),Caspase-3 mRNA水平顯著降低(P<0.05)。結果表明:中等強度低負荷訓練可延緩老齡雌性大鼠肌細胞凋亡信號的改變;SIRT1/SIRT3軸介導的內穩態機制在中等強度低負荷訓練提升老齡大鼠骨骼肌線粒體更新速率及抗氧化酶水平起重要作用。
關鍵詞:運動生物化學;運動訓練;骨骼肌;第三類去乙酰化酶;內穩態;老齡大鼠
中圖分類號:G804.7文獻標志碼:A文章編號:1006-7116(2014)04-0140-05
Effects of 8-week medium intensity low load training on proteins Bax and Bcl-2 and the gene expression of signal axis SIRT1/SIRT3 of skeletal muscle of
aged female rats
LI Fang-hui1,XIAO Lin1,QING Fei2,LIU Cheng-yi2
(1.School of Physical Education and Health,Zhaoqing University,Zhaoqing 526061,China;
2.Laboratory of Laser Sports Medicine,South China Normal University,Guangzhou 510006,China)
Abstract: In order to observe the effects of 8-week medium intensity low load training on the levels of proteins Bax and Bcl-2 and the gene messenger RNA (mRNA) expression of axis sirtuin 1 (SIRT1)/sirtuin 3 (SIRT3) of gastrocnemius of aged rats, the authors divided 16 18-month old female SD rats randomly into a control group and an exercise group, each of which contained 8 rats, let the rats in the exercise group do an aerobic exercise on a treadmill for consecutive 8 weeks, at a speed of 15 km/h (with 60%~75%VO2max), 15 minutes a day, 5 days a week, let the rats in the control group live freely, in 24 hours after rat exercising at the end of week 8, killed the rats, measured gastrocnemius index, measured the levels of proteins Bax and Bcl-2 of gastrocnemius by means of Western blot analysis, measured the mRNA levels of SIRT3, SIRT1, manganese superoxide dismutase (MnSOD), Caspase 3, peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1α), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1) by means of RT-PCR, and revealed the following findings: as for the rats in the exercise group, their gastrocnemius mass and gastrocnemius index increased significantly (P<0.05 and P<0.01 respectively), their protein Bax level decreased significantly (P<0.05), their protein Bcl-2 level and Bcl-2/Bax ratio increased significantly (P<0.05); their mRNA levels of SIRT3, SIRT1, PGC-1α, NRF1, TFAM and MnSOD increased significantly (P<0.05), their mRNA level of Caspase-3 decreased significantly (P<0.05). The said findings indicated the followings: medium intensity low load training could delay the changing of muscle cell apoptosis signal of aged rats; the homeostatic mechanism mediated by axis SIRT1/SIRT3 played an important role in medium intensity low load training increasing the mitochondria refreshing rate and antioxidase level of skeletal muscle of aged rats.
endprint
Key words: sports biochemistry;sports training;skeletal muscle;type 3 sirtuins;homeostasis;aged rat
肌肉衰減綜合癥(Sarcopenia)作為一種以骨骼肌質量和肌力衰減為主要特征的增齡性機能退化征,長期以來為人們所忽視[1]。Sarcopenia引發的骨質減少、運動平衡能力下降將增加肢體殘疾、心血管病變、心理疾病等發生幾率[2]。流行病學調查顯示,近13%的60歲以上的老年人受Sarcopenia困擾,該比例在80歲以上老人高達50%[3]。肌細胞凋亡被認為在Sarcopenia發展進程中起關鍵作用[1,4]。弱化肌細胞凋亡信號、阻止肌細胞大范圍地進入凋亡程序是延緩Sarcopenia發生重要機制[4]。文獻報道,體力活動不足是Sarcopenia誘因之一,而運動能延緩骨骼肌衰老[5],這與體育活動能抑制衰老骨骼肌凋亡有關[6]。Song等[6]研究發現,中等強度大負荷量運動后老齡大鼠腓腸肌凋亡顯著減少。Pasini等[7]研究也發現,8周大強度運動使18月齡大鼠Sarcopenia得到明顯改善,而這與線粒體細胞色素C氧化酶活性增加有關。漆正堂等[1]研究同樣證實,8周耐力運動可通過調控線粒體功能來拮抗Sarcopenia肌細胞凋亡。最新研究發現,中等強度低負荷量訓練(Low-loads Medium-intensity Exercise,LME)可用于Sarcopenia的防護[5],但缺乏深入的機理研究。
III型組蛋白去乙酰化酶家族(Sirtuins,SIRTs)是乙酰胺腺嘌呤二核苷酸(Nicotimide Adenosine Dinucleotide+,NAD+)依賴的去乙酰化酶。SIRTs包括7個成員。其中,盡管SIRT1和SIRT3分別位于細胞核和線粒體中,但在調控線粒體功能中具有協同作用[8]。Brenmoehl等[9]將之稱為SIRT1/SIRT3雙重調控軸。本研究在觀察8周LME對18月齡雌性大鼠骨骼肌凋亡相關因子表達影響的基礎上,探討SIRT1/SIRT3軸對肌細胞凋亡的調控機制,為體育運動防護Sarcopenia提供理論依據。
1實驗對象與方法
1.1實驗動物分組、運動方案及取材
16只18月齡雌性SD大鼠購于廣州中醫藥大學動物中心,體質量為(378±11) g。在室溫20~24 ℃、光照時間07:00~19:00,分籠飼養,適應性喂養1周后,隨機分為對照組和運動組(各8只)。負荷強度參照Bejma等[10]18月齡大鼠訓練負荷進行。運動組進行為期8周、速度15 m/min、坡度5°,每天15 min跑臺運動。負荷強度對18月齡大鼠來說相當于60% ~75%VO2max[10]。8周最后一次運動后24 h后將大鼠麻醉處死取材,取大鼠后肢腓腸肌,腓腸肌指數的計算:腓腸肌指數=[腓腸肌質量(mg)/體質量(g)][7]。
1.2信使核糖核酸測定
每組取6個樣本。加入1 mL的Trizol進行總RNA提取。按試劑說明書操作步驟提取細胞總RNA并進行逆轉錄反應和PCR反應。試劑購于大連寶生物公司。去乙酰化酶3(Sirtuin 3,SIRT3)、去乙酰化酶1(Sirtuin1,SIRT1)、錳超氧化物歧化酶(Manganese Superoxide Dismutase,MnSOD)、半胱氨酸蛋白酶-3(Caspase-3)、過氧化物酶體增殖活化受體γ輔助活化因子1α (Peroxisome Proliferator-activated Receptor-γ Coactivator-1,PGC-1α)、線粒體轉錄因子A(Mitochondrial Transcription Factor A,TFAM)和核呼吸因子(Nuclear Respiratory Factor 1,NRF1)擴增引物見文獻[11]。β-actin作為內參,并根據公式2-△△Ct計算目的基因的相對表達量。
1.3蛋白免疫印跡
蛋白提取與濃度測定后離心5 min轉至-80 ℃保存備用。Bax、Bcl-2分離膠濃度為8%。麗春紅預染后,用1%TBST配置5%的脫脂牛奶對NC膜封閉2 h。分別用5%脫脂牛奶和5% BSA配置Bax和Bcl-2的一抗4 ℃搖床過夜。內參為GAPDH。目的條帶的二抗均孵育2 h,洗膜后X射線膠片曝光顯影。詳細操作見文獻[6]。
1.4數據處理及分析
所有實驗數據均以“均值±標準差”( ±s)表示,統計分析用SPSS17.0軟件完成,組間比較采用獨立樣本T檢驗,P<0.05表示統計具有顯著性意義。蛋白免疫印跡使用Image-ProPlus6.0進行灰度分析。
2結果及分析
2.1運動大鼠腓腸肌指數的改變
表1顯示,8周后,與對照組比較,運動組腓腸肌質量平均增加30.0%(P<0.05),腓腸肌指數增加37.5%(P<0.01),但體質量沒有顯著性差異(P>0.05)。
表1大鼠體質量、腓腸肌質量及腓腸肌指數( ±s)
組別 n/只 體質量/g 腓腸肌
質量/g 腓腸肌
指數/%
對照組
運動組 8
8 378.8±65.7
378.0±27.6 0.61±0.16
0.79±0.131) 1.6±0.20
2.2±0.112)
1)與對照組比較,P<0.05;2)與對照組比較,P<0.01
2.2運動大鼠腓腸肌Bax、Bcl-2蛋白水平及Bcl-2/
Bax值的改變
鑒于圖1顯示的GAPDH在對照組和運動組蛋白表達相對恒定,故本研究以GAPDH作為Bax和Bcl-2蛋白表達的內部參照,即對照組和運動組Bax和Bcl-2蛋白表達的灰度值分別與該組的GAPDH蛋白灰度值進行校正,將校正后的Bax和Bcl-2以及Bcl-2/Bax值分別進行比較,進而反映兩組間的蛋白表達變化。圖1、表2結果顯示,與對照組相比,運動組腓腸肌Bax蛋白減少了12.2%(P<0.05),Bcl-2蛋白水平增加12.1%(P<0.05),Bcl-2/Bax值增加28.0%(P<0.05)。
圖1大鼠腓腸肌中Bax、Bcl-2蛋白表達的免疫印跡圖
表2大鼠骨骼肌Bax、Bcl-2蛋白表達及
Bcl-2/Bax值( ±s)變化
組別 n/只 Bax/灰度值 Bcl-2/灰度值 Bcl-2/Bax比值/%
對照組
運動組 8
8 0.056 0±0.006
0.049 2±0.0011) 0.600±0.160
0.670±0.0301) 10.70±0.20
13.70±0.511)
1)與對照組比較,P<0.05
2.3運動大鼠腓腸肌SIRT1/SIRT3信號軸基因mRNA的表達改變
表3結果顯示,與對照組比較,運動組SIRT3、SIRT1、PGC-1α、NRF1、TFAM、MnSOD mRNA水平分別增加了150%、140%、104%、380%、160%、97%,Caspase-3 mRNA減少了50%,差異有顯著性意義(P<0.05)。
表3各組大鼠骨骼肌SIRT1/SIRT3軸基因mRNA表達變化( ±s)
組別 n/只 SIRT3 SIRT1 PGC-1α NRF1 TFAM MnSOD Caspase-3
endprint
對照組
運動組 8
8 1.00±0.00
2.50±0.241) 1.00±0.00
2.41±0.631) 1.00±0.00
2.04±0.111) 1.00±0.00
4.80±0.401) 1.00±0.00
2.60±0.131) 1.00±0.00
1.97±0.41) 1.00±0.00
0.5±0.061)
1)與對照組比較,P<0.05
3討論
3.18周中等強度低負荷量訓練對大鼠腓腸肌質量和凋亡相關因子表達的影響
蛋白質合成減少和分解增加導致的肌肉質量下降是Sarcopenia發生機制之一。力量訓練能增加肌肉蛋白質合成,從而延緩老年人肌肉質量和肌力下降[12]。但也有研究認為,耐力運動能減損力量訓練積累起來的肌肉質量[12]。這也使得人們對耐力運動可否用于防治Sarcopenia仍存在爭議。Pasini等[7]研究發現,8周中等強度大負荷量耐力運動可將18月齡雄性大鼠股四頭肌質量增加近38%。本研究結果顯示,8周中等負荷低強度訓練后大鼠的腓腸肌重量增加約30.0%,腓腸肌指數增加37.5%。值得指出的是,18月齡雌性大鼠到20月齡時腓腸肌質量減少11.2%[6]。提示中等負荷低強度訓練不僅延緩Sarcopenia骨骼肌丟失,甚至進一步增加老齡大鼠腓腸肌質量。然而,Andersen等[13]將18月齡雌性大鼠分為運動前、9周低強度大負荷量跑臺運動組及20月齡安靜對照組。結果卻發現,與安靜組相比,18月齡雌性大鼠經過9周運動后腓腸肌質量雖有顯著增加,但仍明顯低于運動前。這一結果說明運動強度是體育運動對抗Sarcopenia肌肉質量丟失的關鍵參數。
肌細胞凋亡被認為在Sarcopenia病理進程起關鍵作用[4]。Bcl-2是參與調控線粒體凋亡途徑的凋亡抑制蛋白,而Bax是促凋亡蛋白。值得指出的是,當Bcl-2/Bax值增大,細胞更趨向于存活;Bcl-2/Bax值減小細胞則趨向于凋亡[6]。圖1和表2顯示,運動組Bcl-2蛋白表達增加20%,Bax蛋白表達減少10%,Bcl-2/Bax值增加33.3%,Caspase-3 mRNA表達減少50%。Song等[6]研究也證實,與27月齡雌性安靜大鼠相比,12周中等強度大負荷量運動后的同齡大鼠腓腸肌Bcl-2蛋白表達及Bcl-2/Bax值顯著增加、Bax和Caspase-3蛋白表達則顯著減少。本實驗與Song等[6]采用的運動強度一致,而本研究采用低負荷量,說明負荷量是對抗Sarcopenia的非必需參數,這與上述運動強度抗肌肉質量丟失相似。
3.2去乙酰化酶介導中等強度低負荷量訓練的內穩態康復作用
功能內穩態(Function-Specific Homeostasis,FSH)是維持功能充分穩定發揮的負反饋機制[14]。SIRTs具有抗衰老效應[14]。研究表明,SIRTs是FSH最貼切標示物,存在FSH特異的SIRTs活性(FSH-Specific SIRT Activities,FASAs)[14]。Baker等[15]研究表明,體育運動可促進遠離FSH的功能恢復。Costford等[16]研究發現,與健康者相比,老齡2型糖尿病患者骨骼肌代謝失調與SIRTs活性低于FASAs有關,而運動訓練能將患者骨骼肌SIRTs活性康復至FASAs,提示體育運動可通過調節SIRT1維持骨骼肌FSH。
然而,骨骼肌遠離FSH將導致細胞凋亡,誘發Sarcopenia[4]。肌細胞凋亡與SIRT1和SIRT3活性低于FASAs有關[17]。本研究結果顯示,中等強度低負荷訓練可顯著增加老齡大鼠腓腸肌SIRT3和SIRT1 mRNA表達。Kang等[18]對22月齡大鼠進行12周中等強度跑臺運動干預后也發現,運動后大鼠骨骼肌SIRT1蛋白表達顯著高于安靜組。Lanza等[19]對59~76歲健康受試者進行為期4年、每周6 d、每天不少于1 h的中等強度耐力運動后發現,骨骼肌SIRT3蛋白表達增加,甚至高于青年人,提示中等強度低負荷訓練使衰老骨骼肌SIRT3和SIRT1表達水平康復到FASAs,后者可提高凋亡閾值、抑制肌細胞凋亡。由此可見,中等強度運動是促進肌細胞SIRT3和SIRT1基因表達的必需參數。此外,研究表明,力竭運動和高強度間歇訓練均能促進老年人骨骼肌SIRT1和SIRT3表達[20],提示體育運動刺激SIRT1和SIRT3表達與運動方式和運動強度有關[14,21]。
3.3SIRT1/SIRT3軸雙重調控線粒體更新和抗氧化酶的表達
線粒體功能充分穩定發揮由線粒體內穩態(Mitochondrial Function-Specific Homeostasis,MTH)維持。維持MTH需要高水平的線粒體更新速率保證線粒體新老更替。體力活動缺乏的老年人骨骼肌代謝紊亂與線粒體遠離MTH密切相關[22]。SIRT1/SIRT3軸在維持MTH過程中具有協同效應[23]。研究表明,SIRT1/SIRT3軸可雙重調控線粒體代謝酶的活性[8]。Cantó等[11]研究證實,SIRTs催化底物NAD﹢能激活SIRT1/SIRT3軸,進而更有效地維持衰老小鼠骨骼肌MTH。然而,SIRT1/SIRT3軸任一個基因敲除都會導致線粒體更新受阻[24]。
線粒體更新主要由PGC-1α介導。PGC-1α是SIRT1/SIRT3軸下游的調控因子[25]。衰老導致PGC-1α活性下調將導致肌細胞遠離MTH[26]。PGC-1α活性下調與SIRT1和SIRT3水平低于FASAs有關[23]。PGC-1α可調控下游基因表達促進線粒體生物合成,如NRF1和TFAM。NRF1進一步上調TFAM基因表達,而TFAM促進mtDNA復制[27]。本研究結果顯示,LME顯著性增加老齡大鼠腓腸肌PGC-1α、TFAM、NRF1 mRNA水平,提示LME通過上調SIRT1/SIRT3軸調控PGC-1α表達,后者促進TFAM與NRF1表達,最終維持衰老骨骼肌MTH。
MnSOD位于線粒體內,是維持MTH抗氧化酶之一[26]。研究發現,MnSOD表達減少會導致肌細胞遠離MTH[27]。MnSOD也是PGC-1α下游靶基因[28]。因此,衰老MnSOD表達減少也可能與SIRT1/SIRT3軸對PGC-1α調控缺失有關[29]。本研究結果顯示,中等強度低負荷訓練使衰老腓腸肌MnSOD、PGC-1α、SIRT1和SIRT3 mRNA表達增加,提示中等強度低負荷訓練可通過SIRT1/SIRT3軸雙重調控PGC-1α來促進MnSOD表達,實現對衰老骨骼肌MTH康復,后者將有利于阻止肌細胞進入線粒體依賴的凋亡程序。
8周中等強度低負荷量訓練增加老齡雌性大鼠腓腸肌的Bcl-2蛋白水平和Bcl-2/Bax比值、抑制Bax蛋白和Caspase-3 mRNA表達,提示8周中等強度低負荷量訓練可抑制老齡大鼠骨骼肌細胞凋亡、減少Sarcopenia肌肉質量丟失、延緩骨骼肌衰老;SIRT1/SIRT3軸介導中等強度低負荷量訓練有利于對老齡大鼠腓腸肌內穩態的維持。
參考文獻:
[1] 漆正堂,賀杰,張媛,等. 65%~75%最大強度的耐力運動對老齡小鼠骨骼肌線粒體氧化應激與膜電位的影響[J]. 體育科學,2010,30(10):46-51.
endprint
[2] Ortega F B,Silventoinen K,Tynelius P,et al. Muscular strength in male adolescents and premature death:cohort study of one million participants[J]. BMJ,2012,345:e7279.
[3] Von Haehling S,Morley J E,Anker S D. From muscle wasting to sarcopenia and myopenia:update 2012[J]. J Cachexia Sarcopenia Muscle,2012,3(4):213-217.
[4] Marzetti E. Skeletal muscle apoptotic signaling predicts thigh muscle volume and gait speed in community-dwelling older persons:an exploratory study[J]. PLoS One,2012,7(2):e32829.
[5] Fonseca H,Powers S K,Gon?alves D,et al. Physical inactivity is a major contributor to ovariectomy-induced sarcopenia[J]. Int J Sports Med,2012,33(4):268-78.
[6] Song W,Kwak H B,Lawler J M. Exercise training attenuates age-induced changes in apoptotic signaling in rat skeletal muscle[J]. Antioxid Redox Signal,2006,8:517-528.
[7] Pasini E,Le Douairon Lahaye S,Flati V,et al. Effects of treadmill exercise and training frequency on anabolic signaling pathways in the skeletal muscle of aged rats[J]. Exp Gerontol,2012,47(1):23-28.
[8] Hirschey M D,Shimazu T,Capra J A,et al. SIRT1 and SIRT3 deacetylate homologous substrates:AceCS1,2 and HMGCS1,2[J]. Aging (Albany NY),2011,3(6):635-642.
[9] Brenmoehl J,Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3[J]. Mitochondrion,2013 [Epub ahead of print].
[10] Bejma J,Ji L L. Aging and acute exercise enhance free radical generation in rat skeletal muscle[J]. J Appl Physiol,1999,87(1):465-470.
[11] Cantó C,Houtkooper R H,Pirinen E,et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity[J]. Cell Metab,2012,15(6):838-847.
[12] Baar K. Training for endurance and strength:lessons from cell signaling[J]. Med Sci Sports Exerc,2006,38(11):1939-1944.
[13] Andersen N B,Andreassen T T,Orskov H,et al. Growth hormone and mild exercise in combination increases markedly muscle mass and tetanic tension in old rats[J]. Eur J Endocrinol,2000,143(3):409-418.
[14] 李方暉,曹偉,趙軍,等. Sirtuins去乙酰化酶的功能及其在體育科學中的應用[J]. 體育學刊,2011,18(6):138-144.
[15] Baker J,Meisner B A,Logan A J,et al. Physical activity and successful aging in Canadian older adults[J]. J Aging Phys Act,2009,17(2):223-235.
[16] Costford S R,Bajpeyi S,Pasarica M,et al. Skeletal muscle NAMPT is induced by exercise in humans[J]. Am J Physiol Endocrinol Metab,2010,298(1):E117-126.
[17] Park S J,Ahmad F,Philp A,et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases[J]. Cell,2012,148(3):421-433.
[18] Kang C. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle:Role of PGC-1α[J]. Exp Gerontol,2013,48(11):1343-1350.
[19] Lanza I R,Short D K. Endurance exercise as a countermeasure for aging[J]. Diabetes,2008,57(11):2933-2942.
[20] Radak Z,Bori Z. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle[J]. Free Radic Biol Med,2011,51(2):417-423.
endprint
[21] 王海濤. 運動對骨骼肌線粒體去乙酰化酶3(SIRT3)的影響[J]. 體育科學,2011,31(1):85-88.
[22] Safdar A,Hamadeh M J,Kaczor J J,et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J]. PLoS One,2010,5(5):e10778.
[23] Nogueiras R,Habegger K M,Chaudhary N,et al. Sirtuin 1 and sirtuin 3:physiological modulators of metabolism[J]. Physiol Rev,2012,92(3):1479-1514.
[24] Palacios O M,Carmona J J,Michan S,et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY),2009,1(9):771-783.
[25] Nemoto S. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha)[J]. J Biol Chem,2005,280(16):16456-16460.
[26] Li L,Mühlfeld C. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise:differential response in cardiac and skeletal muscle[J]. Basic Res Cardiol,2011,106(6):1221-1234.
[27] Ji L L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling[J]. Free Radic Biol Med,2008,44(2):142-152.
[28] Olmos Y,Valle I,Borniquel S,et al. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes[J]. J Biol Chem,2009,284(21):14476-14484.
[29] Zhang Y,Ikeno Y,Qi W,et al. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity[J]. J Gerontol A Biol Sci Med Sci,2009,64(12):1212-1220.
endprint
[21] 王海濤. 運動對骨骼肌線粒體去乙酰化酶3(SIRT3)的影響[J]. 體育科學,2011,31(1):85-88.
[22] Safdar A,Hamadeh M J,Kaczor J J,et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J]. PLoS One,2010,5(5):e10778.
[23] Nogueiras R,Habegger K M,Chaudhary N,et al. Sirtuin 1 and sirtuin 3:physiological modulators of metabolism[J]. Physiol Rev,2012,92(3):1479-1514.
[24] Palacios O M,Carmona J J,Michan S,et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY),2009,1(9):771-783.
[25] Nemoto S. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha)[J]. J Biol Chem,2005,280(16):16456-16460.
[26] Li L,Mühlfeld C. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise:differential response in cardiac and skeletal muscle[J]. Basic Res Cardiol,2011,106(6):1221-1234.
[27] Ji L L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling[J]. Free Radic Biol Med,2008,44(2):142-152.
[28] Olmos Y,Valle I,Borniquel S,et al. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes[J]. J Biol Chem,2009,284(21):14476-14484.
[29] Zhang Y,Ikeno Y,Qi W,et al. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity[J]. J Gerontol A Biol Sci Med Sci,2009,64(12):1212-1220.
endprint
[21] 王海濤. 運動對骨骼肌線粒體去乙酰化酶3(SIRT3)的影響[J]. 體育科學,2011,31(1):85-88.
[22] Safdar A,Hamadeh M J,Kaczor J J,et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults[J]. PLoS One,2010,5(5):e10778.
[23] Nogueiras R,Habegger K M,Chaudhary N,et al. Sirtuin 1 and sirtuin 3:physiological modulators of metabolism[J]. Physiol Rev,2012,92(3):1479-1514.
[24] Palacios O M,Carmona J J,Michan S,et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle[J]. Aging (Albany NY),2009,1(9):771-783.
[25] Nemoto S. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1(alpha)[J]. J Biol Chem,2005,280(16):16456-16460.
[26] Li L,Mühlfeld C. Mitochondrial biogenesis and PGC-1α deacetylation by chronic treadmill exercise:differential response in cardiac and skeletal muscle[J]. Basic Res Cardiol,2011,106(6):1221-1234.
[27] Ji L L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling[J]. Free Radic Biol Med,2008,44(2):142-152.
[28] Olmos Y,Valle I,Borniquel S,et al. Mutual dependence of Foxo3a and PGC-1alpha in the induction of oxidative stress genes[J]. J Biol Chem,2009,284(21):14476-14484.
[29] Zhang Y,Ikeno Y,Qi W,et al. Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity[J]. J Gerontol A Biol Sci Med Sci,2009,64(12):1212-1220.
endprint