999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The Diffusion Relaxation Approximation of the Incompressible Navier-Stokes Equations

2014-08-08 02:56:00LIUYanhuiYANGJianwei

LIU Yanhui,YANG Jianwei

(1.Faculty of Science,Hunan Institute of Engineering,Xiangtan 411104,Hunan;2.College of Mathematics and Information Science,North China University of Water Resources and Electric Power,Zhengzhou 450011,Henan)

1 Introduction

Let us consider the following system

for(x,t)∈T2×[0,T],whereT2=(R/Z)2is the unit periodic square.The unknowns aren∈R,u∈R2,V∈R2,2and φ∈R.

Now,let us consider a diffusive scaling,namely,for τ>0,we set

Therefore system(1)becomes

In this paper we shall prove that,under some suitable assumptions,the solutions to(3)converge,when τ goes to 0,to the(smooth)solutions of the incompressible Navier-Stokes equations

The aim of this note is to give a rigorous justification to this formal computation by using the hyperbolic energy method.

There have been a lot of studies on the diffusive scalinghas been largely investigated in the framework of hydrodynamic limit of the Boltzmann equation[1]and in the analysis of hyperbolic-parabolic relaxation limits for weak solutions of hyperbolic systems of balance laws with strongly diffusive source term[2-3].Brenier et al[4]study the relaxation approximation of the incompressible version of present relaxation system by using the modulated energy method.For other diffusive relaxation models and some useful results,the reader is refered to[5-11].

Here we state the main differences between the present paper and [7].First,the convergence rates obtained in two papers are different.Second,the new unknowns introduced by us are also different from[7].Therefore,each equation of the error system in present paper involves singular term which is different from[7].Finally,we give the convergence rate forVwhich has not been given in[7].We noticed that the method used in[7]can also obtain our result.

2 The main result

In this section,we state our main theorem.For this,we first recall the following classical result on the existence of sufficiently regular solutions of the incompressible Euler equation[12-13].

3 Proof of theorem 2.1

3.1 Reformulation of the system with new unknownsAs in[14],we define the new unknownsn1,d1,ω1,D1,Ω1as

with(u0,φ0)the solution of(4),and ω0=curlu0.Moreover,D0=divV0and Ω0=curlV0.Note that by taking the divergence of the second equation in(4)the pressure is given by

Then,from system(3)we know the vector(n1,d1,ω1,D1,Ω1)solves the system

Here,we have used the fact that

3.2 Energy estimatesFor|α|≤s-1 withs≥4,let us set

Taking theL2inner product of the equations in(8)with,respectively,one gets,by integration by parts and using Cauchy-Schwartz's inequality,Sobolev's lemma,basic Moser-type calculus inequalities[15]that

By an integration by parts,we have

The termsI2andI3are easily estimated by

Therefore,we obtain the estimate

Combining(9)with(12)~(16)together and summing this over all multiindexes α≤s-1,one gets

Then by the Gronwall inequality and the initial data assumption(6)we can conclude,that if the solution(u0,φ0)of incompressible Navier-Stokes equations(4)is smooth on the time interval[0,T],for anyT1<Tthere exists τ0such that the sequence(n1,d1,ω1,D1,Ω1) ‖τ<τ0is bounded inC([0,T],Hs-1(T2)).Then we have

This proves Theorem 2.1.

AcknowledgmentsThe authors are very grateful to both referees for their constructive comments and helpful suggestions,which considerably improved the presentation of the paper.

[1]Bouchut F,Golse F,Pulvirenti M.Kinetic Equations and Asymptotic Theory[M].Paris:Gauthiers-Villars,2000.

[2]Donatelli D,Marcati P.Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems[J].Trans Am Math Soc,2004,356:2093-2121.

[3]Marcati P,Rubino B.Hyperbolic to parabolic relaxation theory for quasilinear first order systems[J].J Diff Eqns,2000,162:359-399.

[4]Brenier Y,Natalini R,Puel M.On a relaxation approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2004,132:1021-1028.

[5]Jin S,Liu H L.Diffusion limit of a hyperbolic system with relaxation[J].Meth Appl Anal,1998,5:317-334.

[6]Yong W A.Relaxation limit of multi-dimensional isentropic hydrodynamical models for semiconductors[J].SIAM J Appl Math,2004,64:1737-1748.

[7] Natalini R,Rousset F.Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations[J].Proc Am Math Soc,2006,134:2251-2258.

[8]Xu J,Yong W A.Relaxation-time limits of non-isentropic hydrodynamic models for semiconductors[J].J Diff Eqns,2009,247:1777-1795.

[9]Yang J W,Wang S.The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas[J].J Math Anal Appl,2011,380:343-353.

[10]廖為,蒲志林.一類擬線性橢圓型方程Dirichlet問題正解的存在性[J].四川師范大學(xué)學(xué)報:自然科學(xué)版,2007,30(1):31-35.

[11]李傳華,馮春華.一類二階常p-Laplace系統(tǒng)周期解的存在性[J].廣西師范大學(xué)學(xué)報:自然科學(xué)版,2011,29(3):28-32.

[12]McGrath F J.Nonstationary plane flow of viscous and ideal fluds[J].Arch Rational Mech Anal,1968,27:229-348.

[13]Kato T.Nonstationary flow of viscous and ideal fluids in R3[J].J Funct Anal,1972,9:296-305.

[14]Loeper G.Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems[J].Commun Partial Diff Eqns,2005,30:1141-1167.

[15]Taylor M E.Partial Differential Equations(III)of Applied Mathematical Sciences[M].New York:Springer-Verlag,1997.

主站蜘蛛池模板: 青青操国产| 啊嗯不日本网站| 国产视频自拍一区| 老熟妇喷水一区二区三区| 亚洲一级毛片在线观播放| 欧美在线综合视频| 国产精品19p| 欧美专区日韩专区| 中国国语毛片免费观看视频| 午夜国产精品视频黄| 国产美女免费| 九色视频最新网址| 永久免费精品视频| 国产成人无码AV在线播放动漫| 伦伦影院精品一区| 中文字幕人妻av一区二区| 免费播放毛片| 国产精品一老牛影视频| 国产精品白浆无码流出在线看| 国产视频一区二区在线观看| 日韩欧美成人高清在线观看| 美女内射视频WWW网站午夜| 国产成人精品18| 91精品网站| 伊人无码视屏| 国产成人免费| 国产激爽大片高清在线观看| 国产91高跟丝袜| 激情网址在线观看| 亚洲无码A视频在线| 国产成熟女人性满足视频| 日本精品视频| 日韩欧美色综合| 精品国产Av电影无码久久久| 久久精品女人天堂aaa| 国产在线观看一区精品| 国产女人18水真多毛片18精品 | 亚洲欧美精品一中文字幕| 免费一极毛片| 国产手机在线小视频免费观看| 亚洲中文字幕日产无码2021| 国产亚洲精久久久久久无码AV| 伊人久久综在合线亚洲2019| 亚洲中文字幕97久久精品少妇| 亚洲伊人电影| 色久综合在线| 四虎国产在线观看| 五月婷婷丁香色| 国产一级毛片在线| 中文字幕在线看视频一区二区三区| 亚洲色图欧美| 热伊人99re久久精品最新地| 久久久久久久久久国产精品| 国产无码精品在线播放| 亚国产欧美在线人成| 欧美国产菊爆免费观看| 全午夜免费一级毛片| 97国产在线视频| 日本黄色a视频| 国产无遮挡猛进猛出免费软件| 人妻丰满熟妇AV无码区| 67194亚洲无码| 成年人国产网站| 99一级毛片| 成人福利视频网| 日韩免费无码人妻系列| 欧美成人怡春院在线激情| 国产精品99久久久| 国产一二三区视频| 国产精品视频导航| 欧美一区二区丝袜高跟鞋| 欧美日韩精品综合在线一区| 四虎永久免费在线| 亚洲人成网7777777国产| 国产swag在线观看| 亚洲av综合网| 亚洲精品视频免费看| 91精品专区国产盗摄| 茄子视频毛片免费观看| 亚洲日本一本dvd高清| 国产美女丝袜高潮| 亚洲成a人片77777在线播放|