李娜
德州學(xué)院數(shù)學(xué)科學(xué)學(xué)院,山東德州 253023
分?jǐn)?shù)階非線性Duffing振子方程的特性研究
李娜
德州學(xué)院數(shù)學(xué)科學(xué)學(xué)院,山東德州 253023
實(shí)際力學(xué)系統(tǒng)中干擾振子振動(dòng)的因素很多,外界的摩擦力和阻力是產(chǎn)生阻尼的外在原因,另外振子本身在振動(dòng)過(guò)程中也會(huì)消耗能量是產(chǎn)生阻尼的內(nèi)在原因。利用整數(shù)階微分算子來(lái)描述黏彈性介質(zhì)等復(fù)雜系統(tǒng)的振子振動(dòng)時(shí)往往會(huì)加入一些人為的經(jīng)驗(yàn)參數(shù)來(lái)構(gòu)造非線性微分方程。而引入分?jǐn)?shù)階微分算子,可以用簡(jiǎn)單的分?jǐn)?shù)階微分方程來(lái)描述振子的振動(dòng)。Duffing振子方程是力學(xué)中常見(jiàn)的振子方程,在工程技術(shù)、物理學(xué),化學(xué)以及生物學(xué)中都有著廣泛的應(yīng)用[1-2],Duffing振子的一般形式為:其中l(wèi)表示阻尼比,m,n分別代表線性與非線性恢復(fù)力的系數(shù),f(t)表示外部力。由于Duffing振子的廣泛應(yīng)用,近年來(lái)涌現(xiàn)了大量的文獻(xiàn)研究Duffing振子的混沌特性,混沌同步問(wèn)題等[3-4]。本文從另一個(gè)角度研究了Duffing振子問(wèn)題,將Caputo分?jǐn)?shù)階導(dǎo)數(shù)[5-6]:


引入到Duffing系統(tǒng)中,Г(·)表示Gamma函數(shù)。研究如下一類分?jǐn)?shù)階非線性的Duffing振子方程:

其中1<α≤2,0<β≤1分別表示對(duì)時(shí)間t的α,β階的Caputo分?jǐn)?shù)階導(dǎo)數(shù)。系統(tǒng)滿足初值條件:

關(guān)于分?jǐn)?shù)階非線性系統(tǒng)的求解有很多方法,如積分變換法、格林函數(shù)法等解析的方法[7-9],近年來(lái)出現(xiàn)了一些半解析的算法,如Adomian分解法[10-11]、變分迭代法[12-13]、微分變換法[14]等,它們可方便有效地求解大量的線性和非線性問(wèn)題。這些半解析的方法都存在著內(nèi)在的一些缺陷,2011年Khan提出一種新的方法[15-16]:同倫擾動(dòng)變換法,即將同倫擾動(dòng)法與Laplace變換法兩種方法相結(jié)合,該方法在一定程度上克服了其他半解析方法存在的缺陷。本文首次將同倫擾動(dòng)變換法用來(lái)求解分?jǐn)?shù)階的非線性系統(tǒng)并借助Mathematica軟件的符號(hào)計(jì)算功能得到了所研究的分?jǐn)?shù)階Duffing系統(tǒng)的近似解,最后分析了振子運(yùn)動(dòng)與分?jǐn)?shù)階導(dǎo)數(shù)之間的關(guān)系。
首先考慮如下的分?jǐn)?shù)階非線性Duffing振子方程[17]:


由于級(jí)數(shù)解比較復(fù)雜這里僅列出前三項(xiàng),其他項(xiàng)可通過(guò)Mathematica軟件得出,另外每項(xiàng)解中只列出了低冪次的項(xiàng)。從而方程(5)的近似解可以表示為:


對(duì)應(yīng)的整數(shù)階方程的解u(t)=sin(t),與文獻(xiàn)[17]的結(jié)果吻合。從而驗(yàn)證了同倫擾動(dòng)變換法是一種求解分?jǐn)?shù)階非線性方程簡(jiǎn)單有效的方法,提供了一種新的求解分?jǐn)?shù)階方程的方法。取方程(5)的三階近似級(jí)數(shù)解,研究分?jǐn)?shù)階的振子位移的振動(dòng)情況如圖1。圖1給出了振子位移u隨分?jǐn)?shù)階導(dǎo)數(shù)α和時(shí)間t的三維圖像,當(dāng)分?jǐn)?shù)階導(dǎo)數(shù)α較小時(shí),對(duì)振子振動(dòng)的影響越明顯。

圖1 方程(5)的三階近似解隨分?jǐn)?shù)階導(dǎo)數(shù)α和時(shí)間t的振動(dòng)情況
再者為研究阻尼振子方程振動(dòng)與分?jǐn)?shù)階導(dǎo)數(shù)之間的關(guān)系,如在黏彈性介質(zhì)中的阻尼振動(dòng)等,阻尼項(xiàng)一般可用分?jǐn)?shù)階微積分進(jìn)行描述,研究如下的分?jǐn)?shù)階非線性Duffing阻尼振動(dòng)方程:


由于級(jí)數(shù)解比較復(fù)雜這里不再一一列出,其他項(xiàng)可通過(guò)Mathematica軟件得出,從而方程(25)的近似解可以表示為:

不妨取級(jí)數(shù)解的前三項(xiàng)并省略高階項(xiàng)迭代多次得到分?jǐn)?shù)階阻尼Duffing振動(dòng)方程的復(fù)雜特性如圖2,由此可以看出受迫分?jǐn)?shù)階阻尼振動(dòng)的運(yùn)動(dòng)情況。

圖2 分?jǐn)?shù)階阻尼振動(dòng)方程(25)隨分?jǐn)?shù)階導(dǎo)數(shù)α的振動(dòng)情況
圖2給出了α=0.48,0.6,0.8三種情況下的圖像,可以觀察到分?jǐn)?shù)階振子振動(dòng)與阻尼項(xiàng)階數(shù)的關(guān)系,隨著時(shí)間的推移呈現(xiàn)衰減的特性。并且α越小,振子的記憶能力越強(qiáng),振子的變化幅度也就越大。通過(guò)引入分?jǐn)?shù)階的微積分算子來(lái)描述黏彈性介質(zhì)中的阻尼振動(dòng)往往比人為構(gòu)造非線性的整數(shù)階方程簡(jiǎn)單而且更能反應(yīng)振子運(yùn)動(dòng)與阻尼項(xiàng)的關(guān)系。
本文利用同倫擾動(dòng)變換的方法求解了分?jǐn)?shù)階Duffing振子方程的近似解,并研究了振子振動(dòng)與分?jǐn)?shù)階導(dǎo)數(shù)之間的關(guān)系,為分?jǐn)?shù)階Duffing振子系統(tǒng)的混沌特性、混沌同步問(wèn)題等其他特性的研究提供了一定的依據(jù)。
[1]王坤,關(guān)新平,丁喜峰,等.Duffing振子系統(tǒng)周期解的唯一性與精確周期信號(hào)的獲取方法[J].物理學(xué)報(bào),2010,59(10):6859-6863.
[2]顧仁財(cái),許勇,郝孟麗,等.Levy穩(wěn)定噪聲激勵(lì)下的Duffingvan der Pol振子的隨機(jī)分岔[J].物理學(xué)報(bào),2011,60(6).
[3]劉艷芹.一類分?jǐn)?shù)階非線性振子的特性研究[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(16):30-32.
[4]Vincent U E,Odunaike R K,Laoye J A,et al.Adaptive backstepping control and synchronization of a modified and chaotic van der Pol-Duffing oscillator[J].Journal of Control Theory and Applications,2011,9(2):273-277.
[5]Poudlbny I.Fractional differential equations:an introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications[M].New York:Academic Press,1999.
[6]Metzer R,Klafter J.The random walks guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339(1):1-77.
[7]Ma Junhai,Liu Yanqin.Exact solutions for a generalized nonlinear fractional Fokker-Planck equation[J].Nonlinear Analysis:Real World Applications,2010,11(1):515-521.
[8]Liu Yanqin,Ma Junhai.Exact solutions of a generalized multi-fractional nonlinear diffusion equation in radical symmetry[J].Communications in Theoretical Physics,2009,52(5):857-861.
[9]Wang Shaowei,Xu Mingyu.Axial couette flow of two kinds of fractional viscoelastic fluids in an annulus[J]. Nonlinear Analysis:Real World Applications,2009,10(2):1087-1096.
[10]Adomian G.A review of the decomposition method in applied mathematics[J].Journal of Mathematical Analysis and Applications,1988,135(2):501-544.
[11]Wazwaz A M,El_Sayed M.A new modification of the adomian decomposition method for linear and nonlinear operators[J].Applied Mathematics and Computation,2001,122(3):393-405.
[12]He Jihuan.Variational iteration method—a kind of non
linear analytical technique:some examples[J].International
Journal of Non-Linear Mechanics,1999,34(4):699-708.
[13]Wazwaz A M.The variational iteration method for analytic treatment for linear and nonlinear ODEs[J].Applied Mathematics and Computation,2009,212(1):120-134.
[14]Erturk V S,Momani S,Odibat Z.Application of generalized differential transform method to multi-order fractional differential equations[J].Communications in Nonlinear Science and Numerical Simulation,2008,13(8):1642-1654.
[15]Madani M,F(xiàn)athizadeh M,Khan Y,et al.On the coupling of the homotopy perturbation method and Laplace transformation[J].Mathematical and Computer Modelling,2011,53(9/10):1937-1945.
[16]Khan Y,Wu Qiaobiao.Homotopy perturbation transform method for nonlinear equations using He’s polynomials[J]. Computers and Mathematics with Applications,2011,61(8):1963-1967.
[17]Agadjanov.Numerical solution of Duffing equation by the Laplace decomposition algorithm[J].Applied Mathematics and Computation,2006,177(2):572-580.
LI Na
School of Mathematical Sciences,Dezhou University,Dezhou,Shandong 253023,China
Caputo fractional operator is introduced in the nonlinear Duffing oscillator equation.Homotopy perturbation transform method which is based on homotopy perturbation method and Laplace transform method is applied to solving the fractional nonlinear Duffing oscillator equation and with Mathematica symbols calculation software,the approximate solutions are investigated.The relationship between oscillator movement and fractional derivative is also studied.
Caputo fractional derivative;nonlinear Duffing oscillator equation;homotopy perturbation transform method; approximate solution
將Caputo分?jǐn)?shù)階微分算子引入到非線性的Duffing振子方程中,運(yùn)用同倫擾動(dòng)變換法——一種同倫擾動(dòng)法和Laplace變換相結(jié)合的方法來(lái)求解分?jǐn)?shù)階的非線性方程,借助Mathematica軟件的符號(hào)計(jì)算功能得到了分?jǐn)?shù)階非線性Duffing振子方程的近似解,研究了振子運(yùn)動(dòng)過(guò)程與分?jǐn)?shù)階導(dǎo)數(shù)之間的關(guān)系。
Caputo分?jǐn)?shù)階微分;非線性Duffing振子方程;同倫擾動(dòng)變換法;近似解
A
O175.29
10.3778/j.issn.1002-8331.1304-0070
LI Na.Properties of fractional nonlinear Duffing oscillator equation.Computer Engineering and Applications,2014, 50(18):75-78.
山東省自然科學(xué)基金(No.ZR2010Al019)。
李娜(1979—),女,講師,主要研究領(lǐng)域?yàn)榉蔷€性偏微分方程。E-mail:wshlina@163.com
2013-04-07
2013-05-27
1002-8331(2014)18-0075-04
CNKI網(wǎng)絡(luò)優(yōu)先出版:2013-06-26,http://www.cnki.net/kcms/detail/11.2127.TP.20130626.1539.015.html