999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高速PCB板諧振仿真與分析

2014-07-19 18:37:56孟晶俞能杰
現(xiàn)代電子技術(shù) 2014年10期

孟晶 俞能杰

摘 要: 諧振是電源完整性一大問題,PCB電源平面間諧振振幅過大,會(huì)導(dǎo)致電源分配系統(tǒng)(PDS)工作異常,甚至成為EMI輻射源,故在PCB詳細(xì)設(shè)計(jì)階段需開展諧振仿真分析并消除諧振,從而提高設(shè)計(jì)成功率。為消除諧振,首先利用SIWAVE軟件對(duì)電源地平面間諧振情況進(jìn)行仿真分析,找出諧振點(diǎn),然后合理選用布局去耦電容,消除400 MHz以下頻段諧振影響。通過調(diào)整PCB疊層及層間距消除400 MHz以上頻段諧振影響。通過實(shí)例仿真分析,依據(jù)工程經(jīng)驗(yàn),實(shí)現(xiàn)了快速估算去耦電容的計(jì)算方法,并證明了其正確性。

關(guān)鍵詞: 電源完整性; 諧振; SIWAVE仿真分析; 去耦電容

中圖分類號(hào): TN710?34 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2014)10?0144?03

Abstract: Resonance is a major problem of power integrity. If the resonance amplitude between PCB power planes is too large, it may cause PDS work abnormal, even cause the power planes to become EMI emitter, so in the detailed PCB design stage, simulation analysis of resonance and eliminating resonance are needed for improving the success rate of the design. To eliminate resonance, first, the SIWAVE is used to simulate and analyze the resonance between the power planes to find the resonance point, and then the decoupling capacitor is selected and layouted reasonably, so as to eliminate the influence caused by the resonance below 400 MHz frequency, and eliminate the influence caused by the resonance above 400 MHz frequency by adjusting the PCB overlayers and the space between overlayers. Based on engineering experience, a rapid calculation method to estimate the value of the decoupling capacitors was achieved. Its correctness was proved with simulation analysis on example.

Keywords: power integrity; resonance; SIWAVE simulating and analysis; decoupling capacitor

0 引 言

隨著微電子技術(shù)的不斷發(fā)展,更多功能的模擬和數(shù)字電路被制作或集成到單個(gè)芯片中[1]。當(dāng)大量高速開關(guān)器件同時(shí)快速切換狀態(tài)時(shí),就會(huì)產(chǎn)生電源噪聲,干擾周圍的高速信號(hào),并且由于噪聲容限變小,嚴(yán)重時(shí),可引發(fā)芯片的誤動(dòng)作,造成不利影響。因此對(duì)電源完整性的研究顯得越來越重要[2?3]。

作為電源完整性的一大問題,諧振是指能量被夾在兩個(gè)平行板(power and ground plane)之間,因原始信號(hào)與其反射信號(hào)同相(phase add)而形成共振腔效應(yīng)。在中低頻時(shí),電源地平面對(duì)可當(dāng)作一個(gè)理想電容來看待,其ESR和ESL都很小,在頻率達(dá)到某一個(gè)高頻段時(shí),電源地平面間變成了一個(gè)諧振腔,等效為RLC串并聯(lián)電路,在諧振頻率點(diǎn)附近,平面對(duì)地阻抗變得很大,從而引發(fā)電源完整性問題[4]。

1 諧振帶來的問題

若諧振落在了設(shè)計(jì)關(guān)注的頻段內(nèi),帶來的問題,需要從三方面來分析:一方面諧振過大,在諧振點(diǎn)處電源波動(dòng)過大,穩(wěn)壓電源芯片VRM無法實(shí)時(shí)響應(yīng)負(fù)載對(duì)于電流需求的快速變化,會(huì)出現(xiàn)電源跌落,從而產(chǎn)生電源噪聲[5];第二方面在諧振點(diǎn)處,電源表現(xiàn)的高阻抗,使的部分噪聲和信號(hào)能量無法在電源分配系統(tǒng)(PDS)中找到回流路徑,最終會(huì)從PCB板輻射出去,造成EMI問題[6];最后一個(gè)方面,若諧振點(diǎn)與板上器件工作頻率相同,將引起共振。無論哪種情況發(fā)生,都將導(dǎo)致板卡性能下降,甚至設(shè)計(jì)失敗,從而延長(zhǎng)設(shè)計(jì)周期和增加設(shè)計(jì)成本。因而,為了將問題控制在設(shè)計(jì)初期,需要在進(jìn)行PCB設(shè)計(jì)時(shí)開展諧振仿真分析,及時(shí)發(fā)現(xiàn)存在問題,通過計(jì)算,并利用仿真工具優(yōu)化設(shè)計(jì)。

2 消除諧振的方法

當(dāng)前,電源完整性諧振問題主要通過兩個(gè)途徑解決,即安裝去耦電容和優(yōu)化PCB的疊層設(shè)計(jì)及布局布線。在高速系統(tǒng)工作速率低于400 MHz時(shí),在恰當(dāng)位置安裝合適的去耦電容,有助于減小電源完整性問題;當(dāng)系統(tǒng)速率更高時(shí),去耦電容作用減小。這時(shí),只有通過優(yōu)化PCB層間距設(shè)計(jì)及布局布線,降低電源電壓,以及適當(dāng)匹配,降低反射等辦法解決電源完整性問題[7]。之所以是400 MHz,是由于受限于去耦電容能力,眾所周知,理想電容實(shí)際上是不存在的(在極低頻情況下,才將電容看作理想電容),實(shí)際電容總會(huì)存在一些寄生參數(shù),在高頻情況下,其ESL、ESR參數(shù)將極其重要。一個(gè)電容器可用一個(gè)等效串聯(lián)電路來表示[8],如圖 1所示。

4 結(jié) 語

諧振問題是電源完整性的一大問題,在高速PCB設(shè)計(jì)中需在設(shè)計(jì)初期對(duì)其進(jìn)行控制。不同頻段的諧振有不同的處理方法。針對(duì)400 MHz以下頻段,通過合理選用布局去耦電容,達(dá)到消除諧振的目的;而針對(duì)400 MHz以上頻段,通過調(diào)整PCB疊層及層間距可達(dá)到同樣目的。本文依據(jù)工程經(jīng)驗(yàn),實(shí)現(xiàn)了快速估算去耦電容的計(jì)算方法,并通過實(shí)例仿真分析,證明了其正確性。

參考文獻(xiàn)

[1] SRIDHARAN V, SWAMINATHAN M, BANDYOPADHYAY T. Enhancing signal and power integrity using double sided silicon interposer [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(11): 598?600.

[2] 閆靜純,李濤,蘇浩航.高速高密度PCB電源完整性分析[J].電子器件,2012(3):296?299.

[3] 周子琛,申振寧.高速嵌入式系統(tǒng)中的電源完整性設(shè)計(jì)方法[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2010(3):19?21.

[4] 申偉,唐萬明,王楊.高速PCB電源完整性分析[J].現(xiàn)代電子技術(shù),2009,32(12):213?218.

[5] SWAMINATHAN M, KIM J, NOVAK I, et a1. Power distribution networks for system on package:status and challenges [J]. IEEE Transactions on Advanced Packaging, 2004, 27(2): 286?300.

[6] 吳聽,錢照明,龐敏熙.開關(guān)電源印刷電路板電磁兼容問題的研究[J].電子與信息學(xué)報(bào),2001,23(2):181?186.

[7] 白同云.高速PCB電源完整性研究[J].中國(guó)電子科學(xué)研究院學(xué)報(bào),2006(1):22?31.

[8] 包興,胡明.電子器件導(dǎo)論[M].北京:北京理工大學(xué)出版社,2001.

[9] 李學(xué)平,李玉山.基于Ansofl仿真分析的SSN解決方案探討[J].微型機(jī)與應(yīng)用,2011,30(4):68?70.

[10] WU Tzong?Lin, CHUANG Hao?Hsiang, WANG Ting?Kuang. Overview of power integrity solutions on package and PCB: decoupling and EBG isolation [J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(2): 346?356.

參考文獻(xiàn)

[1] SRIDHARAN V, SWAMINATHAN M, BANDYOPADHYAY T. Enhancing signal and power integrity using double sided silicon interposer [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(11): 598?600.

[2] 閆靜純,李濤,蘇浩航.高速高密度PCB電源完整性分析[J].電子器件,2012(3):296?299.

[3] 周子琛,申振寧.高速嵌入式系統(tǒng)中的電源完整性設(shè)計(jì)方法[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2010(3):19?21.

[4] 申偉,唐萬明,王楊.高速PCB電源完整性分析[J].現(xiàn)代電子技術(shù),2009,32(12):213?218.

[5] SWAMINATHAN M, KIM J, NOVAK I, et a1. Power distribution networks for system on package:status and challenges [J]. IEEE Transactions on Advanced Packaging, 2004, 27(2): 286?300.

[6] 吳聽,錢照明,龐敏熙.開關(guān)電源印刷電路板電磁兼容問題的研究[J].電子與信息學(xué)報(bào),2001,23(2):181?186.

[7] 白同云.高速PCB電源完整性研究[J].中國(guó)電子科學(xué)研究院學(xué)報(bào),2006(1):22?31.

[8] 包興,胡明.電子器件導(dǎo)論[M].北京:北京理工大學(xué)出版社,2001.

[9] 李學(xué)平,李玉山.基于Ansofl仿真分析的SSN解決方案探討[J].微型機(jī)與應(yīng)用,2011,30(4):68?70.

[10] WU Tzong?Lin, CHUANG Hao?Hsiang, WANG Ting?Kuang. Overview of power integrity solutions on package and PCB: decoupling and EBG isolation [J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(2): 346?356.

參考文獻(xiàn)

[1] SRIDHARAN V, SWAMINATHAN M, BANDYOPADHYAY T. Enhancing signal and power integrity using double sided silicon interposer [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(11): 598?600.

[2] 閆靜純,李濤,蘇浩航.高速高密度PCB電源完整性分析[J].電子器件,2012(3):296?299.

[3] 周子琛,申振寧.高速嵌入式系統(tǒng)中的電源完整性設(shè)計(jì)方法[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2010(3):19?21.

[4] 申偉,唐萬明,王楊.高速PCB電源完整性分析[J].現(xiàn)代電子技術(shù),2009,32(12):213?218.

[5] SWAMINATHAN M, KIM J, NOVAK I, et a1. Power distribution networks for system on package:status and challenges [J]. IEEE Transactions on Advanced Packaging, 2004, 27(2): 286?300.

[6] 吳聽,錢照明,龐敏熙.開關(guān)電源印刷電路板電磁兼容問題的研究[J].電子與信息學(xué)報(bào),2001,23(2):181?186.

[7] 白同云.高速PCB電源完整性研究[J].中國(guó)電子科學(xué)研究院學(xué)報(bào),2006(1):22?31.

[8] 包興,胡明.電子器件導(dǎo)論[M].北京:北京理工大學(xué)出版社,2001.

[9] 李學(xué)平,李玉山.基于Ansofl仿真分析的SSN解決方案探討[J].微型機(jī)與應(yīng)用,2011,30(4):68?70.

[10] WU Tzong?Lin, CHUANG Hao?Hsiang, WANG Ting?Kuang. Overview of power integrity solutions on package and PCB: decoupling and EBG isolation [J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(2): 346?356.

主站蜘蛛池模板: 国产成人三级| 亚洲色图在线观看| 无码精品福利一区二区三区| 欧美一级特黄aaaaaa在线看片| 欧美激情,国产精品| 日韩人妻无码制服丝袜视频| 88av在线看| 久久午夜夜伦鲁鲁片不卡| 亚洲视频三级| 91口爆吞精国产对白第三集| 在线观看国产网址你懂的| 素人激情视频福利| 亚洲精品视频免费| 精品少妇人妻无码久久| 美女一区二区在线观看| 波多野结衣无码AV在线| 欧美综合区自拍亚洲综合天堂| 日韩国产高清无码| 国产成人做受免费视频| 好久久免费视频高清| 国产香蕉在线| 2024av在线无码中文最新| 亚洲乱强伦| 91久久性奴调教国产免费| 在线国产毛片| 99在线免费播放| 亚洲国产欧美中日韩成人综合视频| 中国国产一级毛片| 毛片手机在线看| 国产凹凸一区在线观看视频| 97影院午夜在线观看视频| 四虎成人精品在永久免费| 亚洲第一视频免费在线| 在线观看无码a∨| 99精品热视频这里只有精品7| 亚洲国产无码有码| 国内熟女少妇一线天| 欧美人人干| 久久香蕉国产线看精品| 国产精品大尺度尺度视频| 日本黄色不卡视频| 99re视频在线| 亚洲天堂伊人| 国产免费久久精品99re不卡 | swag国产精品| 视频二区国产精品职场同事| 精品无码日韩国产不卡av| 国产亚洲高清在线精品99| 国产情侣一区二区三区| 午夜福利视频一区| 亚洲国产日韩在线成人蜜芽| 欧美天天干| 亚洲区一区| 欧美精品另类| 视频二区欧美| 国产成人8x视频一区二区| 看国产毛片| AV片亚洲国产男人的天堂| 在线国产91| 国产在线精品99一区不卡| 国产欧美日韩va另类在线播放| 亚洲无码精品在线播放| 麻豆精品在线视频| 91丝袜美腿高跟国产极品老师| 色香蕉网站| 国产99在线观看| 免费jizz在线播放| 草逼视频国产| 91麻豆国产视频| 女同国产精品一区二区| AV老司机AV天堂| 国产色婷婷视频在线观看| 欧美精品一区在线看| 这里只有精品在线| 免费国产黄线在线观看| 国产精品视屏| 婷婷亚洲天堂| 日韩欧美中文| 欧美激情,国产精品| 亚洲国产成人久久77| 国产美女精品一区二区| swag国产精品|