999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Estimates of the infinity norms for matrix inverse and the smallest singular value on the GS-SDD matrix*

2014-07-02 03:01:44ZhaoRenqingZhongZhenhuaLiuPeng

Zhao Ren-qing,Zhong Zhen-hua,Liu Peng

(School of Mathematics and Statistics,Chuxiong Normal University,Chuxiong,Yunnan,675000)

1.Introduction and notations

Let Mn(C)be the set of all complex matrices of order n×n,A=(aij)∈Mn(C).Denote

N:={1,2,…n},the set of all indices;

S,a non-empty proper subset of N;

S:=NS,the complement of S;

For the matrix A=(aij)∈Mn(C),satisfying aii≠0 for all i∈N,we will use the notations

In numerical analysis,a bound is often required for ‖A-1‖∞or the smallest singular value or the condition number κ(A)= ‖A‖·‖A-1‖ for some norm of A ∈ Mn(C).It is known that bounding‖A-1‖ is usually difficult in any norm unless A-1is known explicitly.

For a strictly diagonally dominant matrix,i.e.,

the following well-known bounds were given by Varah in[1]:

In[2],Johnson obtained the following easily calculable lower bound for σn(A)of an arbitrary matrix A∈Mn(C),

In[3],Johnson and Szulc obtained further lower bound for σn(A)of an arbitrary matrix A∈Mn(C),

Let A=(aij)∈Mn(C),n≥2,S be a non-empty proper subset of N.We call A an S-SDD if

for all i∈ S,and

In[4],Nenad Moracˇa obtained the following bound for‖A-1‖∞of an S-SDD matrix for some nonempty proper subset S?N,

In this paper,a new upper bound of‖A-1‖∞and a new lower bound of the smallest singular value are presented.The results obtained are suited to the GS-SDD matrices introduced in section 2,which is an extended matrix class of the strictly diagonally dominant matrices.Examples will show the effectiveness of our new result.

2.Estimates of‖A-1‖∞ and the smallest singular value of A

Lemma 1[5].A matrix A is an H - matrix if and only if there exists a positive diagonal matrix X such that AX is strictly diagonally dominant.

Definition 1.A matrix A is called a GS-SDD matrix if there exists a positive diagonal matrix D such that AD is an S-SDD matrix.In particular,when D is a unit matrix,AD is an S-SDD matrix.

Lemma 2.Let A=(aij)∈Mn(C),n≥2,be a matrix with nonzero diagonal entries.If there exists some nonempty proper subset S?N such that

and

then A is an GS-SDD matrix.

Proof Take the positive diagonal matrix D=diag(d1,d2,…,dn),where

Denote A(1)=AD=(),we have

and for each i∈N,

then A(1)=AD is an S-SDD matrix from(9)and(10),thus A is an GS-SDD matrix.

Lemma 3.Let A=(aij)∈Mn(C),n≥2,be a matrix with nonzero diagonal entries.If there exists some nonempty proper subset S?N such that(9)and(10)hold,then A is an H -matrix.

Proof Denote

(1)For i∈ S,

(2)For j∈S,

Hence,

Then,A is a nonsingular H -matrix.

For convenience,we denote

Theorem 1.Let A=(aij)∈Mn(C),n≥2,be a matrix with nonzero diagonal entries.If there exists some nonempty proper subset S?N such that

and

then

Proof From the proof of Lemma 1,we have that A(1)=AD is an S-SDD matrix.By(8)we obtain

From A(1)=AD,we get that

Similarly,we have the following result.

Corollary 1.Let A=(aij)∈Mn(C),n≥2,be a matrix with nonzero diagonal entries.If there exists some nonempty proper subset S?N such that

and

then

By Theorem 1 and Corollary 1,we have the following lower bound of σn(A),immediately.

Theorem 2.Let A=(aij)∈Mn(C),n≥2,be a matrix with nonzero diagonal entries.If there exists some nonempty proper subset S?N such that

and

then

Proof Because the inequality‖A‖22≤‖A‖∞·‖A‖1holds for every A∈Mn(C),by Theorem 1 and Corollary 1,the conclusion is obtained immediately

3.Examples

Example 1.Let

It is easy to verify that A is a GS-SDD matrix.Taking S={1,2},by(11)of Theorem 1,we have

Taking S={1,2},by(12)of Corollary 1,we have

And by(13)of Theorem 2,σn(A)≥0.5773(the true value is σn(A)=3.9438).However,A is not a diagonally dominant matrix,the estimates(1)and(2)cannot be used.Using the estimates(3),(4)and(5),we get the following bounds,respectively:

σn(A)≥0.1980(by(3)of[2]);σn(A)≥0.5131(by(4)of[3]);σn(A)≥0(by(5)of[3]).

Example 2.Let

It is easy to verify that A is a GS-SDD matrix.Taking S={1,2},by(11)of Theorem 1,we have

Taking S={1,2},by(12)of Corollary 1,we have

And by(13)of Theorem 2,σn(A)≥0.24(the true value is σn(A)=5.3586).However,A is not a diagonally dominant matrix,the estimates(1)and(2)cannot be used.Using the estimates(3),(4)and(5),we get the following meaningless bounds(negative lower bounds),respectively:

σn(A)≥-0.5(by(3)of[2]);σn(A)≥-0.4438(by(4)of[3]);σn(A)≥-0.2485(by(5)of[3]).

The two examples show that the estimate formulas(11)in Theorem 1 and(12)of Corollary 1 are effective and that estimate formula of Theorem 2 is much better than those in[2]and[3].

[1]J.M.Varah.A lower bound for the smallest singular value.Linear Algebra Appl.1975(11):3—5.

[2]C.Johnson.A Ger?gorin-type lower bound for the smallest singular value.Linear Algebra Appl.1989(112):1—7.

[3]C.R.Johnson,T.Szulc.Further lower bounds for the smallest singular value.Linear Algebra Appl.1998(272):169—179.

[5]Ting Zhu Huang.Estimation of‖A-1‖∞and the smallest singular value.Comput.Math.Appl.2008(55):1075—1080.

主站蜘蛛池模板: 国产精品免费入口视频| 久久精品电影| 久久永久免费人妻精品| 国产黄网永久免费| 51国产偷自视频区视频手机观看| 99在线视频免费| 伊人查蕉在线观看国产精品| 国产极品粉嫩小泬免费看| 国产精品无码在线看| 国产成人高清精品免费| 免费一级毛片在线观看| 亚洲伊人久久精品影院| 欧美伊人色综合久久天天| 国产真实乱了在线播放| 国产在线观看精品| 亚洲码在线中文在线观看| 特级毛片8级毛片免费观看| 日本a∨在线观看| 2019年国产精品自拍不卡| 欧美一级高清视频在线播放| 亚洲网综合| 国内精品自在欧美一区| 欧美午夜在线观看| 亚洲人成网站日本片| 欧美日韩免费观看| 久久精品欧美一区二区| 91破解版在线亚洲| 亚洲熟女中文字幕男人总站| 久久久成年黄色视频| 国产波多野结衣中文在线播放| 免费观看国产小粉嫩喷水| 国产精品一区二区久久精品无码| 免费观看欧美性一级| 色婷婷久久| 国产成人综合网在线观看| 中国毛片网| 亚洲va在线观看| 精品人妻一区无码视频| 久久精品无码专区免费| 亚洲欧洲国产成人综合不卡| 韩日无码在线不卡| 日韩第一页在线| 五月天丁香婷婷综合久久| 亚洲一区精品视频在线| 久久a毛片| 亚洲国产日韩欧美在线| 免费人成在线观看视频色| 四虎影院国产| 久久精品国产在热久久2019 | 国产福利观看| 日本免费a视频| 一本久道久久综合多人| 日本午夜视频在线观看| 国产亚洲美日韩AV中文字幕无码成人| 久久人人97超碰人人澡爱香蕉 | 国产综合欧美| 国产精品自拍合集| 国产亚洲视频在线观看| 色视频国产| 91亚洲精品第一| 毛片在线播放网址| 亚洲国产日韩一区| 红杏AV在线无码| 久久亚洲日本不卡一区二区| 国产第八页| 亚洲综合久久一本伊一区| 女人18毛片一级毛片在线 | 少妇高潮惨叫久久久久久| 在线播放91| 国产高清精品在线91| 东京热高清无码精品| 日日拍夜夜操| 亚洲成a人在线播放www| 在线视频97| 亚洲天堂2014| 全免费a级毛片免费看不卡| 日本AⅤ精品一区二区三区日| 999福利激情视频| 日韩成人高清无码| 波多野结衣视频网站| 狠狠做深爱婷婷久久一区| 国产大全韩国亚洲一区二区三区|