999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

擴展的F-展開法在耦合KdV方程精確解中的應用

2014-07-01 23:27:37
長春師范大學學報 2014年2期
關鍵詞:教育

于 義

(撫順師范高等專科學校,遼寧撫順 113001)

擴展的F-展開法在耦合KdV方程精確解中的應用

于 義

(撫順師范高等專科學校,遼寧撫順 113001)

本文以數學機械化思想為指導,以計算機代數系統軟件Maple為工具,提出了用擴展的F-展法來構造非線性孤子方程的行波解。為了驗證方法的有效性和優越性,將其應用到耦合的KdV方程,獲得了具有一般形式的新的精確解,其中包括單的和耦合的Jacobi橢圓函數解、類孤子解及三角函數解。

孤子方程;精確解;F-展開法

一般來說,計算分為兩大類:一是數值計算;二是符號計算.數值計算對人們來說是比較熟悉的,并且比符號計算發展得迅速.隨著計算機及符號軟件的產生,如Maple,Mathematica等,符號計算已成為現代數學研究中非常重要的工具,并且已滲透到其他很多領域[1-3].我國著名數學家、中國科學院院士吳文俊先生在對中國古代數學思想研究的基礎上發展并完善了Ritt的方法,于1978年創立了吳代數消元法,將該方法用于初等幾何的機械化證明,獲得了很好的結果.在吳文俊院士的大力倡導下,數學機械化思想得到了迅速的發展,已滲透到了諸多領域,如理論物理、CAD、CAGD、機器人及控制論、力學和組合學等.數學機械化連續列為“八五”、“九五”國家攀登計劃及“973”目之一.為了更準確地研究物體變化的性質,我們需要尋求其對應方程的精確解.

1 擴展的 F-展開法

F-展開法[4-5]是用雅克比橢圓函數展開方法求非線性數學物理方程周期波解的方法,即把方程的解表示成雅克比橢圓函數冪次展開的形式.用它得到了很多非線性偏微分方程的周期波解.下面給出F-展開法的一個推廣.

對給定兩個自變量的非線性偏微分方程

P(u,ut,ux,utt,uxt,…)=0.

(1)

其中P是一個多項式,它含有非線性項和線性出現的高階偏導數項.我們分以下五個步驟求其橢圓函數周期波解:

第一步,對方程(1)作行波變換u(x,t)=u(ξ),ξ=kx+ωt+k0,其中k,ω是待定常數,k0是任意常數,則(1)式化為:

P(u,ωu′,ku′,ω2u″,ωku″,k2u″,…)=0.

(2)

第二步:設u(ξ)可表示為F(ξ)的有限冪級數

(3)

這里a0,a1,a2,…,aN為待定常數.N為非負整數,將由非線性項和最高階偏導數項的齊次平衡來決定.F(ξ)是雅克比橢圓函數滿足Riccati方程:

F′2(ξ)=PF4(ξ)+QF2(ξ)+R.

(4)

F"(ξ)=2PF3(ξ)+QF(ξ).

(5)

F?(ξ)=(6PF2(ξ)+Q)F′(ξ).

(6)

其中P,Q,R,F(ξ)有如下的關系:

第三步:將(3)代入(2),利用(4)(5)(6)將(2)左端變為F(ξ)的多項式,再令其各次幕的系數為0,得a0,a1,a2,…,aN,ω(或k)的代數方程組.

第四步:解該方程組,將a0,a1,a2,…,aN,ω(或k)用P,Q,R來表示.將它們代入(3)式,得我們所解方程的一個行波解的一般形式.

第五步:選取(P,Q,R)使F(ξ)是某一種雅克比橢圓函數.將選定的(P,Q,R)的值和相應的雅克比橢圓函數代入方程行波解的一般形式中,可得方程的各種用雅克比橢圓函數表示的周期波解.

2 應用

下面以耦合KdV方程

(7)

為例,利用擴展F-展開法求其精確解.

首先對耦合KdV方程做行波變化u=u1(ξ),v=v1(ξ),ξ=kx+ωt+k0,其中k0為常數,k,ω待定.

(8)

(9)

(10)

(11)

其中ai,bi,ci,di,ei,fi,gi,hi均為常數.將(4)(5)(6)代入(10)(11),并利用符號計算軟件Maple選擇關于F'iFj的系數,并分別令其為零得到下面的代數超定方程(由于方程較多,這里將其省略).進一步,解上述代數方程得如下三種情形非平凡解:

情形1:a0=a0,k=k,e0=e0,a1=0,b1=0,b2=0,c1=0,c2=0,d1=0,d2=0,e1=0,e2=0,f1=0,f2=0,g1=0,g2=0,h1=0,h2=0,a2=-2k2P1,ω=-4k3Q1-6ka0,

情形3:k=k,e1=e1,e2=0,g2=0,d2=0,c2=0,b2=0,a1=0,h1=0,h2=0,

c1=0,d1=0,g1=0,f1=0,e0=0,f2=0,

由于篇幅有限,下面僅對對于情形3,給出耦合KdV的一些精確解.

(i)P1=m2,Q1=-(1+m2),Q1=-(1+m2),F(ξ)=snξ,

代入(10)(11)得方程的一組解

其中a0,e0,k為任意常數.

黨的十八屆三中全會提出了健全軍隊院校教育、部隊訓練實踐、軍事職業教育“三位一體”的新型軍事人才培養體系。在“三位一體”軍事人才培養體系中,把軍隊院校教育、軍事職業教育并列。其中,軍隊人員離崗進校接受教育培訓就是軍隊院校教育,在崗接受教育培養就是軍事職業教育。因此,軍事職業教育本質上屬于在崗繼續教育,只是面向的對象是軍隊人員。軍事職業教育已經進入了黨的十八屆三中全會決定,進入了中央軍委決策。軍事職業教育,應以改善學員知識結構、提升武器裝備運用能力、增強全面綜合素質為目標,科學構建完善的軍事職業教育課程體系,應從修訂軍事職業教育的課程標準、調整教學內容、創新課程教學手段與方法入手。

當m→0時,snξ→sinξ,因此有

當m→1時,snξ→tanhξ,因此有

其中a0,e0,k為任意常數.

(ii)P1=-m2,Q1=2m2-1,F(ξ)=cnξ,

代入(19)(20)得方程的一組解

其中a0,e0,k為任意常數.

當m→0時,cnξ→cosξ,因此有

當m→1時,cnξ→sechξ,因此有

其中a0,e0,k為任意常數.

(iii)P1=1,Q1=-(1+m2),F(ξ)=nsξ,

其中a0,e0,k為任意常數.

當m→0時,ns→cscξ,因此有

當m→1時,nsξ→cothξ,因此有

其中a0,e0,k為任意常數.

[1]朝魯.吳-微分特征列集法理論極其在微分方程對稱和力學中的應用[D].大連:大連理工大學,1997.

[2]Wang ML,Wang MY,Zhang JL.The periodic wave solutions for two systems of nonlinear wave equations[J]. Chin. Phys,2003(12):1341-1348.

[3]Fan EnGui.Extended tanh-function method and its applications to nonlinear equations[J].Phys Lett A,2000(277):212-218.

[4]Wang ML,Li XZ.Applictions of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation[J].Chaos Solitons Fractals,2005(24):1257-1268.

[5]Liu JB,Yang KQ.The extended F-expansion method and exact solutions of nonlinear PDEs[J].Chaos Solitons Fractals, 2004(22):111-121.

The Application of Extended F-expansion Method to Exact Solutions of Nonlinear Coupled KdV Equations

YU Yi

(Fushun Teachers College,Fushun Liaoning 113001,China)

The thesis improves the F-expansion method for constructing travelling wave solutions of nonlinear soliton equations under the guidance of mathematics mechanization and with the tools of transformation and computer algebraic system Maple. In order to illustrate the effectiveness and advantages of the method, the study applies it to the coupled KdV equations. Many new and general formal exact solutions for the coupled KdV equations are obtained including the single and combined Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions.

Soliton equations;Exact solutions;F-expansion method

2013-11-25

于 義(1962- ),男,遼寧撫順人,撫順師范高等專科學校副教授,從事可積系統研究。

O29

A

1008-178X(2014)01-0014-04

猜你喜歡
教育
國外教育奇趣
華人時刊(2022年13期)2022-10-27 08:55:52
車內教育
英語文摘(2022年8期)2022-09-02 01:59:30
題解教育『三問』
當代陜西(2022年4期)2022-04-19 12:08:52
軟件工程教育與教學改革
軟件導刊(2022年3期)2022-03-25 04:44:48
“雙減”如劍,“體外教育”何去何從?
當代陜西(2021年15期)2021-10-14 08:24:24
教育心得
贏未來(2020年1期)2021-01-07 00:52:26
努力辦好人民滿意的教育
人大建設(2020年1期)2020-07-27 02:47:08
什么是“好的教育”?
當代陜西(2019年21期)2019-12-09 08:36:36
教育有道——關于閩派教育的一點思考
讓教育成為終身之擇
商周刊(2018年25期)2019-01-08 03:31:10
主站蜘蛛池模板: 91激情视频| 亚洲最猛黑人xxxx黑人猛交| 天天色综合4| 天堂网亚洲综合在线| 日韩 欧美 小说 综合网 另类| 性网站在线观看| 亚洲色图在线观看| 香蕉精品在线| 国产三级国产精品国产普男人| 欧美国产中文| 亚洲午夜国产片在线观看| 成年人福利视频| 亚洲日韩高清在线亚洲专区| 国产区精品高清在线观看| 久久综合丝袜长腿丝袜| 9999在线视频| 久久午夜影院| 中文毛片无遮挡播放免费| 88av在线| 永久免费AⅤ无码网站在线观看| 99视频在线精品免费观看6| 毛片一区二区在线看| 黄色在线不卡| 午夜一区二区三区| 成人日韩欧美| a级毛片网| 伊人久久婷婷| 国产a网站| 亚洲国产日韩欧美在线| 福利视频一区| 亚洲视频色图| 欧美激情视频二区| 亚洲 欧美 偷自乱 图片| 香蕉久久国产超碰青草| 国产日韩AV高潮在线| 国产白丝av| 国产免费人成视频网| 国产主播在线一区| 亚洲午夜福利在线| 97精品伊人久久大香线蕉| 国产成人亚洲综合A∨在线播放| 无码专区国产精品第一页| AV无码一区二区三区四区| 久久久黄色片| 97成人在线观看| 欧美一区二区精品久久久| 日本三级欧美三级| 天天躁狠狠躁| 国产精品思思热在线| 亚洲无码高清一区| 天堂成人在线| 欧美一级特黄aaaaaa在线看片| 一区二区在线视频免费观看| 久久亚洲美女精品国产精品| AV无码无在线观看免费| 亚洲人成高清| 广东一级毛片| 久久久波多野结衣av一区二区| 伊人狠狠丁香婷婷综合色 | 久久久国产精品无码专区| 日本免费一级视频| 999福利激情视频| 天堂va亚洲va欧美va国产 | 午夜三级在线| 欧美专区日韩专区| 国产91av在线| 国产门事件在线| 日本爱爱精品一区二区| 亚洲欧美日韩视频一区| 欧美成人精品一区二区 | 天天做天天爱天天爽综合区| 成人看片欧美一区二区| 欧美第一页在线| 日本人妻一区二区三区不卡影院| 日韩一区二区在线电影| 免费一级毛片不卡在线播放| 国产va在线| 国产青榴视频| 91久久国产热精品免费| 亚洲免费人成影院| 国产精品手机视频| 欧美成人a∨视频免费观看|