趙旭龍 王偉
摘 要:在這篇文章中,假定市場經濟狀態由一個兩狀態馬爾可夫鏈描述,風險資產滿足一個兩狀態的馬爾可夫調制過程。當市場處于高波動狀態時,風險資產的價格滿足跳擴散過程;當市場處于穩定狀態時,風險資產的價格滿足幾何布朗運動.通過測度變換的技術,得到了交換期權的定價公式。最后,利用蒙特卡洛方法給出了期權價值的數值結果。
關鍵詞:馬爾可夫;期權定價;蒙特卡洛模擬
中圖分類號:F830 文獻標志碼:A 文章編號:1673-291X(2014)10-0120-04
引言
馬爾可夫調制模型是近年來非常受歡迎的一種金融模型,國內外大量學者將其應用到金融的多個領域當中,并取得了豐碩的研究成果。有關馬爾可夫調制模型下資產定價方面,Guo [1]考慮了當標的資產價格滿足馬爾可夫調制的幾何布朗運動時歐式期權定價題。Guo [2]得到了在馬爾可夫調制模型下美式期權的定價公式。Siu [3]研究了當市場中風險資產價格滿足馬爾可夫調制的幾何布朗運動時,嵌入退保期權的分紅保單的價值。Boyle和Draviam [4]研究了馬爾可夫調制的幾何布朗運動時奇異期權的定價問題。Bo et al[5]研究了馬爾可夫調制的跳擴散模型下外匯期權的定價問題。Wang和Wang[6]研究了馬爾可夫調制模型下歐式脆弱期權的定價問題。在這篇文章中我們考慮一個兩狀態馬爾可夫調制模型,市場狀態由一連續時間馬爾可夫鏈描述,假定市場處于穩定狀態時,股票價格滿足幾何布朗運動;而當市場處于高波動狀態時,股票價格服從跳擴散過程。從文中的數值結果可以發現市場的經濟狀態對期權價值有著很大的影響,因此我們考慮的問題是有意義的。
三、數值模擬
馬爾可夫調制的跳擴散模型下交換期權的價值比在Black-Scholes模型下的價值大,這說明了跳風險對期權價值有著很大的影響,在金融模型中忽略了跳風險的存在可能會嚴重低估期權的價值。
參考文獻:
[1] Guo,X..Information and option pricing[J].Quantitative Finance,2001,1:28-44.
[2] Guo,X.,Zhang,Q..Closed form solutions for perpetual American put options with regime switching[J].SIAM Journal on Applied
Mathematics,2004,64(6):2034-2049.
[3] Siu,T.K..Fair valuation of participating polices with surrender options and regime switching[J].Insurance:Mathematics and
Economics,2005,37:537-552.
[4] Boyle,P.,Draviam,T..Pricing exotic options under regime switching[J].Insurance:Mathematics and Economics,2007,40:267-282.
[5] Bo,L.J.,Wang,Y.J.,Yang,X.W..Markov-modulated jump diffusions for currency option pricing[J].Insurance:Mathematics and
Economics,2010,46(3):461-469.
[6] Wang,W.,Wang,W.S..Pricing vulnerable options under a Markov-modulated regime switching model[J].Communication in
Statistics-Theory and Methods,2010,39(19):3421-3433.
[7] Ji Hee Yoon,Bong-Gyu Jang,Kum-Hwan Roh.An analytic valuation method for multivariate contingent claims with regime-
switching volatilities[J].Operations research letters,2011,39:180-187.
Pricing Exchange Options Under a Markov-modulated Model
ZHAO XU-long,WANG Wei
(Department of Financial Engineer,Ningbo University,Ningbo 315211,China)
Abstract:In this paper,we suppose that the states of market economy are described by a two-state Markov chain,and the risky asset follows a two-state Markov-modulated process.The risky asset price is driven by a Markov-modulated geometric Brownian motion when the market is stable,but the risky asset follows a jump diffusion process if the market is at a high volatility state.We obtain the pricing formula of a exchange option by measure change.Finally,the result of illustration is provided by Monte Carlo simulation technique.
Key words:Markov;option pricing;Monte Carlo simulation
[責任編輯 吳明宇]