999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

激活態雪旺細胞對神經干細胞分化作用的研究

2014-04-10 16:33:15張睿張軍趙承斌
中國醫藥導報 2014年7期

張睿+張軍+趙承斌

哈爾濱醫科大學附屬第四醫院骨科,黑龍江哈爾濱 150086

[摘要] 目的 探討激活態雪旺細胞(SCs)對神經干細胞(NSCs)的分化作用。 方法 取出生24 h內的SD乳鼠脊髓NSCs,分離培養并傳至4代。取體重(100±5)g的SD大鼠,結扎右側坐骨神經,1周后取雙側坐骨神經,左側提取正常坐骨神經分離培養SCs(普通SCs),右側提取結扎變性的坐骨神經分離培養SCs(激活態SCs),均采用雙酶消化加差速貼壁法。將SCs與NSCs應用Transwell培養皿聯合培養,分為三組:A組為激活態SCs與NSCs;B組為普通SCs與NSCs;C組僅為NSCs。于培養的第2、4、6天檢測各組NSCs活性。1周后,Western blot檢測各組SCs表皮生長因子(EGF)和堿性成纖維細胞生長因子(bFGF)的表達水平,免疫熒光檢測各組NSCs分化比例。 結果 傳至4代的NSCs生長穩定,分離的SCs 7 d后大量增殖呈旋渦狀。聯合培養后MTT法檢測細胞活性,第2、4天三組細胞的活性差異無統計學意義(P > 0.05),第6天C組活細胞比例開始降低,A、B組與C組比較差異有統計學意義(P < 0.05),A組與B組比較差異無統計學意義(P > 0.05)。Western blot檢測A組細胞表皮生長因子(EGF)表達水平(0.486±0.028)、堿性成纖維細胞生長因子(bFGF)表達水平(0.385±0.023)均高于B組,差異有統計學意義(P < 0.05)。MAP-2熒光染色,每高倍視野陽性細胞比例A組[(35.26±2.53)%]高于B組[(27.63±3.45)%],差異有統計學意義(P < 0.05);GFAP熒光染色,每高倍視野陽性細胞比例A組[(62.42±3.78)%]低于B組[(70.18±1.26)%],差異有統計學意義(P < 0.05)。 結論 激活態SCs能夠促進NSCs向神經元的分化進程,提高神經元的分化比例。

[關鍵詞] 雪旺細胞;神經干細胞;細胞分化;聯合培養;神經元

[中圖分類號] R741.02 [文獻標識碼] A [文章編號] 1673-7210(2014)03(a)-0019-04

Effect of activated Schwann cells in inducing differentiation of neural stem cells

ZHANG Rui ZHANG Jun ZHAO Chengbin

Department of Orthopedic, the Fourth Affiliated Hospital of Harbin Medical University, Heilongjiang Province, Harbin 150086, China

[Abstract] Objective To discuss the effect of activated Schwann cells (SCs) in the differentiation of neural stem cells (NSCs). Methods The spinal cord of SD rat was taken in the 24 hours after birth. The NSCs from spinal cord were separated and cultured until the fourth passage. (100±5) g SD rat was used to ligature the right sciatic nerve. After one week, both the right and left sciatic nerve were isolated to culture SCs by double enzymes digestion and differential attachment. The SCs from the right sciatic nerve were named activated SCs, and the ones from the left side called common SCs. Then the SCs and NSCs were co-culture by Transwell culture dish, and they were divided into group A, group B and group C. group A was activated SCs and NSCs, group B was common SCs and NSCs, and group C was just NSCs as control. The cytoactive was detected at the second, fourth and sixth days. One week later, the EGF and bFGF secreted by SCs were detected in Western blot, and the differentiation ratio of NSCs was detected by immunofluorescence. Results The fourth passage NSCs grew stably, and the SCs proliferated as vortex after 7 days. The difference of cytoactive between the second and fourth day was not statistically significant (P > 0.05) according to the MTT detection. However, the cytoactive began to reduce at the sixth day by MTT detection, and the cytoactive of group A and group B were superior than those of group C, the differences were statistically significant (P < 0.05). The difference of cytoactive between group A and group B, the difference was not statistically significant (P > 0.05). The expression of EGF and bFGF in group A [(0.486±0.028), (0.385±0.023)] were both higher than those in group B, the differences were statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(35.26±2.53)%] was superior than that of group B [(27.63±3.45)%] according to the MAP-2 staining, the difference was statistically significant (P < 0.05). The positive cells ratio of each high power field of group A [(62.42±3.78)%] was lower than that of group B [(70.18±1.26)%] according to the GFAP staining, the difference was statistically significant (P < 0.05). Conclusion The activated SCs can promote the NSCs differentiate into neurons, and improve the ratio of neurons.

[Key words] Schwann cell; Neural stem cell; Cell differentiation; Co-culture; Neuron

[基金項目] 黑龍江省自然科學基金項目(編號D200901);黑龍江省教育廳科技研究項目(編號11531160)。

[作者簡介] 張睿(1987.2-),男,哈爾濱醫科大學2011級在讀碩士研究生;研究方向:神經干細胞應用。

[通訊作者] 趙承斌(1958.5-),男,主任醫師,教授,碩士研究生導師;研究方向:脊柱外科。

周圍神經損傷是骨科常見的疾病之一,雖然周圍神經具有一定的再生能力,但對于較大缺損卻很難自身修復[1]。隨著組織工程學領域研究的深入,神經干細胞(NSCs)已被公認為是對神經損傷修復的有效方法,通過NSCs在神經斷端的不斷分化,使受損的周圍神經重新恢復連接。然而單純形態學得連接不能保證神經的傳導功能,有研究表明,這與NSCs分化過程中分化為膠質細胞和神經元的比例有關[2],提高神經元的分化比例,降低膠質細胞的表達可有效提高神經的傳導速度,因此許多學者通過不同方法促進神經干細胞向神經元的分化[3-5],均取得了一定進展。本研究通過激活態雪旺細胞(SCs)刺激NSCs的分化,觀察其誘導NSCs分化為神經元的能力。

1 材料與方法

1.1 實驗材料

雌性SD大鼠[中國農科院哈爾濱獸醫研究所提供,許可證號:SYXK(黑)2006-032];DMEM/F12細胞培養基(Hyclone公司,美國);青-鏈雙抗,胰蛋白酶,Ⅱ型膠原酶(碧云天,中國);兔抗鼠單克隆抗體Nestin,FITC標記的羊抗兔IgG,兔抗鼠堿性成纖維細胞生長因子(bFGF)、表皮細胞生長因子(EGF)單克隆抗體,兔抗鼠MAP-2、GFAP單克隆抗體(武漢博士德公司);Transwell培養皿(Corning公司,美國)。

1.2 實驗方法

1.2.1 神經干細胞的分離培養與鑒定 取出生24 h內的SD大鼠,斷髓處死后無菌條件下取出脊髓,顯微鏡下剝離硬脊膜,剪成5 mm3組織塊,加入0.25%胰酶消化10 min,用吸管反復吹打至單細胞懸液,加入5 mL DMEM/F12培養基終止消化。1000 r/min離心5 min,棄上清,加入含20 ng/mL的EGF和20 ng/mL的DMEM/F12培養液,重懸后移入細胞培養瓶,置于37℃含5%CO2的細胞培養箱中培養。每6~8天傳代1次,連續傳4代。取第4代神經球,移入含有多聚賴氨酸包被的蓋玻片的6孔板內,24 h后取出蓋玻片,4%多聚甲醛固定,加入兔抗鼠Nestin(1∶100)單克隆抗體作為一抗,4℃過夜,加入異硫氰酸熒光素(FITC)標記的羊抗兔二抗,孵育30 min,進行觀察。

1.2.2 雪旺細胞的分離培養 取體重(100±5)g的SD大鼠,10%水合氯醛3 mL/kg腹腔麻醉后,以右側臀大肌為中心消毒,鋪無菌孔巾,縱行做一長約1.5 cm切口,分離暴露坐骨神經,于近端結扎,逐層縫合。1周后,處死大鼠,分離雙側坐骨神經,右側坐骨神經由于結扎變性,SCs受刺激而發生激活,稱激活態SCs;左側為正常坐骨神經,提取的SCs稱為普通SCs。雙側坐骨神經均剪成5 mm小段,加入0.1%胰蛋白酶和0.25%的Ⅱ型膠原酶消化1 h,反復吹打至單細胞懸液,加入5 mL DMEM/F12培養基終止消化。采用差速貼壁法,使成纖維細胞貼壁,未貼壁細胞移入含20 ng/mL EGF和20 ng/mL的DMEM/F12培養液中行原代培養。

1.2.3 細胞的分組與聯合培養 將細胞隨機分為3組,A組為激活態SCs與NSCs聯合培養,B組為普通SCs與NSCs聯合培養,C組NSCs單獨培養,作為對照。細胞的聯合培養采用0.2 μm的6孔Transwell培養皿,上室為SCs,下室為NSCs。培養基采用不含任何營養因子的DMEM/F12培養基。于培養的第2、4、6天分別對下室細胞行MTT染色,檢測細胞活性。

1.2.4 Western blot檢測激活態雪旺細胞營養因子的表達水平 聯合培養1周后,取A、B兩組上室細胞,提取總蛋白,進行電泳、轉膜、封閉,分別加入兔抗鼠EGF(1∶100)、bFGF(1∶200)單克隆抗體,4℃過夜,加入AP顯色液顯色。用Image-ProPlus專業圖像分析系統測定平均光密度值,并進行統計學分析。

1.2.5 神經干細胞分化的免疫熒光檢測 聯合培養1周后,將多聚賴氨酸包被的蓋玻片放入下室,24 h后取出蓋玻片,4%多聚甲醛固定,分別加入兔抗鼠MAP-2(1∶200)、GFAP(1∶200)單克隆抗體作為一抗,4℃過夜,加入FITC標記的羊抗兔IgG二抗(1∶200),室溫孵育30 min。在100倍熒光顯微鏡下隨機選取6個不同視野,計數抗原陽性細胞數與全部細胞數,計算陽性細胞數在全部細胞中的比值,公式為:陽性細胞比值=陽性細胞數/細胞總數×100%。

1.3 統計學方法

采用統計軟件SPSS 18.0對數據進行分析,正態分布計量資料以均數±標準差(x±s)表示,多組間比較采用方差分析,兩兩比較采用LSD-t檢驗。以P < 0.05為差異有統計學意義。

2 結果

2.1 神經干細胞的分離培養與鑒定

NSCs在培養瓶內懸浮生長,呈圓形,核較大,折光性強。于培養第5天開始聚集成團,呈球樣生長,第7天左右可見部分神經球出現貼壁,并發出短小突起。傳4代后,NSCs形態穩定,未見異型性改變。熒光染色可見聚集成球的NSCs發出綠色熒光,可見因貼壁而發出的短促突起。

2.2 激活態雪旺細胞的分離培養

結扎SD大鼠右側坐骨神經后,大鼠出現右下肢跛行,1周后有足部有潰瘍形成。分離雙側坐骨神經,可見結扎遠端坐骨神經明顯較對側增粗。細胞經差速貼壁以后可見胞體較大的成纖維細胞得以去除,去除后細胞呈梭形,3 d后,胞體增長,發出突起,至7 d細胞大量增殖呈旋渦狀排列,激活態SCs生長速度較普通SCs的生長速度快。

2.3 各組神經干細胞的分化狀態

A組NSCs在培養5 d后即開始發出較長突起,出現貼壁細胞,細胞形態增長,細胞間借突起形成網狀連接。B組細胞在8 d后開始出現分化,但細胞發出的突起較A組短小。C組細胞仍呈球形生長,少見貼壁細胞。應用MTT法檢測三組細胞的平均光密度值,可見第2、4天三組細胞的活性差異無統計學意義(P > 0.05),第6天C組活細胞比例開始降低,A、B組與C組比較差異有統計學意義(P < 0.05),A組與B組比較差異無統計學意義(P > 0.05)。見圖1。

A為激活態SCs作用下的NSCs活性檢測;B為普通SCs作用下的NSCs活性檢測;C為單獨培養的NSCs活性檢測

圖1 MTT法對神經干細胞活性的檢測

2.4 激活態雪旺細胞營養因子的表達水平

A、B兩組上室細胞提取的蛋白經電泳后,條帶清晰,兩組相同蛋白密度有差異,管家基因GAPDH作為內參,電泳條帶亮度一致。應用Image-ProPlus專業圖像分析系統測定平均光密度值,根據公式:相對量=產物電泳條帶密度/GAPDH×100%,計算各組蛋白量,可見A組細胞EGF、bFGF的表達水平均高于B組,差異有統計學意義(P < 0.05)。見表1。

表1 雪旺細胞營養因子表達的平均光密度值(x±s)

注:EGF:表皮生長因子,bFGF:堿性成纖維細胞生長因子

2.5 神經干細胞分化的免疫熒光檢測

對三組細胞分別進行MAP-2和GFAP染色,計算每高倍視野陽性細胞的比例。A組細胞MAP-2染色陽性率明顯高于B、C組,差異有統計學意義(P < 0.05);B組MAP-2染色陽性率明顯高于C組,差異有統計學意義(P < 0.05)。A組GFAP陽性率明顯低于B組,差異有統計學意義(P < 0.05);C組GFAP陽性率明顯低于A、B組,差異有統計學意義(P < 0.05)。見表2。

表2 免疫熒光染色陽性細胞在分化細胞中的比例(%,x±s)

注:與A組比較,*P < 0.05;與C組比較,▲P < 0.05

3 討論

各種外傷或病變所致的周圍神經損傷一直以來都是顯微外科研究的重點內容。雖然周圍神經具有自我修復能力,但是如果缺損大于10 mm以上則很難使近端神經纖維長入[6],從而造成永久性的功能喪失。為此有學者研制出干細胞結合導管支架的技術[7-10],使得周圍神經的斷端得以重連,然而單純的形態學重建卻難以恢復神經的傳導速度。有研究指出NSCs在體內主要分化為膠質細胞,而膠質細胞則會影響神經元的傳導速度[11-12],因此NSCs如何高效分化出神經元就成為研究關鍵。

周圍神經損傷后,損傷遠端軸突發生華勒變性,繼而壞死溶解,周圍的SCs此時會發生增殖,一方面吞噬溶解的軸突,另一方面分泌大量神經營養因子促進近端軸突的長入[13-14]。本研究利用雪旺細胞這一特點,于體外建立SCs,使其持續分泌多種神經營養因子,誘導NSCs的分化。有研究指出,NSCs的生長分化需要多種營養因子的協同作用[15-16],盡管某一因子的濃度較低,但卻是不可或缺的。體外添加營養因子則難以滿足干細胞分化的要求[17-18]。本研究運用細胞聯合培養的方式,通過細胞間的旁分泌作用,克服這一不足。同時,應用Transwell培養皿,借助聚碳酸酯膜的作用使細胞間不發生接觸,排除了細胞間的相互干擾。

本研究的結果可以看出,與普通SCs相比,激活態SCs對NSCs的誘導作用存在時間短、神經元分化率高等優點。但是從MTT染色可以看出,由于各組只應用單純DMEM/F12培養基培養,活細胞比例隨時間呈下降趨勢,說明單純在體外依靠雪旺細胞分泌的營養因子難以滿足NSCs的生長需求,從而解釋了體內移植神經干細胞死亡率高的原因[19-20]。這就需要進一步探索能夠保持體內高濃度營養因子的方法,從而維持NSCs的體內生長狀態。

由于條件限制,本實驗尚存在一些不足之處,對SCs分泌的因子只進行了較為重要的EGF和bFGF的檢測,如果能檢測出全部營養因子的表達水平,將有助于進一步的詳細分析。

綜述所述,激活態雪旺細胞能夠促進神經干細胞向神經元的分化進程,提高神經元的分化比例。

[參考文獻]

[1] Cheng LN,Duan XH,Zhong XM,et al. Transplanted neural stem cells promote nerve regeneration in acute peripheral nerve traction injury:assessment using MRI [J]. AJR Am J Roentgenol,2011,196(6):1381-1387.

[2] Chang DJ,Oh SH,Lee N,et al. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells(ENStem-A)migrate and improve brain functions in stroke-damaged rats [J]. Exp Mol Med,2013,45:53.

[3] Akama K,Horikoshi T,Nakayama T,et al. Proteomic identification of differentially expressed genes during differentiation of cynomolgus monkey(Macaca fascicularis)embryonic stem cells to astrocyte progenitor cells in vitro [J]. Biochim Biophys Acta,2013,1834(2):601-610.

[4] Stringari C,Nourse JL,Flanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基質干細胞與施萬細胞聯合移植對周圍神經缺損的修復作用[J].中國醫藥導報,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,Fischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,Fehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文編輯:李繼翔)

[4] Stringari C,Nourse JL,Flanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基質干細胞與施萬細胞聯合移植對周圍神經缺損的修復作用[J].中國醫藥導報,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,Fischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,Fehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文編輯:李繼翔)

[4] Stringari C,Nourse JL,Flanagan LA,et al. Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential [J]. PLoS One,2012,7(11):48014.

[5] Jha RM,Liu X,Chrenek R,et al. The postnatal human filum terminale is a source of autologous multipotent neurospheres capable of generating motor neurons [J]. Neurosurgery,2013, 72(1):118-129.

[6] 李高山.骨髓基質干細胞與施萬細胞聯合移植對周圍神經缺損的修復作用[J].中國醫藥導報,2013,10(21):90-93.

[7] Emborg ME,Liu Y,Xi J,et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell Rep,2013,3(3):646-650.

[8] Heermann S,Motlik K,Hinz U,et al. Glia cell line-derived neurotrophic factor mediates survival of murine sympathetic precursors [J]. J Neurosci Res,2013,91(6):780-785.

[9] He BL,Ba YC,Wang XY,et al. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats [J]. Neuropeptides,2013,47(1):1-7.

[10] Ishii M,Arias AC,Liu L,et al. A stable cranial neural crest cell line from mouse [J]. Stem Cells Dev,2012,21(17):3069-3080.

[11] Ortega F,Gascon S,Masserdotti G,et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling [J]. Nat Cell Biol,2013,15(6):602-613.

[12] Bonner JF,Haas CJ,Fischer I. Preparation of neural stem cells and progenitors:neuronal production and grafting applications [J]. Methods Mol Biol,2013,1078:65-88.

[13] Lamond R,Barnett SC. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor [J]. J Neurosci,2013,33(47):18686-18697.

[14] Faulkner SD,Ruff CA,Fehlings MG. The potential for stem cells in cerebral palsy-piecing together the puzzle [J]. Semin Pediatr Neurol,2013,20(2):146-153.

[15] Nitzan E,Pfaltzgraff ER,Labosky PA,et al. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3 [J]. Proc Natl Acad Sci USA,2013,110(31):12709-12714.

[16] Ren YJ,Zhang S,Mi R,et al. Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix [J]. Acta Biomater,2013,9(8):7727-7736.

[17] Guo X,Spradling S,Stancescu M,et al. Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1 [J]. Biomaterials,2013,34(18):4418-4427.

[18] Xia L,Wan H,Hao SY,et al. Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord [J]. Chin Med J(Engl),2013,126(5):909-917.

[19] Armati PJ,Mathey EK. An update on Schwann cell biology-immunomodulation, neural regulation and other surprises [J]. J Neurol Sci,2013,333(1-2):68-72.

[20] Guo Z,Wang X,Xiao J,et al. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice [J]. Brain Res,2013,1532:14-20.

(收稿日期:2013-10-13 本文編輯:李繼翔)

主站蜘蛛池模板: 污视频日本| 亚洲娇小与黑人巨大交| 成人免费黄色小视频| 久久国产精品波多野结衣| 亚洲第一香蕉视频| 国产精品自在在线午夜区app| 亚洲一级无毛片无码在线免费视频 | 中文字幕日韩视频欧美一区| 国产性精品| 国产网站在线看| 老司机久久精品视频| 无码精品国产VA在线观看DVD| 国产免费a级片| 麻豆精品久久久久久久99蜜桃| 中文字幕永久视频| 综合人妻久久一区二区精品| 999福利激情视频| 超碰精品无码一区二区| 伊人久久大香线蕉aⅴ色| 成人免费网站久久久| 国产福利拍拍拍| 亚洲综合片| 亚洲福利片无码最新在线播放| 久久99国产精品成人欧美| 精品丝袜美腿国产一区| 久久中文字幕2021精品| 国产激情第一页| 午夜激情婷婷| 欧美亚洲综合免费精品高清在线观看| 日韩中文字幕免费在线观看| 欧美一区二区三区欧美日韩亚洲| 国产内射一区亚洲| 日本午夜三级| 欧美日韩国产高清一区二区三区| 99九九成人免费视频精品 | 97狠狠操| 亚洲精品第一页不卡| 欧美伦理一区| 在线不卡免费视频| 免费在线a视频| 情侣午夜国产在线一区无码| 日本三区视频| 91精品视频播放| 亚洲成人一区二区| 国产精品一区在线麻豆| 日韩av无码精品专区| 国产欧美日韩在线一区| 91www在线观看| 午夜精品影院| 伊人网址在线| 98超碰在线观看| 中文字幕在线一区二区在线| 国产自无码视频在线观看| 日本精品影院| 人妻丰满熟妇αv无码| 欧美特黄一免在线观看| 一本一道波多野结衣一区二区 | 国产亚洲欧美在线视频| 亚洲色大成网站www国产| 国产精品偷伦在线观看| 久久综合激情网| 激情五月婷婷综合网| 亚瑟天堂久久一区二区影院| 97狠狠操| 亚洲中文精品人人永久免费| 成人在线天堂| 亚洲精品不卡午夜精品| 久久午夜夜伦鲁鲁片不卡| 亚洲色图欧美视频| 亚洲精品天堂自在久久77| 国产视频一区二区在线观看| 国产白浆视频| 亚洲男人在线| 日韩欧美视频第一区在线观看| 潮喷在线无码白浆| 国产成人精品2021欧美日韩| 亚洲视频免费在线| 日韩天堂网| 久久国产精品影院| 欧美亚洲国产日韩电影在线| 国产成人亚洲精品无码电影| 久久国产毛片|