999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

持有至到期投資在平面直角坐標系中的解析

2014-03-17 17:07:05宋海霞
會計之友 2014年7期

宋海霞

【摘 要】 將持有至到期投資的相關數據與平面直角坐標系聯系起來,在坐標系中直觀地展示了持有至到期投資各期末的賬面價值、各期實現的投資收益和應收利息在不同發行價格下的變化軌跡,從而得出:不管是溢價還是折價發行的債券,不考慮其他因素的情況下,隨著到期日的臨近,其賬面價值都向其面值回歸,每期實現的投資收益都隨著賬面價值的增加而增加,減少而減少,每期的應收利息都保持不變。

【關鍵詞】 持有至到期投資; 平面直角坐標系; 投資收益; 賬面價值

中圖分類號:F234.9 文獻標識碼:A 文章編號:1004-5937(2014)07-0114-03

持有至到期投資是指到期日固定,回收金額固定或可確定,且有明確意圖和能力持有至到期的非衍生金融資產。通常情況下,能夠劃分為持有至到期投資的主要是債權性投資,具有長期性,比如企業持有的在活躍市場有公開報價的政府債券、企業債券和金融債券等。

一、問題的提出

持有至到期投資的核算比較復雜,需要設置的會計科目有:持有至到期投資、投資收益、應收利息等。在持有至到期投資這個總賬科目下還設有三個明細科目,分別是持有至到期投資——成本,持有至到期投資——利息調整,持有至到期投資——應計利息。其中持有至到期投資——應計利息,這個明細科目僅適用于到期一次還本付息的債券,對于分期付息,到期還本的債券一般不會用到“應計利息”這個明細科目。對于持有至到期投資,采用實際利率法進行核算。債券的發行價格主要由平價、折價和溢價三種,不同的發行價格,會計處理也不同,在不考慮交易費用的情況下,債券是溢價發行還是折價或平價發行主要取決于債券的票面利率和實際利率的高低。

其實,對于持有至到期投資來說,其攤余成本即是其賬面價值,即持有至到期投資的賬面余額減去其減值準備的余額,指其初始確認金額扣除已收回的本金,加上或減去采用實際利率法將該初始確認金額與到期日金額之間的差額進行攤銷形成的累計攤銷額,扣除已發生的減值損失后的余額,通過下文的分析也能進一步證實這一點。同時,在實際利率法下,每期確認的投資收益應該是其賬面價值和實際利率的乘積;每期確認的應收利息是面值和票面利率的乘積。持有至到期投資的賬面價值、相關的投資收益和應收利息在不同的發行價格、不同的付息方式下如何變化呢?它們之間存在什么樣的內在關系?筆者將在平面直角坐標系中給以直觀的展示。

平面直角坐標系是笛卡爾坐標系的一種,是法國著名數學家和哲學家笛卡爾創立的。在平面上相互垂直的兩條數軸相交于原點,其中橫軸稱x軸,向右為正方向;縱軸稱y軸,向上為正方向。平面直角坐標系把幾何圖形的“點”和代數方程中的“數”完美地聯系起來,把抽象的數用直觀的幾何圖形來表示,向人們直觀地展示了某一變量在不同情況下的變化軌跡。

在平面直角坐標系中可以描繪出持有至到期投資的賬面價值、相關的投資收益和應收利息的變化過程,有助于人們更好地理解持有至到期投資相關指標的內在聯系,使對持有至到期投資相關指標的理解站在一個更高的高度,有一個總體的直觀的把握。

二、持有至到期投資相關數據在平面直角坐標系中的變化

下面按照實際利率法,就不同的發行價格對分期付息到期還本的持有至到期投資的賬面價值、投資收益和應收利息,在平面直角坐標系中的變化軌跡做一動態描述。需要說明的是,下面的討論,暫不考慮交易費用和其他因素的影響。

(一)在溢價發行的情況下,持有至到期投資的賬面價值和投資收益和應收利息是如何變化的

例1:甲股份有限公司于20×1年1月1日,以20 709.2萬元的價格購入乙公司于20×1年1月1日發行的4年期、一次還本、分期付息債券,債券面值總額20 000萬元,付息日為每年1月1日,票面年利率為6%,實際年利率為5%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息如表1所示。

根據表1的數據,可以分別描繪出持有至到期投資的賬面價值在各時點的變化軌跡和投資收益在各期間的變化軌跡,如圖1和圖2所示。

由此可得出,對于分期付息到期一次還本的債券,在溢價發行的情況下,隨著到期日的臨近持有至到期投資的賬面價值逐漸減少,至到期日其賬面價值減少至面值;其各期實現的投資收益逐年遞減,其各期的應收利息保持不變,始終是面值和票面利率的乘積。

(二)在折價發行的情況下,持有至到期投資的賬面價值、投資收益和應收利息是如何變化的

例2:甲股份有限公司于20×1年1月1日,以1 000萬元的價格購入乙公司于20×1年1月1日發行的5年期,一次還本,分期付息債券,債券面值總額1 250萬元,付息日為每年1月1日,票面年利率為4.72%,實際年利率為10%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息,如表2所示。

根據表2的數據,可以分別描繪出持有至到期投資的賬面價值在各時點的變化軌跡、投資收益在各期間的變化軌跡,如圖3和圖4所示。

由此可得出,不考慮其他因素,對于分期付息到期一次還本的債券,在折價發行的情況下,隨著到期日的臨近持有至到期投資的賬面價值逐漸增加,至到期日其賬面價值增加至面值;其各期實現的投資收益逐期遞增,各期的應收利息保持不變,始終是面值和票面利率的乘積。

(三)在平價發行的情況下,持有至到期投資的賬面價值、投資收益和應收利息是如何變化的

例3:甲股份有限公司于20x1年1月1日,以1 000萬元的價格購入乙公司于20x1年1月1日發行的5年期、一次還本、分期付息債券,債券面值總額1 000萬元,付息日為每年1月1日,票面年利率為7%,實際年利率為7%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息,如表3所示。

在平價發行的情況下,持有至到期投資各期的賬面價值,投資收益和應收利息都是相等的,并且持有至到期投資的賬面價值等于其面值,持有至到期投資各期的投資收益和應收利息也相等,等于面值和票面利率的乘積。

三、結論

通過以上分析,可以得出這樣的結論:對于分期付息,到期還本的持有至到期投資,在不考慮交易費用和其他因素的情況下,隨著到期日的臨近,溢價發行的債券的賬面價值逐漸減少至面值,投資收益會隨著賬面價值的減少而減少;折價發行的債券的賬面價值逐漸增加至面值,投資收益會隨著賬面價值的增加而增加;平價發行的債券其賬面價值始終保持不變,等于其面值,投資收益和應收利息始終保持不變,等于面值和票面利率的乘積。換句話說,不管是溢價還是折價發行的債券,不考慮其他因素的情況下,隨著到期日的臨近,其賬面價值都向其面值回歸,每期實現的投資收益都隨著賬面價值的增加而增加,減少而減少,每期的應收利息都保持不變。

【參考文獻】

[1] 中華人民共和國財政部.企業會計準則[M].北京:經濟科學出版社,2006.

[2] 中國注冊會計師協會.會計[M].北京:中國財政經濟出版社,2012.

【摘 要】 將持有至到期投資的相關數據與平面直角坐標系聯系起來,在坐標系中直觀地展示了持有至到期投資各期末的賬面價值、各期實現的投資收益和應收利息在不同發行價格下的變化軌跡,從而得出:不管是溢價還是折價發行的債券,不考慮其他因素的情況下,隨著到期日的臨近,其賬面價值都向其面值回歸,每期實現的投資收益都隨著賬面價值的增加而增加,減少而減少,每期的應收利息都保持不變。

【關鍵詞】 持有至到期投資; 平面直角坐標系; 投資收益; 賬面價值

中圖分類號:F234.9 文獻標識碼:A 文章編號:1004-5937(2014)07-0114-03

持有至到期投資是指到期日固定,回收金額固定或可確定,且有明確意圖和能力持有至到期的非衍生金融資產。通常情況下,能夠劃分為持有至到期投資的主要是債權性投資,具有長期性,比如企業持有的在活躍市場有公開報價的政府債券、企業債券和金融債券等。

一、問題的提出

持有至到期投資的核算比較復雜,需要設置的會計科目有:持有至到期投資、投資收益、應收利息等。在持有至到期投資這個總賬科目下還設有三個明細科目,分別是持有至到期投資——成本,持有至到期投資——利息調整,持有至到期投資——應計利息。其中持有至到期投資——應計利息,這個明細科目僅適用于到期一次還本付息的債券,對于分期付息,到期還本的債券一般不會用到“應計利息”這個明細科目。對于持有至到期投資,采用實際利率法進行核算。債券的發行價格主要由平價、折價和溢價三種,不同的發行價格,會計處理也不同,在不考慮交易費用的情況下,債券是溢價發行還是折價或平價發行主要取決于債券的票面利率和實際利率的高低。

其實,對于持有至到期投資來說,其攤余成本即是其賬面價值,即持有至到期投資的賬面余額減去其減值準備的余額,指其初始確認金額扣除已收回的本金,加上或減去采用實際利率法將該初始確認金額與到期日金額之間的差額進行攤銷形成的累計攤銷額,扣除已發生的減值損失后的余額,通過下文的分析也能進一步證實這一點。同時,在實際利率法下,每期確認的投資收益應該是其賬面價值和實際利率的乘積;每期確認的應收利息是面值和票面利率的乘積。持有至到期投資的賬面價值、相關的投資收益和應收利息在不同的發行價格、不同的付息方式下如何變化呢?它們之間存在什么樣的內在關系?筆者將在平面直角坐標系中給以直觀的展示。

平面直角坐標系是笛卡爾坐標系的一種,是法國著名數學家和哲學家笛卡爾創立的。在平面上相互垂直的兩條數軸相交于原點,其中橫軸稱x軸,向右為正方向;縱軸稱y軸,向上為正方向。平面直角坐標系把幾何圖形的“點”和代數方程中的“數”完美地聯系起來,把抽象的數用直觀的幾何圖形來表示,向人們直觀地展示了某一變量在不同情況下的變化軌跡。

在平面直角坐標系中可以描繪出持有至到期投資的賬面價值、相關的投資收益和應收利息的變化過程,有助于人們更好地理解持有至到期投資相關指標的內在聯系,使對持有至到期投資相關指標的理解站在一個更高的高度,有一個總體的直觀的把握。

二、持有至到期投資相關數據在平面直角坐標系中的變化

下面按照實際利率法,就不同的發行價格對分期付息到期還本的持有至到期投資的賬面價值、投資收益和應收利息,在平面直角坐標系中的變化軌跡做一動態描述。需要說明的是,下面的討論,暫不考慮交易費用和其他因素的影響。

(一)在溢價發行的情況下,持有至到期投資的賬面價值和投資收益和應收利息是如何變化的

例1:甲股份有限公司于20×1年1月1日,以20 709.2萬元的價格購入乙公司于20×1年1月1日發行的4年期、一次還本、分期付息債券,債券面值總額20 000萬元,付息日為每年1月1日,票面年利率為6%,實際年利率為5%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息如表1所示。

根據表1的數據,可以分別描繪出持有至到期投資的賬面價值在各時點的變化軌跡和投資收益在各期間的變化軌跡,如圖1和圖2所示。

由此可得出,對于分期付息到期一次還本的債券,在溢價發行的情況下,隨著到期日的臨近持有至到期投資的賬面價值逐漸減少,至到期日其賬面價值減少至面值;其各期實現的投資收益逐年遞減,其各期的應收利息保持不變,始終是面值和票面利率的乘積。

(二)在折價發行的情況下,持有至到期投資的賬面價值、投資收益和應收利息是如何變化的

例2:甲股份有限公司于20×1年1月1日,以1 000萬元的價格購入乙公司于20×1年1月1日發行的5年期,一次還本,分期付息債券,債券面值總額1 250萬元,付息日為每年1月1日,票面年利率為4.72%,實際年利率為10%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息,如表2所示。

根據表2的數據,可以分別描繪出持有至到期投資的賬面價值在各時點的變化軌跡、投資收益在各期間的變化軌跡,如圖3和圖4所示。

由此可得出,不考慮其他因素,對于分期付息到期一次還本的債券,在折價發行的情況下,隨著到期日的臨近持有至到期投資的賬面價值逐漸增加,至到期日其賬面價值增加至面值;其各期實現的投資收益逐期遞增,各期的應收利息保持不變,始終是面值和票面利率的乘積。

(三)在平價發行的情況下,持有至到期投資的賬面價值、投資收益和應收利息是如何變化的

例3:甲股份有限公司于20x1年1月1日,以1 000萬元的價格購入乙公司于20x1年1月1日發行的5年期、一次還本、分期付息債券,債券面值總額1 000萬元,付息日為每年1月1日,票面年利率為7%,實際年利率為7%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息,如表3所示。

在平價發行的情況下,持有至到期投資各期的賬面價值,投資收益和應收利息都是相等的,并且持有至到期投資的賬面價值等于其面值,持有至到期投資各期的投資收益和應收利息也相等,等于面值和票面利率的乘積。

三、結論

通過以上分析,可以得出這樣的結論:對于分期付息,到期還本的持有至到期投資,在不考慮交易費用和其他因素的情況下,隨著到期日的臨近,溢價發行的債券的賬面價值逐漸減少至面值,投資收益會隨著賬面價值的減少而減少;折價發行的債券的賬面價值逐漸增加至面值,投資收益會隨著賬面價值的增加而增加;平價發行的債券其賬面價值始終保持不變,等于其面值,投資收益和應收利息始終保持不變,等于面值和票面利率的乘積。換句話說,不管是溢價還是折價發行的債券,不考慮其他因素的情況下,隨著到期日的臨近,其賬面價值都向其面值回歸,每期實現的投資收益都隨著賬面價值的增加而增加,減少而減少,每期的應收利息都保持不變。

【參考文獻】

[1] 中華人民共和國財政部.企業會計準則[M].北京:經濟科學出版社,2006.

[2] 中國注冊會計師協會.會計[M].北京:中國財政經濟出版社,2012.

【摘 要】 將持有至到期投資的相關數據與平面直角坐標系聯系起來,在坐標系中直觀地展示了持有至到期投資各期末的賬面價值、各期實現的投資收益和應收利息在不同發行價格下的變化軌跡,從而得出:不管是溢價還是折價發行的債券,不考慮其他因素的情況下,隨著到期日的臨近,其賬面價值都向其面值回歸,每期實現的投資收益都隨著賬面價值的增加而增加,減少而減少,每期的應收利息都保持不變。

【關鍵詞】 持有至到期投資; 平面直角坐標系; 投資收益; 賬面價值

中圖分類號:F234.9 文獻標識碼:A 文章編號:1004-5937(2014)07-0114-03

持有至到期投資是指到期日固定,回收金額固定或可確定,且有明確意圖和能力持有至到期的非衍生金融資產。通常情況下,能夠劃分為持有至到期投資的主要是債權性投資,具有長期性,比如企業持有的在活躍市場有公開報價的政府債券、企業債券和金融債券等。

一、問題的提出

持有至到期投資的核算比較復雜,需要設置的會計科目有:持有至到期投資、投資收益、應收利息等。在持有至到期投資這個總賬科目下還設有三個明細科目,分別是持有至到期投資——成本,持有至到期投資——利息調整,持有至到期投資——應計利息。其中持有至到期投資——應計利息,這個明細科目僅適用于到期一次還本付息的債券,對于分期付息,到期還本的債券一般不會用到“應計利息”這個明細科目。對于持有至到期投資,采用實際利率法進行核算。債券的發行價格主要由平價、折價和溢價三種,不同的發行價格,會計處理也不同,在不考慮交易費用的情況下,債券是溢價發行還是折價或平價發行主要取決于債券的票面利率和實際利率的高低。

其實,對于持有至到期投資來說,其攤余成本即是其賬面價值,即持有至到期投資的賬面余額減去其減值準備的余額,指其初始確認金額扣除已收回的本金,加上或減去采用實際利率法將該初始確認金額與到期日金額之間的差額進行攤銷形成的累計攤銷額,扣除已發生的減值損失后的余額,通過下文的分析也能進一步證實這一點。同時,在實際利率法下,每期確認的投資收益應該是其賬面價值和實際利率的乘積;每期確認的應收利息是面值和票面利率的乘積。持有至到期投資的賬面價值、相關的投資收益和應收利息在不同的發行價格、不同的付息方式下如何變化呢?它們之間存在什么樣的內在關系?筆者將在平面直角坐標系中給以直觀的展示。

平面直角坐標系是笛卡爾坐標系的一種,是法國著名數學家和哲學家笛卡爾創立的。在平面上相互垂直的兩條數軸相交于原點,其中橫軸稱x軸,向右為正方向;縱軸稱y軸,向上為正方向。平面直角坐標系把幾何圖形的“點”和代數方程中的“數”完美地聯系起來,把抽象的數用直觀的幾何圖形來表示,向人們直觀地展示了某一變量在不同情況下的變化軌跡。

在平面直角坐標系中可以描繪出持有至到期投資的賬面價值、相關的投資收益和應收利息的變化過程,有助于人們更好地理解持有至到期投資相關指標的內在聯系,使對持有至到期投資相關指標的理解站在一個更高的高度,有一個總體的直觀的把握。

二、持有至到期投資相關數據在平面直角坐標系中的變化

下面按照實際利率法,就不同的發行價格對分期付息到期還本的持有至到期投資的賬面價值、投資收益和應收利息,在平面直角坐標系中的變化軌跡做一動態描述。需要說明的是,下面的討論,暫不考慮交易費用和其他因素的影響。

(一)在溢價發行的情況下,持有至到期投資的賬面價值和投資收益和應收利息是如何變化的

例1:甲股份有限公司于20×1年1月1日,以20 709.2萬元的價格購入乙公司于20×1年1月1日發行的4年期、一次還本、分期付息債券,債券面值總額20 000萬元,付息日為每年1月1日,票面年利率為6%,實際年利率為5%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息如表1所示。

根據表1的數據,可以分別描繪出持有至到期投資的賬面價值在各時點的變化軌跡和投資收益在各期間的變化軌跡,如圖1和圖2所示。

由此可得出,對于分期付息到期一次還本的債券,在溢價發行的情況下,隨著到期日的臨近持有至到期投資的賬面價值逐漸減少,至到期日其賬面價值減少至面值;其各期實現的投資收益逐年遞減,其各期的應收利息保持不變,始終是面值和票面利率的乘積。

(二)在折價發行的情況下,持有至到期投資的賬面價值、投資收益和應收利息是如何變化的

例2:甲股份有限公司于20×1年1月1日,以1 000萬元的價格購入乙公司于20×1年1月1日發行的5年期,一次還本,分期付息債券,債券面值總額1 250萬元,付息日為每年1月1日,票面年利率為4.72%,實際年利率為10%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息,如表2所示。

根據表2的數據,可以分別描繪出持有至到期投資的賬面價值在各時點的變化軌跡、投資收益在各期間的變化軌跡,如圖3和圖4所示。

由此可得出,不考慮其他因素,對于分期付息到期一次還本的債券,在折價發行的情況下,隨著到期日的臨近持有至到期投資的賬面價值逐漸增加,至到期日其賬面價值增加至面值;其各期實現的投資收益逐期遞增,各期的應收利息保持不變,始終是面值和票面利率的乘積。

(三)在平價發行的情況下,持有至到期投資的賬面價值、投資收益和應收利息是如何變化的

例3:甲股份有限公司于20x1年1月1日,以1 000萬元的價格購入乙公司于20x1年1月1日發行的5年期、一次還本、分期付息債券,債券面值總額1 000萬元,付息日為每年1月1日,票面年利率為7%,實際年利率為7%。未發生其他相關費用。甲公司于每年末計提利息,不考慮其他因素。

由此可以計算出該持有至到期投資在每年末的賬面價值、每年實現的投資收益和應收利息,如表3所示。

在平價發行的情況下,持有至到期投資各期的賬面價值,投資收益和應收利息都是相等的,并且持有至到期投資的賬面價值等于其面值,持有至到期投資各期的投資收益和應收利息也相等,等于面值和票面利率的乘積。

三、結論

通過以上分析,可以得出這樣的結論:對于分期付息,到期還本的持有至到期投資,在不考慮交易費用和其他因素的情況下,隨著到期日的臨近,溢價發行的債券的賬面價值逐漸減少至面值,投資收益會隨著賬面價值的減少而減少;折價發行的債券的賬面價值逐漸增加至面值,投資收益會隨著賬面價值的增加而增加;平價發行的債券其賬面價值始終保持不變,等于其面值,投資收益和應收利息始終保持不變,等于面值和票面利率的乘積。換句話說,不管是溢價還是折價發行的債券,不考慮其他因素的情況下,隨著到期日的臨近,其賬面價值都向其面值回歸,每期實現的投資收益都隨著賬面價值的增加而增加,減少而減少,每期的應收利息都保持不變。

【參考文獻】

[1] 中華人民共和國財政部.企業會計準則[M].北京:經濟科學出版社,2006.

[2] 中國注冊會計師協會.會計[M].北京:中國財政經濟出版社,2012.

主站蜘蛛池模板: 青青操视频免费观看| 国产毛片基地| 91亚瑟视频| 亚洲AⅤ无码国产精品| 国产特一级毛片| 亚洲第一精品福利| 成人看片欧美一区二区| 国产综合在线观看视频| 97久久人人超碰国产精品| 日本欧美视频在线观看| 香蕉在线视频网站| 欧美综合中文字幕久久| 美女无遮挡免费视频网站| 精品国产91爱| 日韩免费毛片| 亚洲色图欧美| 大香伊人久久| 手机在线国产精品| AV无码无在线观看免费| 亚洲自拍另类| 99精品免费在线| 欧美色视频日本| 欧美性猛交xxxx乱大交极品| 日韩av无码精品专区| 色婷婷久久| 国产精品成人第一区| 国产h视频在线观看视频| 毛片久久网站小视频| 啊嗯不日本网站| 国产精品美女网站| WWW丫丫国产成人精品| 丁香婷婷在线视频| 国产乱子伦一区二区=| 中文成人无码国产亚洲| 99这里只有精品在线| 亚洲Av激情网五月天| 亚洲免费成人网| 久久a级片| 婷婷激情五月网| 国产综合色在线视频播放线视| 青草91视频免费观看| 黄色网在线| 亚洲日本一本dvd高清| 日本一区二区不卡视频| 久久国语对白| 精品国产欧美精品v| 欧美精品xx| 色综合五月| 国产日本欧美亚洲精品视| 国产精品主播| 日本久久网站| 亚洲天堂久久久| 国产免费好大好硬视频| 91精品亚洲| 伊人网址在线| 日韩欧美色综合| 亚洲无码免费黄色网址| 91po国产在线精品免费观看| 超碰免费91| 成人蜜桃网| 日本手机在线视频| 亚洲天堂日韩av电影| 国产成人AV综合久久| 欧美在线天堂| 麻豆精品在线视频| 国产在线自揄拍揄视频网站| 熟妇无码人妻| 欧美成人精品一级在线观看| 色网站在线免费观看| 欧美专区在线观看| 免费jjzz在在线播放国产| 91久久偷偷做嫩草影院免费看 | 3344在线观看无码| 久久精品人人做人人爽电影蜜月 | 91亚洲精品国产自在现线| 亚洲美女AV免费一区| 天天综合网色| 日韩毛片免费| 日韩二区三区| 亚洲男人的天堂在线观看| 国产成人精品无码一区二| 欧美日韩v|