關煥玉,蘭燕宇,廖尚高,劉俊宏,韓 瑜,鄭 林,李勇軍*
1貴陽醫學院藥學院,民族藥與中藥開發應用教育部工程研究中心;2貴州省藥物制劑重點實驗室,貴陽 550004
羊耳菊Inula cappa 為菊科旋覆花屬植物,在我國四川、貴州、廣西、廣東、江西、浙江等地均有分布。以全草或根入藥,主要用于除痰定喘、活血調經及跌打損傷等[1]。目前已有研究報道[2-5]羊耳菊中主要含有三萜、甾醇、蒽醌、黃酮、芳香化合物、酰胺類、有機酸、倍半萜內酯等化學成分。而咖啡酰基奎寧酸類化合物是一類由奎寧酸和一個或多個咖啡酸通過酯化反應縮合而成的酚酸類天然化合物,廣泛存在于植物之中,具有多種藥理活性,如抗氧化、抗炎、抗微生物、酶抑制及肝細胞保護等作用[6]。就以上研究現狀,本實驗對羊耳菊植物中咖啡?;鼘幩犷惢衔镞M行了系統研究,分離得到8個咖啡?;鼘幩犷惢衔铮謩e為:1,5-O-二咖啡?;鼘幩?1)、1,3,5-O-三咖啡酰基奎寧酸(2)、3,5-O-二咖啡酰基奎寧酸甲酯(3)、3,4-O-二咖啡酰基奎寧酸甲酯(4)、3,4-O-二咖啡?;鼘幩嵋阴?5)、4,5-O-二咖啡酰基奎寧酸乙酯(6)、3,5-O-二咖啡酰基奎寧酸(7)、3,4-O-二咖啡?;鼘幩?8),其中化合物1~8 的結構式見圖1。為進一步探索羊耳菊中咖啡?;鼘幩犷惢衔锏乃幚砘钚缘於ɑA。

圖1 化合物1~8 結構式Fig.1 Chemical structure of compounds 1-8
X-4 數字顯微熔點儀(溫度未校正);美國Varian INOVA-500 型核磁共振波譜儀(TMS 內標);美國HP 公司HP5973-MSD 型質譜儀;Agilent 1100 高效液相色譜儀(美國安捷倫科技公司);BS-100A 自動部分收集器(上海滬西分析儀器廠);BUCHI B-490旋轉蒸發儀為瑞士生產;硅膠(200~300 目),硅膠H(10~40 μm),硅膠G(10~40 μm)均為青島海洋化工廠產品;葡聚糖凝膠Sephadex LH-20(40~70 μm)為Amersham Pharmacia Biotech AB 公司產品;反相Rp-18 薄層色譜板及柱色譜用硅膠(40~60 μm)均為德國MERCK 公司生產;所用儀器均為分析純或色譜純。
實驗用藥材采自貴州省赤水市,由貴陽中醫學院陳德媛教授鑒定為菊科植物羊耳菊Inula cappa(Buch.-Ham.ex D.Don)DC.的干燥全草。
羊耳菊干燥藥材粗粉5 kg,80%乙醇回流提取2 次,每次1.5 h,過濾,合并濾液,減壓濃縮,加水使之分散,用正丁醇萃取并減壓濃縮,得正丁醇層浸膏182g。正丁醇萃取物經硅膠(200~300 目)色譜柱,用石油醚-乙酸乙酯梯度洗脫,薄層色譜檢測,合并組成相似的洗脫液,濃縮后得到4個部分(Fr.1~Fr.4)。其中Fr.3(35.2 g)再次經硅膠(200~300目)色譜柱,氯仿-甲醇-冰醋酸(9∶1∶0.1~7∶3∶0.1)梯度洗脫,得到5個次流份(Fr.3.1~Fr.3.5)。Fr.3.1(300 mg)先后經硅膠柱(10~40 μm)層析,分別用氯仿-甲醇(100∶2)和石油醚-乙酸乙酯(7∶3)洗脫,Sephadex LH-20(甲醇),制備HPLC(甲醇∶0.1%H3PO4=62 ∶38),得到化合物5(13 mg)。Fr.3.2(450 mg)先后經硅膠柱(10~40 μm)分離,石油醚-乙酸乙酯(3 ∶7)洗脫,制備HPLC(甲醇∶0.1%H3PO4=40∶60),得到化合物7(20 mg)、2(17 mg)、1(19 mg)和8(87 mg)。Fr.3.5(210 mg)先后經硅膠柱(10~40 μm)層析,分別用石油醚-乙酸乙酯(7∶3),氯仿-甲醇-乙酸乙酯(9∶0.5∶2)洗脫,Sephadex LH-20(甲醇)和硅膠柱(10~40 μm)層析(石油醚-乙酸乙酯=7∶3),得到化合物3(21 mg)。Fr.4(49.7 g)經硅膠柱(200~300 目)層析,氯仿-甲醇梯度洗脫,得到7個次流份(Fr.4.1~Fr.4.7)。Fr.4.5(240 mg)先后經Sephadex LH-20(甲醇),反相硅膠柱層析(甲醇-水梯度洗脫),經制備HPLC(甲醇∶0.1% H3PO4水=30∶70),得到化合物6(35 mg)。Fr.4.6(195 mg)先后經正相硅膠柱(10~40 μm)層析,氯仿-甲醇-乙酸乙酯(8∶2∶2)洗脫,Sephadex LH-20(甲醇),反相硅膠柱層析(甲醇-水梯度洗脫),Sephadex LH-20(丙酮∶水50∶50),制備HPLC(甲醇∶0.1% H3PO4水=48∶52),得到化合物4(20 mg)。
化合物1 淡黃色粉末;ESI-MS m/z:515.0[MH]–;1H NMR(500 MHz,CD3OD)δ:7.62(2H,d,J=16.0 Hz,H-7',7''),7.09(2H,d,J=2.0 Hz,H-2',2''),6.99(2H,dd,J=8.1,2.0 Hz,H-6',6''),6.80(2H,d,J=8.1 Hz,H-5',5''),6.35,6.32(各1H,d,J=16.0 Hz,H-8',8''),5.43(1H,m,H-5),4.31(1H,m,H-3),3.82(1H,dd,J=8.5,2.9 Hz,H-4),2.62(1H,dd,J=12.1,3.0 Hz,H-6a),2.54(1H,dd,J=13.8,4.0 Hz,H-2a),2.43(1H,dd,J=13.8,2.9 Hz,H-2b),2.07(1H,m H-6b);13C NMR(125 MHz,CD3OD)δ:178.0(C-7),168.6,168.0(C-9',C-9''),149.6 (C-4',C-4''),147.3,147.2 (C-7',C-7''),146.8 (C-3',C-3''),127.9,127.3 (C-1',C-1''),123.0,123.1 (C-6',C-6''),116.4 (C-5',C-5''),115.7,115.3(C-8',C-8''),115.4,(C-2',C-2''),81.7(C-1),73.4(C-4),71.8(C-5),69.8(C-3),37.4(C-6),36.0(C-2)。上述數據與文獻報道[7]的1,5-O-二咖啡?;鼘幩嵋恢隆?/p>
化合物2 淡黃色粉末;ESI-MS m/z:677.0[MH]–;1H NMR(500 MHz,CD3OD)δ:7.64,7.56,7.51(各1H,d,J=16.0 Hz,H-7',7'',7'''),7.07,6.96,6.84(各1H,d,J=2.0 Hz,H-2',2'',2'''),6.97,6.83,6.64(各1H,dd,J=8.0,2.0 Hz,H-6',6'',6'''),6.75,6.65,6.54(各1H,d,J=8.0 Hz,H-5',5'',5'''),6.34,6.30,6.25(各1H,d,J=16.0 Hz,H-8',8'',8'''),5.44(1H,m,H-5),5.37(1H,d,J=3.5,H-3),3.99(1H,dd,J=8.4,3.9 Hz,H-4),2.88(1H,d,J=16.8 Hz,H-2a),2.45(1H,dd,J=16.8,3.5 Hz,H-2b),2.55(1H,dd,J=13.9,3.4 Hz,H-6a),2.10(1H,dd,J=13.9,10.2 Hz,H-6b);13C NMR(125 MHz,CD3OD)δ:173.5(C-7),167.3,167.2,166.5,(C-9',9'',9'''),148.3(C-7',7'',7'''),146.2,146.0 (C-4',4'',4'''),145.6,145.4(C-3',3'',3'''),126.4,126.3 (C-1',1'',1'''),121.8,121.7(C-6',6'',6'''),115.2,115.1(C-5',5'',5'''),113.7,113.6 (C-2',2'',2'''),114.3,114.2(C-8',8'',8'''),79.5(C-1),70.2(C-5),71.0(C-3),70.7(C-4),35.5(C-6),34.3(C-2)。上述數據與文獻報道[8]的1,3,5-O-三咖啡酰基奎寧酸一致。
化合物3 淡黃色粉末;ESI-MS m/z:529.2[MH]–,553.2[M+Na]+;1H NMR(500 MHz,CD3OD)δ:7.62,7.55(各1H,d,J=16.1 Hz,H-7',7''),7.07,7.02(各1H,d,J=2.3 Hz,H-2',2''),6.98(2H,dd,J=8.4,2.3 Hz,H-6',6''),6.78(2H,d,J=8.4 Hz,H-5',5''),6.35,6.22(各1H,d,J=16.1 Hz,H-8',8''),5.40(1H,m,H-3),5.31(1H,m,H-5),3.98(1H,dd,J=8.0,3.5 Hz,H-4),3.69(3H,s,-OCH3),2.30(2H,m,H-6),2.19(2H,m,H-2);13C NMR(125 MHz,CD3OD)δ:175.6(C-7),168.7,167.9(C-9',9''),149.8,149.5(C-4',4''),147.4,147.1(C-7',7''),146.8(C-3',3''),127.8,127.6(C-1',1''),123.1,123.0(C-6',6''),116.5,116.4(C-5',5''),115.3,115.1(C-8',8''),115.1,114.9(C-2',2''),74.7(C-1),72.3(C-3),72.0(C-4),69.5(C-5),52.8(-OCH3),36.8(C-6),35.8(C-2)。
上述數據與文獻報道[9]的3,5-O-二咖啡酰基奎寧酸甲酯一致。
化合物4 黃色粉末;ESI-MS m/z:529.2[MH]–,553.0[M +Na]+;1H NMR(500 MHz,DMSOd6)δ:9.39 (2H,brs,2OH),9.28(2H,brs,2OH),7.51,7.42(各1H,d,J=16.0 Hz,H-7',7''),7.04,7.02(各1H,d,J=2.0 Hz,H-2',2''),6.99,6.97(各1H,dd,J=8.0,2.0 Hz,H-6',6''),6.76,6.75(各1H,d,J=8.0 Hz,H-5',5''),6.25,6.13(各1H,d,J=16.0 Hz,H-8',8''),5.26(1H,m,H-3),4.98(1H,dd,J=7.0,3.0 Hz,H-4),4.15(1H,m,H-5),3.59(3H,s,-OCH3),2.26-1.86 (4H,m,H-2,6);13C NMR(125 MHz,DMSO-d6)δ:173.4(C-7),165.9,165.2(C-9',9''),148.6,148.5(C-4',4''),145.7(C-7',7''),145.8,145.7(C-3',3''),125.6,125.5(C-1',1''),121.5,121.4(C-6',6''),115.8,115.0(C-5',5''),114.9,114.8(C-2',2''),113.9,113.5(C-8',8''),73.4(C-1),72.4(C-4),67.8(C-3),65.4(C-5),52.0(-OCH3),37.7(C-2),36.3(C-6)。上述數據與文獻報道[10]的3,4-O-二咖啡?;鼘幩峒柞ヒ恢隆?/p>
化合物5 淡黃色塊晶;ESI-MS m/z:543[MH]–;1H NMR(500 MHz,CD3OD)δ:7.58,7.50(各1H,d,J=16.0 Hz,H-7',7''),7.02,7.01(各1H,d,J=2.0 Hz,H-2',2''),6.89,6.86(各1H,dd,J=8.0,2.0 Hz,H-6',6''),6.74,6.71(各1H,d,J=8.0 Hz,H-5',5''),6.25,6.20(各1H,d,J=16.0 Hz,H-8',8''),5.58(1H,m,H-3),5.09(1H,dd,J=9.0,3.0 Hz,H-4),4.36(1H,m,H-5),4.15(3H,q,J=7.0 Hz,-OCH2-),2.28-2.01(4H,m,H-2,6),1.24(1H,t,J=7.0 Hz,-CH3);13C NMR(125 MHz,CD3OD)δ:174.9(C-7),168.5,168.0(C-9',9''),149.0(C-4',4''),147.4,147.3(C-7',7''),146.5,146.4(C-3',3''),127.4(C-1',1''),123.0(C-6',6''),116.5,116.3(C-5',5''),115.6,115.5(C-2',2''),114.8,(C-8',8''),75.8(C-1),74.9(C-4),68.9(C-3),68.7(C-5),62.0(-OCH2-),38.0(C-6),38.9(C-2),14.3(-CH3)。上述數據與文獻報道[11]的化合物5 基本一致,并將上述數據與文獻[10,12]報道的3,4-O-二咖啡酰基奎寧酸甲酯進行對比,發現除了成酯部分有差異之外,其他數據基本一致,證實該化合物為3,4-O-二咖啡?;鼘幩嵋阴?。
化合物6 黃色粉末;ESI-MS m/z:543[MH]–;1H NMR(500 MHz,CD3OD)δ:7.58,7.51(各1H,d,J=16.0 Hz,H-7',7''),7.03,7.00(各1H,d,J=2.0 Hz,H-2',2''),6.91,6.89(各1H,dd,J=8.0,2.0 Hz,H-6',6''),6.76,6.74(2H,d,J=8.0 Hz,H-5',5''),6.30,6.20(各1H,d,J=16.0 Hz,H-8',8''),5.62(1H,m,H-5),5.13(1H,m,H-4),4.37(1H,m,H-3),4.13(2H,q,J=7.0 Hz,-OCH2-),2.29-2.10(4H,m,H-2,6),1.24(3H,t,J=7.0 Hz,-CH3);13C NMR(125 MHz,CD3OD)δ:177.5(C-7),169.0,168.5(C-9',9''),148.9,148.7(C-4',4''),149.6(C-7',7''),147.9,147.7(C-3',3''),116.6(C-5',5''),124.1,124.0(C-1',1''),123.6(C-6',6''),115.9(C-2',2''),115.5,115.4(C-8',8''),76.2(C-1),74.8(C-4),69.8(C-5),69.2(C-3),62.8(C-8),39.9(C-6),39.6(-OCH2-),38.5(C-2),14.2(-CH3)。上述數據與文獻報道[13]的化合物4基本一致,并將上述數據與文獻[14]報道的4,5-O-二咖啡?;鼘幩峒柞ミM行對比,發現除了成酯部分有差異之外,其他數據基本一致,證實該化合物為4,5-O-二咖啡酰基奎寧酸乙酯。
化合物7 淡黃色粉末;ESI-MS m/z:515.0[MH]–;1H NMR(500 MHz,CD3OD)δ:7.56,7.43(各1H,d,J=16.3 Hz,H-7',7''),7.05,7.01(各1H,d,J=2.0 Hz,H-2',2''),6.95,6.94(各1H,dd,J=8.1,2.0 Hz,H-6',6''),6.78(2H,d,J=8.1 Hz,H-5',5''),6.29,6.18(各1H,d,J=16.3 Hz,H-8',8''),5.44(1H,m,H-3),5.41(1H,m,H-5),3.96(1H,dd,J=7.5,3.5 Hz,H-4),2.24(2H,m,H-6),2.17(2H,m,H-2);13C NMR(125 MHz,CD3OD)δ:176.0(C-7),168.1(C-9',C-9''),147.9,147.7(C-4',C-4''),147.1,147.0(C-7',C-7''),146.8,146.7(C-3',C-3''),127.9,127.8(C-1',C-1''),123.1,123.0(C-6',C-6''),116.4,116.2 (C-5',C-5''),115.7,115.6(C-2',C-2''),115.2,115.1(C-8',C-8''),73.0(C-1),72.9(C-5),72.1(C-3),71.6(C-4),35.7(C-2),36.9(C-6)。上述數據與文獻報道[15]的3,5-O-二咖啡?;鼘幩嵋恢?。
化合物8 淡黃色粉末;ESI-MS m/z:515.0[MH]–;1H NMR(500 MHz,CD3OD)δ:7.60,7.53(各1H,d,J=16.0 Hz,H-7',7''),7.03,7.00(各1H,d,J=2.0 Hz,H-2',2''),6.93,6.90(各1H,dd,J=8.1,2.0 Hz,H-6',6''),6.75,6.73(各1H,d,J=8.1 Hz,H-5',5''),6.29,6.18(各1H,d,J=16.0 Hz,H-8',8''),5.62(1H,m,H-3),5.11(1H,dd,J=9.1,3.5 Hz,H-4),4.37(1H,m,H-5),2.32(1H,m,H-6a),2.26(2H,m,H-2),2.17(1H,m,H-6b);13C NMR(125 MHz,CD3OD)δ:176.8 (C-7),168.5,168.2(C-9',C-9''),149.7 (C-4',C-4''),147.7,147.6(C-7',C-7''),146.8(C-3',C-3''),127.7(C-1',C-1''),123.1,123.0(C-6',C-6''),116.5,116.4(C-5',C-5''),115.3,115.2(C-2',C-2''),114.8,114.7(C-8',C-8''),76.1(C-1),75.8(C-4),69.4(C-5),69.0(C-3),39.4(C-2),38.4(C-6)。上述數據與文獻報道[10]的3,4-O-二咖啡?;鼘幩嵋恢?。
本實驗分離得到的一系列咖啡?;鼘幩犷惢衔?,大多為位置異構體,結構鑒定可通過奎寧酸母體中各取代位置上氫的化學位移、偶合常數和偶合類型確定。通常,對奎寧酸母核而言,如果OH-1 未酯化,H-2 和H-6 四個氫質子會在δH2.1~2.3 處以一個多重峰的形式出現[16];當OH-1 酯化后,H-2 和H-6 中的四個氫的共振頻率會出現明顯差異,以四個化學位移不同的雙二重峰質子形式(δH2.0~3.5)出現在氫譜中[16]?;衔? 中,從所觀察到的質子信號[2.62(1H,dd,J=12.1,3.0 Hz,H-6a),2.54(1H,dd,J=13.8,4.0 Hz,H-2a),2.43(1H,dd,J=13.8,2.9 Hz,H-2b),2.07(1H,m H-6b)]來看,化合物1 為1-O-咖啡?;〈亩Х弱;鼘幩犷惢衔?。H-4 由于緊鄰H-3 和H-5,通常以雙二重峰的形式出現。對沒有酯化的OH-4 來說,其H-4通常出現在δH3.7~4.1 之間;當OH-4 酯化后,H-4會向低場位移δH1.0~1.6[16]?;衔? 中,由于H-4 出現在δH5.11,化合物8 可確定為4-O-咖啡?;〈亩Х弱;鼘幩犷惢衔?。H-3(或H-5)由于同時與H-2(或H-6)和H-4 偶合,一般以多重峰的形式出現。對沒有酯化的OH-3(或OH-5)來說,其H-3(或H-5)通常出現在δH4.0~4.6 之間;當OH-3(或OH-5)酯化后,H-3(或H-5)會向低場位移δH1.0~1.6[16]。由于相對于二咖啡?;鼘幩?,位置異構體7 的H-5 由δ 4.37 低場位移到了δH5.41,而H-4 由δH5.11 高場位移到了δ 3.96,表明化合物7 和8 分別應該是3,5-和3,4(或4,5)-二咖啡酰基奎寧酸。
對3,4-二咖啡酰基奎寧酸異構體來說,C-3 位上的咖啡?;幵谥绷㈡I上,H-4 和H-5 保持鄰位ax-ax 的偶合狀態,從而H-4 出現雙二重峰;對于4,5-二咖啡?;鼘幩岙悩嬻w,由于鄰二咖啡?;目臻g效應,影響H-4 和H-5 的鄰位ax-ax 偶合,使偶合常數變小,而H-4 出現類似多重峰的窄峰[12,15,17],通過觀察到的信號,可判斷化合物8 為3,4-二咖啡?;鼘幩幔瑥亩部膳袛嗷衔? 和6 的取代位置。
1 Editorial Committee of the Administration Bureau of Chinese Plant Medicine(中國科學院中國植物志編輯委員).Chinese Flora(中國植物志).Beijing:Science Press,1985.Vol.75,271-272.
2 Guo QL(郭啟雷),Yang JS(楊峻山),Liu JX(劉建勛).Chemical constituents of Inula cappa.Chin Tradit Pat Med(中成藥),2007,29:887-889.
3 Guo QL(郭啟雷),Yang JS(楊峻山),Liu JX(劉建勛).Studies on the chemical constituents from Inula cappa (II).Chin Med Mat(中藥材),2007,30:35-37.
4 Yang Y(楊雁),Wang YF(王于方),Zhao L(趙雷),et al.Chemical constituents of Inula cappa flowers.Chin Tradit Herb Drugs(中草藥),2011,42:1083-1086.
5 Zhi JW,Lei S,Min L,et al.Chemical constituents from Inula cappa.Chem Nat Compd,2010,46:298-300.
6 Zhao Y(趙昱),Zhao J(趙軍),Li XP(李湘萍),et al.Advances in caffeoylquinic acid research.Chin J Chin Mate Med(中國中藥雜志),2006,31:869-874.
7 Maha AA,Abdalla ME,Maged SA,et al.New quinic acid derivatives from hepatoprotective Inula crithmoides root extract.Helv Chim Acta,2012,95:61-66.
8 Cheng BC,Seung KJ,Yeon SL,et al.Inhibitory activity of caffeoylquinic acids from the aerial parts of Artemisia princeps on rat lens aldose reductase and on the formation of advanced glycation end products.J Korean Soc Appl Biol Chem,2009,52:655-662.
9 Yang XX(楊昕昕),Wang GC(王國才),Wu C(吳春),et al.The phenolic compounds of Elephantopus mollis.J Jinan Univ,Nat Sci(暨南大學學報,自科版),2011,32:489-492.
10 Tang D(湯丹),Li HY(李會軍),Qian ZM(錢正明),et al.Study on cafeoylquinic acid derivatives from Lonicera fulvotomentosa Hsu et S.C.Cheng.China J Chin Mate Med(中國藥學雜志),2007,42:1573-1539.
11 Ying W,Matthias H,Joseph G,et al.Cyclohexanecarboxylicacid derivatives from Psiadia trinervia.Helv Chim Acta,1992,75:269-275.
12 Liu YF(劉玉峰),Yang XW(楊秀偉),Wu B(吳濱).Studies on chemical constituents in the buds of Tussilago farfara.Chin J Chin Mate Med(中國中藥雜志),2007,32:2378-2381.
13 Lie CL,Yuh CK,Cheng JC.Immunomodulatory principles of Dichrocephala bicolor.J Nat Prod,1999,62:405-408.
14 Agung N,Kang RL,Md BA,et al.Isolation and quantitative analysis of Peroxynitrite Scavengers from Artemisia princeps var.orientalis.Arch Pharm Res,2010,33:703-708.
15 Irene D,Gian CT,Antonio D.New polyphenol derivative in Ipomoea batatas tubers and its antioxidant activity.J Agric Food Chem,2006,54:8733-8737.
16 Zhang DM(張東明).Chemistry of Phenolic Acids(酚酸化學).Beijing:Chemical Industry Press,2009.217-218.
17 Wu D(吳笛),Zhang M(張勉),Zhang CF(張朝鳳),et al.Flavonoids and phenolic acid derivatives from flos farfarae.China J Chin Mate Med(中國中藥雜志),2010,35:1142-1144.