摘要:狗牙根(Cynodon dactylon)和雙穗雀稗(Paspalum distichum)幼嫩期根中質外體屏障結構包括內側的內皮層細胞壁的凱氏帶、栓質層和木質層;外側的外皮層細胞壁的凱氏帶、栓質層和木質層。成熟根中質外體屏障結構包括內側的內皮層細胞壁的凱氏帶、栓質層、木質層和靠近內皮層栓質化和木質化的1~2層皮層細胞;外側的仍為外皮層細胞壁的凱氏帶、栓質層和木質層。不同點在于雙穗雀稗幼嫩期根表皮細胞有擴散狀栓質層,而且內皮層木質化較遲;狗牙根靠近內皮層栓質化和木質化的1~2層皮層細胞沉積很早。
關鍵詞:狗牙根(Cynodon dactylon);雙穗雀稗(Paspalum distichum);質外體屏障結構;組織化學;時空發育
中圖分類號:S688.4 文獻標識碼:A 文章編號:0439-8114(2013)20-4991-04
The Developmental Comparison of Apoplastic Barriers in Cynodon dactylon and Paspalum distichum Roots
ZHANG Xia1,YANG Chao-dong1,NING Guo-gui2
(1.College of Gardening and Horticulture, Yangtze University,Jingzhou 434025,Hubei,China;
2.College of Horticulture and Forestry Sciences, Huazhong Agricultural University,Wuhan 430070,China)
Abstract: The apoplastic barriers of the Cynodon dactylon and Paspalum distichum roots are consisted of two layers at young development stage. The inner layer is the endodermis with Casparian walls, suberin lamellae and lignified secondary cell walls. The outer is the exodermis with Casparian walls, suberin lamellae and lignified. The apoplastic barriers of the matured roots of the two species also had two layers with the inner endodermis of Casparian walls, suberin lamellae, lignified secondary cell walls, the suberized and lignified cortex cell walls adjacent to endodermis and the outer exodermis of Casparian walls, suberin lamellae and lignified. The difference is the epidermis cell of the Paspalum distichum having diffused suberin in young roots and the endodermis is lignified very later. The suberized and lignified cortex cell walls adjacent to endodermis of the Cynodon dactylon is lignified very early.
Key words: Cynodon dactylon; Paspalum distichum; apoplastic barriers; histochemistry; spatio-temporal development
濕地植物和水生植物也稱為“防水植物”,質外體屏障結構防止水環境中過多水分、離子對植物造成危害,體內氧氣擴散到環境中去[1,2]。通氣組織為濕地植物各組織器官儲藏、輸導氧氣的重要結構,使植物受到洪水脅迫后繼續進行正常生命活動而存活[3]。試驗證實植物體內氧氣常在根的根尖和側根穿過皮層的部位,根莖的莖尖和鱗葉部位有釋放,稱之為徑向氧損失(ROL)[4,5],而且細胞膜的水通道蛋白既是水分子通道,也是氧氣的通道[6,7];然而,濕地植物水稻、蘆葦根中的質外體屏障結構能阻擋徑向氧的釋放[4,5,8-14],以及限制根中水、離子的自由移動[10-17],這表明質外體屏障結構是濕地植物的重要保護裝置。
植物根中質外體屏障包括常見的內、外皮層細胞初生壁的凱氏帶,次生壁的栓質層和木質層[2,9-20],還有根內皮層及其鄰近皮層細胞,根外皮層和表皮細胞層[16,20],有可能因為根的內、外皮層來源于根尖同一初始子細胞(CEEID),成熟時它們有相似的質外體屏障結構組成[21]。盡管對狗牙根等植物體中的質外體屏障分布有所研究[20],但對如狗牙根(Cynodon dactylon)、雙穗雀稗(Paspalum distichum)和牛鞭草(Hemarthria altissima)等忍耐6個月以上長期淹沒植物[22-26]的根中各細胞層不同發育時期凱氏帶、栓質層和木質層的沉積變化過程鮮有報道。
1 材料與方法
用于解剖的狗牙根和雙穗雀稗采自湖北荊州陸生新鮮植株,FAA固定備用。在立體解剖鏡下,用雙面刀片距根尖5、15、25和80 mm分別切片。蘇丹紅7B染色切片檢測細胞壁栓質化[27];硫氫酸黃連素-苯氨藍對染切片確定細胞壁凱氏帶和木質化[18,28],其中凱氏帶呈現生動黃色,而木質化細胞壁呈現呆滯濃厚黃色;鹽酸-間苯三酚對染切片檢驗細胞壁木質化為細胞壁組織化學研究內容,在明場和熒光下的顯微照相參照文獻[20]的技術和方法。有關組織化學名詞的現代含義和解釋參照文獻[2]。
2 結果與分析
2.1 狗牙根根中質外體屏障發育過程
狗牙根根中離根尖5 mm的內、外皮層初生壁凱氏帶已出現,2層細胞的外皮層凱氏帶呈“H”或者“Y”形態(圖1A);內、外皮層次生壁也已有栓質層沉積,除內皮層上的通道細胞外(圖1B);但是內、外皮層次生壁木質化還不明顯(圖1C)。距離根尖15 mm根中的內、外皮層凱氏帶、栓質層進一步增強,內、外皮層細胞次生壁已經明顯木質化,靠近內皮層的1~2層皮層細胞壁也木質化(圖1D、1E、1F)。距離根尖25 mm時的最大變化為靠近內皮層的1~2層皮層細胞壁也已經木質化(圖1G、1H、1I),即此時靠近內皮層的1~2層皮層細胞壁既栓質化又木質化。在老根區域(距根尖80 mm),內、外皮層次生壁完全栓質化和木質化,靠近內皮層的1~2層皮層細胞壁也完全栓質化和木質化(圖1J、1K、1L)。
狗牙根幼嫩期根中質外體屏障包括內側的內皮層細胞壁的凱氏帶、栓質層和木質層;外側的外皮層細胞壁的凱氏帶、栓質層和木質層。成熟根中質外體屏障包括內側的內皮層細胞壁的凱氏帶、栓質層和木質層,和靠近內皮層栓質化和木質化的1~2層皮層細胞;外側的仍為外皮層細胞壁的凱氏帶、栓質層和木質層。
2.2 雙穗雀稗根中質外體屏障發育過程
雙穗雀稗根中離根尖5 mm的內、外皮層初生壁凱氏帶已出現,2層細胞的外皮層凱氏帶呈“H”或者“Y”形態,表皮細胞壁有擴散狀栓質化(圖2A);內、外皮層次生壁也已有栓質層沉積(圖2B);外皮層次生壁開始木質化(圖2C)。距離根尖15 mm根中的內、外皮層凱氏帶、栓質層進一步增強,此時還是僅有外皮層次生壁木質化(圖2D、2E、2F)。距離根尖25 mm時外皮層次生壁木質化進一步增強,但內皮層次生壁尚未木質化 (圖2G、2H、2I)。在老根區域(距根尖80 mm),內、外皮層次生壁完全栓質化和木質化,靠近內皮層的1~2層皮層細胞壁完全栓質化和木質化(圖2J、2K、2L)。
雙穗雀稗幼嫩期根中質外體屏障包括內側的內皮層細胞壁的凱氏帶、栓質層和木質層;外側的外皮層細胞壁的凱氏帶、栓質層和木質層、有擴散狀栓質層的表皮細胞。成熟根中質外體屏障包括內側的內皮層細胞壁的凱氏帶、栓質層和木質層、靠近內皮層栓質化和木質化的1~2層皮層細胞;外側由外皮層細胞壁的凱氏帶、栓質層和木質層組成。
3 小結與討論
狗牙根和雙穗雀稗幼嫩期根中質外體屏障包括內側的內皮層細胞壁的凱氏帶、栓質層和木質層;外側的外皮層細胞壁的凱氏帶、栓質層和木質層。成熟根中質外體屏障包括內側的內皮層細胞壁的凱氏帶、栓質層和木質層、靠近內皮層栓質化和木質化的1~2層皮層細胞;外側為外皮層細胞壁的凱氏帶、栓質層和木質層。兩者根中質外體屏障的不同點在于雙穗雀稗幼嫩期根表皮細胞有擴散狀栓質層,而且內皮層木質化較遲。狗牙根靠近內皮層栓質化和木質化的1~2層皮層細胞沉積很早。
與水稻、玉米和香蒲研究結果比較,內、外皮層細胞壁質外體屏障發育順序基本是先有初生壁的凱氏帶,后有次生壁的栓質化和木質化,通常外皮層的質外體屏障先發育完全。在有外界水或者其他脅迫條件下,次生壁的栓質化和木質化比對照組的發育早而且快速,并且可以誘導出木質層[10,12-14,18]。可見不同植物根中質外體屏障結構的發育過程有所不同,而且容易受到環境的脅迫誘導和提前發育。
參考文獻:
[1] BAILEY-SERRES J, LEE S C, BRINTON E. Waterproofing crops: effective flooding survival strategies[J]. Plant Physiology,2012,160(4):1698-1709.
[2] 楊朝東,張 霞,劉國鋒,等.植物根中質外體屏障結構和生理功能研究進展[J]. 植物研究,2013,33(1):114-119.
[3] JUSTIN S H, ARMSTRONG W. The anatomical characteristics of roots and plant response to soil flooding[J]. New Phytologist,1987,106(3):465-495.
[4] ARMSTRONG J, JONES R E, ARMSTRONG W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways[J]. New Phytologist,2006,172(4):719-731.
[5] ARMSTRONG W, COUSINS D, ARMSTRONG J, et al. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A micro-electrode and modelling study with Phragmites australis[J]. Annals of Botany,2000,86(3):687-703.
[6] CHEN LM, ZHAO J, MUSA-AZIZ R,et al. Cloning and characterization of a zebrafish homologue of human AQP1: A bifunctional water and gas channel[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2010,299(5):1163-1174.
[7] WANG Y, COHEN J, BORON W F, et al. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics[J]. Journal of Structural Biology,2007, 157(3):534-544.
[8] COLMER T D, GIBBERD M R, WIENGWEERA A, et al. The barrier to radial oxygen loss from roots of rice(Oryza sativa L.) is induced by growth in stagnant solutions[J]. Journal of Experimental Botany,1998,49(325):1431-1436.
[9] SOUKUP A,ARMSTRONG W, SCHREIBER L,et al. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, phragmites australis and glyceria maxima[J]. New Phytologit,2007,173(2):264-278.
[10] RANATHUNGE K, LIN J, STEUDLE E, et al. Stagnant deoxygenated growth enhances root suberization and lignifications but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots[J]. Plant, Cell and Environment,2011,34(8):1223-1240.
[11] SHIONO K, OGAWA S, YAMAZAKI S, et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany,2011,107(1):89-99.
[12] KOTULA L, RANATHUNGE K, SCHREIBER L, et al. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice grown in aerated or deoxygenated solution[J]. Journal of Experimental Botany,2009, 60(7):2155-2167.
[13] KOTULA L, RANATHUNGE K, STEUDLE E. Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration[J]. New Phytologist,2009, 184(4):909-917.
[14] ABIKO T, KOTULA L, SHIONO K, et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize(Zea mays ssp. mays)[J].Plant,Cell Environment,2012,35(9):1618-1630.
[15] ENSTONE D E, PETERSON C A, MA F. Root endodermis and exodermis: structure, function, and responses to the environment[J]. Journal Plant Growth Regulation,2002,21(4):335-351.
[16] HOSE E, CLARKSON D T, STEUDLE E, et al. The exodermis: a variable apoplastic barrier[J]. Journal of Experimental Botany,2001,52(365):2245-2264.
[17] SCHREIBER L. Transport barriers made of cutin, suberin and associated waxes[J]. Journal of Trends in Plant Science,2010,15(10):546-553.
[18] SEAGO J L, PETERSON C A, ENSTONE D E,et al. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots[J]. Canada Journal Botany, 1999,77(1):122-134.
[19] WADUWARA C I, WALCOTT S E, PETERSON C A. Suberin lamellae of the onion root endodermis: Their pattern of development and continuity[J]. Canada Journal Botany,2008,86(6):623-632.
[20] YANG C, ZHANG X, ZHOU C, et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China[J]. Flora,2011,206(7):653-661.
[21] PAULUZZI G, DIVOL F, PUIG J, et al. Surfing along the root ground tissue gene network[J]. Development Biology,2012,365(1):14-22.
[22] 王海鋒,曾 波,李 婭,等.長期完全水淹對4種三峽庫區岸生植物存活及恢復生長的影響[J].植物生態學報,2008,32(5):977-984.
[23] 譚淑端,張守君,張克榮,等.長期深淹對三峽庫區三種草本植物的恢復生長及光合特性的影響[J].武漢植物學研究,2009,27(4):391-396.
[24] 孫 榮,袁興中,劉 紅,等.三峽水庫消落帶植物群落組成及物種多樣性[J].生態學雜志,2011, 30(2):208-214.
[25] 王建超,朱 波,汪 濤.三峽庫區典型消落帶淹水后草本植被的自然恢復特征[J].長江流域資源與環境,2011,20(5):603-610.
[26] LIAO J, JIANG M, LI L. Effects of simulated submergence on survival and recovery growth of three species in water fluctuation zone of the Three Gorges reservoir[J].Acta Ecologica Sinica,2010,30(4):216-220.
[27] BRUNDRETT M C, KENDRICK B, PETERSON C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol[J]. Biotech Histochem,1991,66(3):111-116.
[28] BRUNDRETT M C, ENSTONE D E, PETERSON C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue[J]. Protoplasma,1988,146(2-3):133-142.