999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Analytical and numerical stability analysis ofnonlinear generalized delay differentialequations with variable delay terms

2013-12-18 10:40:36JIANGChengxiang

JIANG Chengxiang

(Tianhua College,Shanghai Normal University,Shanghai 201815,China)

1 Introduction

Delay differential equations provide a powerful model of many phenomena in applied sciences such as physics,engineering,biology, and economics.In this paper,we consider the stability behavior of the analytical and numerical solutions of the system of generalized delay differential equation with variable delay terms:

(1)

wheref:[0,+∞)×Cd×Cd→Cd,φdenote given complex functions, andy(tτ)=(y1(t-τ1(t)),y2(t-τ2(t)),…,yd(t-τd(t)))T,andτi(t) (i=1,2,…,d) are continuous differential functions satisfing the following hypothese:

(H1)τi(t)≥τj(t)≥τ0>0(i>j),for allt≥t0.

The stability properties of the numerical methods for linear delay differential equations have been widely studied by many authors[1-6].In [7-9],Cong etc.investigated the stability properties of numerical methods for linear generalized delay differential equation with a variable lag (GDDEs).Because of the complexity of nonlinearGDDEs,there were no papers dealing with it.

In this paper,a sufficient condition for the asymptotical stability of the theoretical solution of (1) is discussed.Then,we investigate the numerical stability of Runge-Kutta methods for systems ofGDDEs.A numerical test at the end of this paper confirms our theoretical results.

2 Stability of analytical solution

(2)

(3)

wherefis a given mapping which satisfies the following conditions:

?t≥t0,y1,y2,u∈Cd.

(4)

(5)

whereα(t),β(t) are continuous bounded functions.

(6)

Lemma2.1[11]Ifv(t)>0,t∈(-∞,+∞),and

(7)

whereψ(t) is continuous and bounded fort≤t0,A(t),B(t)≥0 fort∈ [t0,+∞)],τ(t)≥0 andt-τ(t)→+∞,ast→+∞,and if there exits aσ>0 such that

-A(t)+B(t)≤-σ<0, fort≥t0,

thenv(t)→0,ast→∞.

Theorem2.1If the systems ofGDDEs(2) and (3) satisfy (4),(5) andα(t)<0,?t≥t0,and

α(t)+β(t)≤-σ<0,

(8)

then the system is asymptotically stable.

Thus we have completed the proof.

3 Numerical stability analysis

We now investigate the stability analysis of the (k,l)-algebraically stable Runge-Kutta methods for nonlinearGDDEs.

Now we consider the adaptation of thes-stage Runge-Kutta methods to (2).

(9)

Similarly,the adaptation of the Runge-Kutta Methods with the same interpolation procedure for the problem (3) leads to the following process:

(10)

Let

(11)

It follows from (9) and (10),that

(12)

Definition3.1Letlbe a real constant.A Runge-Kutta method with aninterpolation procedure is said to beGAR(l)-stable if

(13)

with stepsizehsatisfying (α+β)≤l.

Definition3.2[10]Letk,lbe real constants.An RK method is said to be (k,l)-algebraically stable if there exists a diagonal nonnegative matrixGandD=diag(d1,…,ds) such thatM=(mij) is nonnegative,where

In this paper,we use the linear interpolation procedure.Letτi(tn+cjh)=(imj(n)-iδj(n))hwith integerimj(n)≥1 andδj(n)∈[0,1).

Let

(14)

Theorem3.1Assume that a RK method is (k,l)-algebraically stable,then

(15)

ProofIt is well known[10]that

(16)

Because of the (k,l)-algebraically stability of the method,we have:

(17)

It follows from (4),(5) and (16) that

Theorem3.2Assume that a Runge-Kutta method is (k,l)-algebraically stable andk<1.Then the method with linear interpolation procedure isGAR(l)-stable.

ProofLet

μ=(2α+β)h-2l,

and

The application of Theorem 3.1 yields

By induction,we have

On the other hand,

which shows that the method isGAR(l)-stable.

4 Numerical experiment

We use the classical Runge-Kutta method of order 4 to solveGDDEsfor confirming the theoretical results.

Consider the following generalized delay differential equation:

(18)

and its perturbed problem

(19)

Table 1 Error compared to the computing time t of the RK method for the above equations

:

[1] HU G,MITISUI T.Stability of numerical methods for systems of natural delay differential equations[J].BIT,1995,35(4):504-515.

[2] ZENNARO M.P-stability of runge-kutta methods for delay differential equations[J].Numer Math,1986,49:305-318.

[3] LIU M Z,SPIJKER M N.The stability of a methods in the numerical solution[J].IMA Numer Anal,1990,10(1):31-48.

[4] HALE J.Theory of functional differential equations[M].New York:Spring-Verlag,1997.

[5] HOUT K J.A new interpolation procedure for adapting Runge-Kutta methods for delay differential equations[J].BIT,1992,32:634-649.

[6] KUANG J X,CONG Y H.Stability of numerical methods for delay differential equations[M].Beiing:Science Press,2005.

[7] CONG Y H,ZHANG Y Y,XIANG J X.The GPL-stability of runge-kutta methods for generalized delay diferential system[J].Journal of System Simulation,2005,17(3):587-594.

[8] CONG Y H,XIANG J X.GP-stability ofθ-method for generalized delay differential systems[J].Mathematic Applicata,2005,18(3):497-504.

[9] CONG Y H.NGPG-stability of Linear Multistep Method for Systems of Generalized Neutral Delay Diferential Equations[J].Applied Mathematics and Mechanic,2001,22(7):735-742.

[10] BURRAGE K,BUTCHER J C.Non-linear stability of a general class of differential equation methods[J].BIT,1980,20:185-203.

[11] BAKER C T H,TANG A.Generalized halanay inequalities for volterra functional differential equations and discretized versions[C].UTA Arlington:Volterra Centennial Meeting,1996.

主站蜘蛛池模板: 亚洲天堂视频在线播放| 精品久久香蕉国产线看观看gif| 欧美日韩一区二区三区四区在线观看| 一级毛片在线播放免费观看| 国产国模一区二区三区四区| 国产精品大白天新婚身材| 亚洲香蕉久久| 日韩欧美中文字幕在线精品| 久久人与动人物A级毛片| 2018日日摸夜夜添狠狠躁| 国产欧美日韩资源在线观看| 久久久噜噜噜| 日韩无码真实干出血视频| AV无码无在线观看免费| 在线观看国产精美视频| 麻豆国产精品| 国产一区二区精品福利| 欧美a级在线| 国产成人做受免费视频| 夜夜爽免费视频| 91在线视频福利| 免费一看一级毛片| 成人午夜视频在线| 亚洲一区二区无码视频| 欧美成人综合在线| 日韩免费无码人妻系列| 三级毛片在线播放| 亚洲精品无码久久毛片波多野吉| 毛片大全免费观看| 国产97视频在线观看| 欧美日韩国产一级| 亚洲天堂网站在线| 国产一国产一有一级毛片视频| 久久99国产综合精品1| 欧美亚洲日韩不卡在线在线观看| 激情在线网| 久久国产拍爱| 国产精品美女自慰喷水| 久久综合九色综合97网| 亚洲第一成网站| 制服丝袜一区| 色悠久久久久久久综合网伊人| 国产欧美中文字幕| 国产美女无遮挡免费视频网站 | 国产尤物视频在线| 亚洲最新地址| 亚洲三级成人| 91免费精品国偷自产在线在线| 搞黄网站免费观看| 制服无码网站| 97久久免费视频| 亚洲一区二区无码视频| 视频国产精品丝袜第一页| 国内毛片视频| 中文字幕天无码久久精品视频免费| 青青青国产在线播放| 久久精品国产在热久久2019| 国产午夜小视频| 妇女自拍偷自拍亚洲精品| 精品国产网站| 久久中文字幕2021精品| 国产成人午夜福利免费无码r| 亚洲天堂久久新| 嫩草国产在线| 精品国产自在现线看久久| 国产精品专区第1页| 玩两个丰满老熟女久久网| 茄子视频毛片免费观看| 伊人久久福利中文字幕| 波多野结衣第一页| 波多野结衣的av一区二区三区| 亚洲欧美激情小说另类| 91网址在线播放| 色悠久久久久久久综合网伊人| 999国产精品永久免费视频精品久久| 东京热av无码电影一区二区| 台湾AV国片精品女同性| 午夜福利亚洲精品| 国产精品主播| 久久久久免费看成人影片 | 亚洲一区免费看| 欧美午夜精品|