王小元 , 宋鴻軍
(1.食品科學與技術國家重點實驗室 江南大學,江蘇 無錫 214122;2.食品安全與營養協同創新中心 江南大學,江蘇 無錫214122;3.廊坊衛生職業學院,河北 廊坊 065001)
細菌內毒素是革蘭氏陰性細菌細胞外膜的主要組分,又名脂多糖 (LPS),主要由Kdo2-類脂A(Kdo2-lipid A)、 核心糖 (Core)和 O-抗原 (O-antigen)重復單元3部分組成,其中Kdo2-lipid A基團是內毒素的主要活性成分[1]。革蘭氏陰性菌侵入宿主后會釋放其表層的內毒素[2]。這些內毒素可被免疫細胞表面的TLR4/MD2受體識別,在細胞內引發一系列生化反應,產生多種細胞因子[3]。這些細胞因子的種類和數量取決于內毒素分子的精細結構。有些細胞因子的過量積累能夠引起嚴重的內毒素休克;而有些細胞因子的適量產生可以加強宿主的先天性免疫能力。所以,研究內毒素的生物合成途徑及其結構多樣性有助于開發新型的細菌疫苗和疫苗佐劑。
內毒素的主要活性成分Kdo2-lipid A基團也是LPS分子的最保守部分。在革蘭氏陰性細菌的模式菌株大腸桿菌中,Kdo2-lipid A含有2個Kdo、2個氨基葡萄糖、2個磷酸基團和6條脂肪酸鏈(圖1)。大腸桿菌Kdo2-lipid A的合成主要發生在細胞質和內膜內層,先后涉及9個酶催化的9步反應(圖1)。這9個酶存在于大多數變形桿菌中,具有較高的保守性[4]。Kdo2-lipid A的合成是從小分子UDP-氨基葡萄糖乙酸酐(UDP-GlcAc)開始的。前3步反應分別由可溶性蛋白酶LpxA、LpxC和LpxD催化,在UDP-GlcAc分子上加了2條脂肪酸鏈。LpxA和LpxD存在45%的序列相似性,有類似的三聚體結構,但存在不同的四級結構和活性位點[5-6]。因為LpxA催化的第1步反應是可逆反應,所以LpxC催化的第2步反應成為Kdo2-lipid A合成的第一個關鍵步驟,決定著內毒素分子的合成效率。第4步反應由膜外周蛋白酶LpxH將UDP-GlcAc的UDP分解,形成Lipid X分子。第5步反應由膜外周蛋白酶LpxB將Lipid X及其前體分子聚合;接著磷酸激酶LpxK在4′位上添加1個磷酸基團,形成Lipid IVA分子。第7步反應由膜蛋白KdtA在Lipid IVA分子的6′位上連續加2個Kdo基團;最后膜蛋白LpxL和LpxM先后在2′和3′位上分別加上1個二級脂肪酸鏈,形成Kdo2-lipid A分子(圖1)。
在Kdo2-lipid A的合成過程中,各種酶的疏水性與其所催化反應的底物分子結構相吻合。最初反應底物是水溶性的UDP-GlcNAc,所以用到的酶LpxA、LpxC和LpxD均為水溶性蛋白。隨著反應的進行,底物分子中的脂肪酸鏈越來越多,逐漸變成兼性分子,所以反應也轉移到膜上進行,催化這些反應的酶LpxK、KdtA、LpxL和LpxM等也均為膜蛋白。參與Kdo2-lipid A合成的酶專一性都很強,參加反應順序也很嚴格。比如,LpxA和LpxD雖然都能催化酰基化反應,卻不能互換使用;酰基化酶LpxL和LpxM必須等KdtA加完兩個Kdo之后,才能分別將第5和第6個脂肪酸鏈添加上去。Kdo2-lipid A的合成效率受到膜蛋白降解酶FtsH的調控[7]。當細胞內Kdo2-lipid A過量時,FtsH通過降解關鍵酶LpxC和KdtA來降低其合成速度[8]。
當Kdo2-lipid A的合成在內膜內層完成后,約10個左右的酶依次將一些單糖基團連接上去,形成Core-lipid A(圖2)。接著,轉運蛋白MsbA將Corelipid A從內膜的內側轉運到內膜的外側[9]。O-antigen也是在內膜的內側合成、被連接到細菌萜醇上,并通過轉運蛋白Wzx翻轉到內膜的外側[10]。
在周質空間中,聚合酶Wzy和Wzz首先將O-antigen聚合,然后連接酶WaaL將O-antigen重復單元連接到Core-lipid A上,組裝成完整的LPS[15]。接下來,LPS運輸系統(Lpt)負責將LPS從內膜外層轉運到外膜外層[11]。Lpt系統由7個蛋白質(LptA、LptB、LptC、LptD、LptE、LptF 和 LptG)組成,有的分布在內膜,有的分布在周質空間,有的分布在外膜。LptB、LptC、LptF和LptG以復合體LptBCFG的形式存在,其中LptC的作用就像是周質蛋白LptA的錨。LptA可以結合LPS,并將其從內膜外層轉運給位于外膜內層的膜蛋白LptD。LptD與脂蛋白LptE一起將LPS從外膜內層轉運到外膜外層。Lpt系統中的7個蛋白質可能以一個從內膜到外膜橫跨周質空間的復合體存在,協調一致地轉運LPS[12]。
為適應不斷變化的外界環境,一些革蘭氏陰性細菌進化出改變內毒素分子結構的機制。由于內毒素的主要活性成分是Kdo2-lipid A基團,所以有關Kdo2-lipid A分子結構多樣性的研究比較集中。許多革蘭氏陰性菌的基因組中都存在像大腸桿菌一樣編碼合成Kdo2-lipid A的9個酶的基因,所以內毒素分子結構的改變主要由其它基因編碼的酶引起。這些能改變內毒素分子結構的酶多數位于內膜,但也有位于外膜的。
不同細菌內毒素分子脂肪酸鏈的數目和長度會有差異。固氮菌內毒素分子的2′位上有1條含有32個碳的超長次級脂肪酸,有利于其生存在豆科植物根部[13]。低溫條件下,大腸桿菌中的LpxP[14]取代LpxL在 Kdo2-lipid A的 2′位上加了 1條不飽和C16次級脂肪酸,而弗朗西斯菌中的LpxD2[15]取代LpxD1在內毒素分子的2和2′位上加了1條較短的3-OH脂肪酸。有氧條件下,沙門氏菌細胞內膜上的酶LpxO以Fe2+和α-酮戊二酸為輔助因子在3?位的次級脂肪酸鏈上引入1個羥基[16]。存在高濃度Ca2+的情況下,沙門氏菌和幽門螺旋桿菌中存在LpxR可以去除內毒素分子 3′位上的脂肪酸鏈[17]。

圖2 大腸桿菌內毒素分子的合成及跨膜轉運示意圖Fig.2 Biosynthesis and transport of endotoxin molecules in E.coli.
不同細菌內毒素分子上的磷酸基團會被修飾。弗朗西斯菌、根瘤菌和幽門螺旋桿菌的LpxE能特異性地去除內毒素分子1位上的磷酸基團[18]。有氧條件下,根瘤菌外膜蛋白LpxQ可以在LpxE脫1位磷酸的基礎上將氨基葡萄糖轉變為2-氨基葡萄糖酸[19]。Kdo2-lipid A分子4′位的磷酸基團可以被在弗朗西斯菌發現的磷酸酶LpxF特異性地去除[20]。LpxF缺失突變的弗朗西斯菌不再具有侵染小鼠的能力,說明內毒素分子結構的修飾與細菌的致病能力密切相關[21]。LpxT利用十一異戊烯醇焦磷酸為供體在Kdo2-lipid A基團 1位磷酸基團上添加第二個磷酸基團形成焦磷酸結構[22]。鉤端螺旋體中LmtA可以將S-腺苷甲硫氨酸的甲基轉移至Kdo2-lipid A的1位磷酸基團上[23]。沙門氏菌EptA在Kdo2-lipid A基團的1位磷酸基團上添加磷酸乙醇胺[24],其表達受PmrA-PmrB二元系統調控[25]。PmrB是位于細胞膜上的感受蛋白,而PmrA是位于細胞質內的響應蛋白。PmrB可以感受環境中高濃度的Fe3+和低pH,并通過PmrA激活特定基因的轉錄。幽門螺旋桿菌EptA在Kdo2-lipid A分子的1位上用磷酸乙醇胺取代了原來的磷酸基團[26]。幽門螺旋桿菌中還存在一個具有雙重功能的EptC,它不僅在Kdo2-lipid A分子的1位或4′上加磷酸乙醇胺,而且在鞭毛蛋白FlgG也能添加磷酸乙醇胺[27]。ArnT將L-Ara4N從特定供體轉移至內毒素分子1位或4′位的磷酸基團上[28]。弗朗西斯菌的1位磷酸基團被半乳糖胺基團用同樣的機制所修飾,ArnT的同源蛋白FlmK催化完成半乳糖胺基團的轉移[29]。
內毒素分子的Kdo基團也可以被修飾。固氮菌中RgtA和RgtB可以分別在Kdo2-lipid A分子上的外Kdo基團上加上一個半乳糖醛酸(GalA)[30];大腸桿菌中EptB也可以在Kdo′-lipid A分子上的外Kdo基團上加上一個磷酸乙醇胺[31]。
位于細胞外膜可以改變內毒素分子結構的酶主要有PagP和PagL。沙門氏菌中位于細胞外膜的酰基轉移酶PagP可以將磷脂的C16碳脂肪酸鏈轉移到內毒素分子的2位脂肪酸鏈上,形成1條次級脂肪酸鏈。PagP產生的含有7條脂肪酸鏈的內毒素可以干擾TLR4的識別,使細菌對陽離子抗菌肽產生抗性[32]。PagP的活性位點朝向細胞外膜外側[33],通常情況下PagP在細胞膜中表達水平低且沒有活性。當外膜外層結構遭到破壞而外膜滲透性增加時,外膜內層的磷脂會向外膜外側轉運,為PagP提供脂肪酸供體,同時PagP被迅速激活,修飾內毒素分子的結構來快速修復外膜滲透性。PagP的轉錄水平受PhoP-PhoQ調控[34]。PhoQ是位于細胞膜上的感受蛋白,而PhoP是位于細胞質內的響應蛋白。PhoQ可以感受環境中陽離子抗菌肽、低pH和低濃度的二價陽離子等。PagL是細胞外膜上的一種脫酰基酶,能特異性地水解去除內毒素分子3位上的脂肪酸鏈,使其不被TLR4識別,有利于細菌躲避宿主免疫系統的攻擊[35]。PagL的蛋白結構與PagP類似,也受PhoP-PhoQ二元系統和細菌外膜滲透性的調控。沙門氏菌Kdo2-lipid A分子上L-Ara4N的存在可以抑制PagL的活性[36]。PagL細胞外側一些特定的氨基酸序列可以識別L-Ara4N修飾的Kdo2-lipid A,而活性位點之間相互結合形成二聚體可能是PagL失活的原因[37]。
內毒素分子能夠通過TLR4/MD2刺激宿主先天性免疫系統,因此內毒素結構修飾的研究可為細菌疫苗和疫苗佐劑的開發奠定基礎。一方面可以通過優化其結構開發疫苗佐劑[38],另一方面可以將一些革蘭氏陰性病原菌的內毒素分子結構優化來開發減毒疫苗[39]。由于內毒素分子位于細胞表層,它在維持革蘭氏陰性細菌細胞外膜滲透性和完整性中起主要作用。所以,通過定向改造內毒素分子結構,可以改善革蘭氏陰性工業生產菌的細胞膜通透性,提高其生產效率。由于內毒素分子通過影響細菌細胞外膜的完整性來決定細菌的存亡,其合成和轉運過程中所涉及到的各種關鍵蛋白可以被作為靶點來開發新型抗菌素[40]。
[1]WANG X,Quinn P J.Lipopolysaccharide:Biosynthetic pathway and structure modification[J].Progress in Lipid Research,2010,49:97-107.
[2]Ellis T N,Kuehn M J.Virulence and immunomodulatory roles of bacterial outer membrane vesicles[J].Microbiology Molecular Biology Review,2010,74:81-94.
[3]Maeshima N,Fernandez R C.Recognition of lipid A variants by the TLR4-MD-2 receptor complex[J].Frontiers in Cellular and Infection Microbiology,2013;3:3.
[4]Opiyo S O,Pardy R L,Moriyama H.Evolution of the Kdo2-lipid A biosynthesis in bacteria[J].BMC Evolution Biology,2010,10:362-375.
[5]Williams A H,Raetz C R.Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase[J].Proceedings of the National Academy of Sciences of USA,2007,104:13543-13550.
[6]Bartling C M,Raetz C R.Crystal structure and acyl chain selectivity of Escherichia coli LpxD,the N-acyltransferase of lipid A biosynthesis[J].Biochemistry,2009,48:8672-8683.
[7]Langklotz S,Baumann U,Narberhaus F.Structure and function of the bacterial AAA protease FtsH[J].Biochimica et Biophysica Acta,2012,1823:40-48.
[8]Langklotz S,Schakermann M,Narberhaus F.Control of lipopolysaccharide biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in enterobacteria but not in all gram-negative bacteria[J].Journal of Bacteriology,2011,193:1090-1097.
[9]Doshi R,Ali A,Shi W,et al.Molecular disruption of the power stroke in the ATP-binding cassette transport protein MsbA[J].The Journal of Biological Chemistry,2013,288:6801-6813.
[10]Islam S T,Eckford P D,Jones M L,et al.Proton-dependent gating and proton uptake by wzx support o-antigen-subunit antiport across the bacterial inner membrane[J].MBio,2013,4(5).doi:pii:e00678-13.10.1128/mBio.00678-13.
[11]Villa R,Martorana AM,Okuda S,et al.The Escherichia coli Lpt transenvelope protein complex for lipopolysaccharide export is assembled via conserved structurally homologous domains[J].Journal of Bacteriology,2013,195:1100-1108.
[12]Okuda S,Freinkman E,Kahne D.Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E.coli[J].Science,2012,338:1214-1217.
[13]Haag A F,Wehmeier S,Muszyński A,et al.Biochemical characterization of Sinorhizobium meliloti mutants reveals gene products involved in the biosynthesis of the unusual lipid A very long-chain fatty acid[J].Journal of Biological Chemistry,2011,286:17455-17466.
[14]Vorachek-Warren M K,CartyS M,Lin S,etal.An Escherichiacolimutantlackingthecold shock-induced palmitoleoyltransferase of lipid A biosynthesis:absence of unsaturated acyl chains and antibiotic hypersensitivity at 12 degrees C[J].Journal of Biological Chemistry,2002,277:14186-14193.
[15]Li Y,Powell D A,Shaffer S A,et al.LPS remodeling is an evolved survival strategy for bacteria[J].Proceedings of the National Academy of Sciences of USA,2012,109:8716-8721.
[16]Gibbons H S,Reynolds C M,Guan Z,et al.An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A[J].Biochemistry,2008,47:2814-2825.
[17]Rutten L,Mannie J P,Stead C M,et al.Active-site architecture and catalytic mechanism of the lipid A deacylase LpxR of Salmonella typhimurium[J].Proceedings of the National Academy of Sciences of USA,2009,106:1960-1964.
[18]Wang X,Karbarz M J,McGrath S C,et al.MsbA transporter-dependent lipid A 1-dephosphorylation on the periplasmic surface of the inner membrane:topography of Francisella novicida LpxE expressed in Escherichia coli[J].Journal of Biological Chemistry,2004,279:49470-49478.
[19]Que-Gewirth N L S,Karbarz M J,Kalb S R,et al.Origin of the 2-amino-2-deoxy-gluconate unit in Rhizobium leguminosarum lipid A.Expression cloning of the outer membrane oxidase LpxQ[J].Journal of Biological Chemistry,2003,278:12120-12129.
[20]Wang X,McGrath S C,Cotter R J,et al.Expression cloning and periplasmic orientation of the Francisella novicida lipid A 4'-phosphatase LpxF[J].Journal of Biological Chemistry,2006,281:9321-9330.
[21]Wang X,Ribeiro A A,Guan Z,et al.Attenuated virulence of a Francisella mutant lacking the lipid A 4'-phosphatase[J].Proceedings of the National Academy of Sciences of USA,2007,104:4136-4141.
[22]Herrera C M,Hankins J V,Trent M S.Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides[J].Molecular Microbiology,2010,76:1444-1460.
[23]Boon Hinckley M,Reynolds C M,Ribeiro A A,et al.A Leptospira interrogans enzyme with similarity to yeast Ste14p that methylates the 1-phosphate group of lipid A[J].Journal of Biological Chemistry,2005,280:30214-30224.
[24]Lee H,Hsu FF,Turk J.The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica[J].Journal of Bacteriology,2004,186:4124-4133.
[25]Winfield M D,Groisman E A.Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes[J].Proceedings of the National Academy of Sciences of USA,2004,101:17162-17167.
[26]Tran A X,Whittimore J D,Wyrick P B,et al.The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin[J].Journal of Bacteriology,2006,188:4531-4541.
[27]Cullen T W,Trent M S.A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni[J].Proceedings of the National Academy of Sciences of USA,2010,107:5160-5165.
[28]Yan A,Guan Z,Raetz C R.An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli[J].Journal of Biological Chemistry,2007,282:36077-36089.
[29]Wang X,Ribeiro A A,Guan Z,et al.Identification of undecaprenyl phosphate-beta-D-galactosamine in Francisella novicida and its function in lipid A modification[J].Biochemistry,2009,48:1162-1172.
[30]Kanjilal-Kolar S,Basu S S,Kanipes M I,et al.Expression cloning of three Rhizobium leguminosarum lipopolysaccharide core galacturonosyltransferases[J].Journal of Biological Chemistry,2006,281:12865-12878.
[31]Reynolds C M,Kalb S R,Cotter R J,et al.A phosphoethanolamine transferase specific for the outer 3-deoxy-D-mannooctulosonic acid residue of Escherichia coli lipopolysaccharide.Identification of the eptB gene and Ca2+hypersensitivity of an eptB deletion mutant[J].Journal of Biological Chemistry,2005,280:21202-21211.
[32]Bishop R E,Gibbons H S,Guina T,et al.Transfer of palmitate from phospholipids to lipid A in outer membranes of gramnegative bacteria[J].EMBO Journal,2000,19:5071-5080.
[33]Hwang P M,Choy W Y,Lo E I,et al.Solution structure and dynamics of the outer membrane enzyme PagP by NMR[J].Proceedings of the National Academy of Sciences of USA,2002,99:13560-13565.
[34]Guo L,Lim K B,Gunn J S,et al.Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ[J].Science,1997,276:250-253.
[35]Kawasaki K,Ernst R K,Miller S I.3-O-deacylation of lipid A by PagL,a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium,modulates signaling through Toll-like receptor 4[J].Journal of Biological Chemistry,2004,279:20044-20048.
[36]Kawasaki K,China K,Nishijima M.Release of the lipopolysaccharide deacylase PagL from latency compensates for a lack of lipopolysaccharide aminoarabinose modification-dependent resistance to the antimicrobial peptide polymyxin B in Salmonella enterica[J].Journal of Bacteriology,2007,189:4911-4919.
[37]Rutten L,Geurtsen J,Lambert W,et al.Crystal structure and catalytic mechanism of the LPS 3-O-deacylase PagL from Pseudomonas aeruginosa[J].Proceedings of the National Academy of Sciences of USA,2006,103:7071-7076.
[38]Han Y,Li Y,Chen J,et al.Construction of monophosphoryl lipid A producing Escherichia coli mutants and comparison of immuno-stimulatory activities of their lipopolysaccharides[J].Marine Drugs,2013,11:363-376.
[39]Kong Q,Six D A,Roland K L,et al.Salmonella synthesizing 1-monophosphorylated lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity[J].Journal of Immunology,2011,187:412-423.
[40]Zhang J,Zhang L,Li X,et al.UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC)inhibitors:a new class of antibacterial agents[J].Current Medicinal Chemistry,2012;19(13):2038-50.