焦寧飛,劉衛(wèi)國,張 華,侯 奕
(西北工業(yè)大學(xué),陜西西安 710072)
隨著大型飛機(jī)的迅猛發(fā)展,交流電源系統(tǒng)在現(xiàn)代航空技術(shù)中的地位越來越重要。目前我國飛機(jī)交流電源系統(tǒng)大都采用三級式無刷同步電機(jī)作為發(fā)電機(jī),該類發(fā)電機(jī)無起動航空發(fā)動機(jī)的功能,發(fā)動機(jī)由獨(dú)立的起動機(jī)進(jìn)行起動。這樣的發(fā)動機(jī)-電源系統(tǒng)包含兩套電機(jī),使得其體積和重量較大,且系統(tǒng)復(fù)雜,可靠性降低。若能在原有三級式無刷同步發(fā)電機(jī)的基礎(chǔ)上,通過控制使其運(yùn)行在電動狀態(tài)來完成發(fā)動機(jī)的起動,即實現(xiàn)起動/發(fā)電一體化,就可以省去專門的起動機(jī),減輕機(jī)載重量和系統(tǒng)體積。
三級式無刷同步起動/發(fā)電系統(tǒng)的研究已經(jīng)在國內(nèi)外陸續(xù)展開。國外的多個專利[1-3]已經(jīng)公開了三級式無刷同步電機(jī)作為起動/發(fā)電機(jī)的結(jié)構(gòu)及原理。在國內(nèi),南京航空航天大學(xué)和西北工業(yè)大學(xué)也在此方面做了相關(guān)的研究工作。在不改變原有電機(jī)結(jié)構(gòu)的基礎(chǔ)上,可以在電機(jī)靜止和低速時勵磁機(jī)采用單相交流勵磁來為主發(fā)電機(jī)提供勵磁電流。文獻(xiàn)[4-5]通過對勵磁機(jī)結(jié)構(gòu)和工作原理的分析,給出了在勵磁機(jī)單相交流勵磁時主發(fā)電機(jī)勵磁電流的變化規(guī)律。本文結(jié)合該分析方法,前期針對現(xiàn)有三級式無刷同步電機(jī)樣機(jī)進(jìn)行了勵磁系統(tǒng)的研究,結(jié)合仿真與實驗,得出了勵磁機(jī)在單相交流勵磁的條件下,主發(fā)電機(jī)勵磁電流隨電機(jī)轉(zhuǎn)速的變化規(guī)律。經(jīng)簡化處理后,可將此變化規(guī)律表示為如圖1所示的曲線。
三級式無刷同步起動/發(fā)電機(jī)在帶動航空發(fā)動機(jī)起動時,必須滿足航空發(fā)動機(jī)的轉(zhuǎn)矩特性曲線。航空發(fā)動機(jī)在起動時對力矩的要求比較復(fù)雜,起動/發(fā)電機(jī)在電機(jī)起動時的轉(zhuǎn)矩輸出需滿足三個要求:靜態(tài)時能夠克服系統(tǒng)摩擦轉(zhuǎn)矩;恒轉(zhuǎn)矩輸出段能夠滿足發(fā)動機(jī)峰值轉(zhuǎn)矩點(diǎn)轉(zhuǎn)矩輸出的要求;能將發(fā)動機(jī)拖動至自持轉(zhuǎn)速。為滿足以上三點(diǎn)要求,針對發(fā)動機(jī)起動特性將三級式無刷同步起動/發(fā)電機(jī)在起動時的轉(zhuǎn)矩輸出曲線規(guī)劃如圖2所示。

圖2 主發(fā)電機(jī)滿足的負(fù)載特性曲線
三級式無刷同步起動/發(fā)電系統(tǒng)在勵磁機(jī)單相交流勵磁條件下帶動發(fā)動機(jī)起動時,其主發(fā)電機(jī)勵磁電流較小且隨電機(jī)轉(zhuǎn)矩的升高而變化。由于主發(fā)電機(jī)勵磁磁鏈非恒定,最大轉(zhuǎn)矩電流比MTPA控制模塊中直交軸電流函數(shù)為二元函數(shù),傳統(tǒng)的恒勵磁同步電機(jī)MTPA控制中直交軸電流函數(shù)的擬合方法不再適用。本文針對這一特點(diǎn),提出多線擬合方法進(jìn)行直交軸電流函數(shù)的擬合,該方法能夠較大程度地擬合直交軸電流函數(shù),且程序段所占存儲空間很小。通過采用MATLAB/Simulink構(gòu)建變勵磁同步電機(jī)MTPA控制系統(tǒng)模型,對直交軸電流函數(shù)多線擬合方法進(jìn)行了仿真分析及優(yōu)化。
從電機(jī)結(jié)構(gòu)上看,三級式無刷同步起動/發(fā)電系統(tǒng)中的主發(fā)電機(jī)為電勵磁同步電機(jī),只是其勵磁電流的大小會隨著電機(jī)的轉(zhuǎn)速升高而增大。為了簡化電機(jī)定轉(zhuǎn)子之間的耦合情況,在兩相旋轉(zhuǎn)坐標(biāo)系(d-q坐標(biāo)系)中建立電機(jī)的數(shù)學(xué)模型。忽略磁場的高次諧波、磁飽和、鐵損耗及溫度對參數(shù)變化的影響,得到忽略阻尼繞組時d-q坐標(biāo)系數(shù)學(xué)模型如下:
式中:Ld、Lq分別為定子直軸、交軸電感;Mmd為勵磁繞組與定子直軸繞組的互感;R1為定子繞組電阻;if、id、iq分別為勵磁電流、定子直軸電流、定子交軸電流;p為微分算子;ω為電角速度;TL為負(fù)載轉(zhuǎn)矩;J為轉(zhuǎn)子轉(zhuǎn)動慣量;p為電機(jī)極對數(shù)。
對于永磁同步電機(jī)或者勵磁電流恒定的電勵磁同步電機(jī),其勵磁磁鏈或勵磁電流是保持不變的,即式(3)中的Ψf為恒值,所以針對此類電機(jī)的MTPA控制就是要實時地完成如下的非線性規(guī)劃問題,以求得直交軸電流的參考值:

式中:id、iq為規(guī)劃變量,式(5)中的上式為規(guī)劃目標(biāo),下式為規(guī)劃條件。通過對式(5)的求解,可以獲得滿足MTPA控制的id、iq與Te的關(guān)系:

式(6)中函數(shù)f1和f2的精確解析式都很難確定,所以一般采用二次或者三次多項式進(jìn)行擬合[9-11],利用擬合多項式便可搭建 MTPA計算器,完成電機(jī)的MTPA控制。
當(dāng)同步電機(jī)勵磁電流隨電機(jī)轉(zhuǎn)速發(fā)生變化時,即勵磁磁鏈非恒定時,由式(5)求解出的id、iq的表達(dá)式將變?yōu)?

所以,在變勵磁同步電機(jī)MTPA控制中,直交軸電流的解算模塊需要進(jìn)行修改,最終的MTPA控制結(jié)構(gòu)圖如圖3所示,其中被虛線包圍的部分為傳統(tǒng)恒勵磁下同步電機(jī)的MTPA控制結(jié)構(gòu)圖。

圖3 變勵磁同步電機(jī)MTPA控制結(jié)構(gòu)圖
式(7)中函數(shù)的精確解析式同樣難以確定,且函數(shù)自變量變成了兩個。針對此函數(shù)的表示形式,一種近似的方式是將勵磁磁鏈和電磁轉(zhuǎn)矩都進(jìn)行離散化處理,在每一種特定的勵磁磁鏈和電磁轉(zhuǎn)矩組合下解算出直交軸電流id、iq的具體數(shù)值,然后構(gòu)成二維數(shù)據(jù)表,通過二維表的查詢便可確定在某種情況下id、iq的輸出值。這種方法對勵磁磁鏈和電磁轉(zhuǎn)矩都進(jìn)行離散化處理,控制的準(zhǔn)確性將會有一定的損失,并且需要較大存儲空間的控制芯片來存儲離線獲得的二維表。
為了能夠獲得較為準(zhǔn)確的控制效果,應(yīng)盡量減少離散化處理的變量數(shù)目。本文提出一種多線擬合的方法,即針對式(7),僅將勵磁磁鏈進(jìn)行離散化處理,然后在每一個特定的勵磁磁鏈下,以電磁轉(zhuǎn)矩為單變量進(jìn)行直交軸電流id、iq表達(dá)式的擬合,最終可以得到不同勵磁磁鏈下的多條擬合曲線。系統(tǒng)運(yùn)行時,結(jié)合模糊數(shù)學(xué)的思想,針對某時刻的勵磁磁鏈,選取與該勵磁磁鏈最為接近的擬合曲線進(jìn)行id、iq的求解。
以上的分析可以將式(7)中多變量函數(shù)的擬合分解為多個單變量函數(shù)的擬合。每一個函數(shù)擬合之前,首先計算出多個離散點(diǎn)處的函數(shù)值,即針對每一個電磁轉(zhuǎn)矩進(jìn)行非線性規(guī)劃問題的求解,然后將每一組(對應(yīng)每一條擬合曲線)數(shù)值進(jìn)行二次擬合。由于計算量較大且計算復(fù)雜,本文使用Lingo軟件求解非線性規(guī)劃問題。
所選擇的凸極同步電機(jī)的部分參數(shù):直軸電感Ld=0.63 mH,交軸電感 Lq=0.31 mH,勵磁繞組與直軸繞組的互感Mmf=6 mH。根據(jù)主發(fā)電機(jī)勵磁電流的變化規(guī)律,將勵磁電流離散為10 A、12 A、14 A、16 A、18 A、20 A、22 A、24 A 個點(diǎn),對應(yīng)的勵磁磁鏈為 0.06 Wb、0.072 Wb、0.084 Wb、0.096 Wb、0.108 Wb、0.12 Wb、0.132 Wb、0.144 Wb。針對每一個勵磁磁鏈,進(jìn)行直交軸電流函數(shù)的二次多項式擬合。不同勵磁磁鏈下直交軸電流函數(shù)曲線如圖4、圖5所示,經(jīng)過二次擬合后得到的直交軸電流函數(shù)表達(dá)式如表1所示。
以上求解出來的擬合曲線為在某一特定勵磁磁鏈下的直交軸函數(shù),在控制系統(tǒng)運(yùn)行中,對于任意大小的勵磁磁鏈,選擇與其最為接近的擬合曲線進(jìn)行該時刻直交軸電流的解算,具體的查詢表如表1所示。

圖4 不同勵磁磁鏈下MTPA算法直軸電流曲線擬合

圖5 不同勵磁磁鏈下MTPA算法交軸電流曲線擬合

表1 不同勵磁磁鏈下MTPA算法中直交軸電流的擬合多項式查詢表
在MATLAB/Simulink中搭建變勵磁同步電機(jī)MTPA控制模型,如圖6所示。直流側(cè)母線電壓為260 V,采用SVPWM逆變技術(shù),載波頻率為10 kHz,所加勵磁電流和負(fù)載轉(zhuǎn)矩分別如圖1、圖2所示。

圖6 變勵磁同步電機(jī)MTPA控制模型
將定子相電流的幅值限制在170 A之內(nèi),進(jìn)行變勵磁同步電機(jī)MTPA控制策略仿真,仿真結(jié)果如圖7、圖8所示。

圖7 MTPA控制方法下電機(jī)轉(zhuǎn)速和電磁轉(zhuǎn)矩

圖8 MTPA控制方法下電機(jī)定子A相電流
從系統(tǒng)仿真結(jié)果中可以看出,采用多線擬合方法的變勵磁同步電機(jī)MTPA控制策略可以完成電機(jī)帶動發(fā)動機(jī)起動。
上文中采用MTPA控制策略進(jìn)行變勵磁同步電機(jī)帶特定負(fù)載起動時,采用多線擬合的方法進(jìn)行直交軸電流的解算,仿真結(jié)果驗證該方法的可行性。但是從圖8中可以明顯看出,雖然電機(jī)輸出轉(zhuǎn)矩可以滿足發(fā)動機(jī)起動時的負(fù)載特性,但在電機(jī)起動階段輸出電磁轉(zhuǎn)矩存在較大的跳變,這樣的跳變會給航空發(fā)動機(jī)帶來一定的危害。分析電磁轉(zhuǎn)矩存在跳變的原因,可以發(fā)現(xiàn):由于在對直交軸電流函數(shù)進(jìn)行擬合時,對持續(xù)變化的勵磁磁鏈進(jìn)行了離散化處理,最終使得在實際控制中,隨著勵磁磁鏈的變化,直交軸電流的解算在幾條擬合曲線之間跳變,導(dǎo)致直交軸電流發(fā)生跳變,最終引起電磁轉(zhuǎn)矩的跳變。為了盡可能地減少電磁轉(zhuǎn)矩的跳變,這里對上文中提出的MTPA控制策略進(jìn)行優(yōu)化。具體方法:針對某一時刻的勵磁磁鏈,不再選擇與其最接近的擬合曲線直接進(jìn)行直交軸電流的計算,而是選擇與其最接近的兩條擬合曲線先分別進(jìn)行直交軸電流的計算,然后以這兩組值為基礎(chǔ),以此刻的勵磁磁鏈大小為節(jié)點(diǎn)進(jìn)行線性插值,便可得到能夠連續(xù)變化的直交軸電流值。
經(jīng)過優(yōu)化后的變勵磁同步電機(jī)MTPA控制仿真結(jié)果如圖9、圖10所示。

圖9 MTPA優(yōu)化控制方法下電機(jī)轉(zhuǎn)速和電磁轉(zhuǎn)矩

圖10 MTPA優(yōu)化控制方法下電機(jī)定子A相電流
與圖7進(jìn)行比較可以看出:優(yōu)化后的MTPA控制策略在很大程度上消除了電磁轉(zhuǎn)矩的跳變。
針對勵磁電流變化的同步電機(jī),本文在采用最大轉(zhuǎn)矩電流比MTPA控制方法時,提出了多線擬合的直交軸電流函數(shù)擬合方法。該方法將電機(jī)勵磁磁鏈進(jìn)行離散化處理,在每一個特定的勵磁磁鏈下進(jìn)行直交軸電流的解算和擬合。在系統(tǒng)運(yùn)行時,針對某時刻的勵磁磁鏈,選取與該勵磁磁鏈最為接近的擬合曲線進(jìn)行直交軸電流的求解。在Matlab/Simulink中搭建了變勵磁同步電機(jī)最大轉(zhuǎn)矩電流比控制模型,仿真結(jié)果驗證了該方法的有效性。
基本的多線擬合MTPA控制方法會引起電機(jī)電磁轉(zhuǎn)矩的跳變,針對此問題,本文對直交軸電流的解算過程進(jìn)行了優(yōu)化,從仿真結(jié)果中可以看出經(jīng)過優(yōu)化后的MTPA控制結(jié)果中,電磁轉(zhuǎn)矩跳變的情況得到很大改善。
[1]Huang Hao,Karipides D,Abbas M,et al.Aircraft engine startergenerator and controller:US, 7821145B2[P].2009.
[2]Anghel C E,Yue E.Control apparatus for a starter/generator system:US, 7122994B2[P].2006.
[3]Raad B A.AC/DC brushless starter- generator:US, 6844707B1[P].2005.
[4]曹遠(yuǎn)志.旋轉(zhuǎn)整流器式航空同步電機(jī)起動控制的研究[D].南京:南京航空航天大學(xué),2007.
[5]Li Yanan,Zhou Bo,Wei Jiadan,et al.Modeling of starter/generator based on three-stage brushless synchronous machines[C]//2010 International Conference on Electrical and Control Engineering.Yichang,China,2010:5348 -5348.
[6]王成元,夏加寬,楊俊友,等.電機(jī)現(xiàn)代控制技術(shù)[M].北京:機(jī)械工業(yè)出版社,2006.
[7]李長紅,陳明俊,吳小役.PMSM調(diào)速系統(tǒng)中最大轉(zhuǎn)矩電流比控制方法的研究[J].中國電機(jī)工程學(xué)報,2005(21):169-174.
[8]李耀華,劉衛(wèi)國.永磁同步電動機(jī)直接轉(zhuǎn)矩控制系統(tǒng)的最大轉(zhuǎn)矩電流比控制[J].微特電機(jī),2007(1):23 -26.
[9]金寧治,王旭東,李文娟.電動汽車PMSM MTPA控制系統(tǒng)滑模速度控制[J].電機(jī)與控制學(xué)報,2011(8):52-58.
[10]郎寶華,畢雪芹,劉衛(wèi)國.MTPA控制的直接轉(zhuǎn)矩控制系統(tǒng)研究[J].西安工業(yè)大學(xué)學(xué)報,2010(1):75-78.
[11]Zhang Wenjuan,Huang Shoudao,Gao Jian,et al.Curve analog control of maximum torque per ampere for permanent magnet synchronous motor used in electric vehicles[C]//Proceedings of the 2011 International Conference on Power Engineering,Energy and Electrical Drives.Changsha,China,2011:1-5.