999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高階中立型偏微分系統的振動性分析

2013-10-10 03:24:42羅李平羅振國曾云輝
衡陽師范學院學報 2013年3期
關鍵詞:振動數學

羅李平,羅振國,曾云輝

(衡陽師范學院 數學與計算科學系,湖南 衡陽 421002)

0 Introduction

The oscillation study of partial functional differential equations(PFDE)are of both theoretical and practical interest.Some applicable examples in such fields as population kinetics,chemistry reactors and control system can be found in the monograph of Wu[1].There have been some results on the oscillations of solutions of various types of partial functional differential equations.We mention here the literatures of Yu et al.[2],Liu and Fu[3],Wang and Yu[4],Wang and Feng[5],Luo et al.[6],Kiguradze et al.[7],Saker[8],Li and Debnath[9],Wang and Teo[10],Wang and Wu[11],Yang[12],Wang et al.[13]and the references cited therein.In addition,several authors including Li[14],Guan and Yang[15],Li and Cui[16],Li[17],Deng et al.[18],Li and Meng[19],Li et al.[20],Wang and Wu[21],Deng and Mu[22]have studied the oscillation problems of partial functional differential systems of different types.In spite of the above studies,hardly any attention was given to the problem of oscillation of high-order PFDE with continuous delay,especially the systems of high-order PFDE with continuous delay.However,we note that in many areas of their actual application,models describing these problems are often effected by such factors as seasonal changes.Therefore it is necessary,either theoretically or practically,to study a type of PFDE in a more general sense——PFDE with continuous delay.The main objective of this paper is to studythe oscillation of a class of systems of high-order neutral PFDE with continuous delay and nonlinear diffusion term.Some sufficient conditions are proved for the oscillation of such systems.It should be noted that in the proof we do not use the results of Dirichlet's eigenvalue problem.

1 Formulation of the Problem

In this paper,we study the oscillation of the following even order neutralpartial functional differential systems with continuous delay and nonlinear diffusion term

where n≥2is even,Ωis a bounded domain in Rmwith a piecewise smooth boundary?Ω,Δis the Laplacian inRm,R+= (0,∞),the integral in(E)are Stieltjes ones.

Consider the Dirichlet's boundary condition:

Throughout this paper,we assume that the following conditions hold:

(H7)τ(η),μ(ξ)is nondecreasing on[c,d]and[a,b],respectively.

Definition1.1A vector function u(x,t)= {u1(x,t),u2(x,t),…,um(x,t)}Tis said to be a solution of the boundary value problems(E),(B)if it satisfies(E)in Gand boundary condition(B)in?Ω×R+.

Definition1.2A numeral function v(x,t)is said to be oscillatory in Gif for anyβ>0,there exists a point(x0,t0)∈ Ω× [β,∞)such that v(x0,t0)=0.A vector function u(x,t)of the boundary value problems(E),(B)is said to be oscillatory in Gif u(x,t)has at least one component as a numeral function to be oscillatory.We call a vector function u(x,t)of the boundary value problems(E),(B)to be nonoscillatory in Gif each component of u(x,t)is nonoscillatory.

The objective of this paper is to derive some newoscillatory criteria of solutions of the boundary value problems(E),(B).

To prove the main results of this paper,we need the following lemmas.

Lemma1.1(Kiguradze[23])Let y(t)∈Cn(I,R)be of constant sign,y(n)(t)≠0and y(n)(t)y(t)≤0on I,then

(ⅰ)there exists a t1≥t0,such that y(i)(t)(i=1,2,…,n-1)is of constant sign on[t1,∞);

(ⅱ)there exists an integer l∈ {0,1,2,…,n-1},with n+l odd,such that

Lemma1.2(Philos[24])Suppose that y(t)satisfies the conditions of Lemma 1.1,and y(n-1)(t)y(n)(t)≤0,t≥t1,then for everyθ∈ (0,1),there exists a constant N >0satisfying

2 Main Results

Theorem2.1Suppose that there exists a functionρ(t)∈C1(I,R+),such that

Whereλ=1-P ,the definitions of Pand Q(t)see(H1)and(H2),then all solutions of the boundary value problems(E),(B)are oscillatory in G.

Integrating(E)with respect to xover the domainΩ,we have

It is easy to see that

Therefore,

TheGreen's formula,(B)and(D)yield

whereνis the unit exterior normal vector to?Ω,dSis the surface element on?Ω.

Combining(2.3)—(2.4),noting that(H2)and(H5),we have

Let Vi(t)=∫ΩZi(x,t)φ(x)dx ,t≥t1,i∈Im,it is obvious that Vi(t)>0,t≥t1,i∈Im.Then,from(2.5),we have

Noting that

Then,from (2.6),we have

Setting

Noting that the assumption of p(t,η)and q(t,ξ),from (2.7)and(2.8),we have z(t)≥V(t)>0and

Thus,from Lemma 1.1,there exists a t2≥t1,such that

By choosing“l=1”and“l=n-1”,respectively,we have“z′(t)>0and z(n-1)(t)>0,t≥t2”.Form(2.8),we have

whereλ=1-P.

Combining(2.9)and(2.10)yields

where Q(t)is defined by(H2).

Letting

Then W(t)>0for t≥t2.Because z(t)is increasing,g(t,ξ)is nondecreasing with respect tot andξ,there exists a t3≥t2,such that

Thus,from (2.11)—(2.13),we have

Taking

From the fact that X2-2 XY+Y2≥0for any X,Y∈R,we obtain

Thus,form (2.14)—(2.15),we have

Integratingboth sides of(2.16)fromt4to t(t>t4),we have

The proof of Theorem 2.1is complete.

Hereinbelowwe consider the sets

Theorem2.2Assume that there exists functionρ(t),φ(t)∈C(I,R+),H(t,s)∈C(D,R),h(t,s)∈C(D0,R),such that

(ⅰ)H(t,t)=0,t≥t0,H(t,s)>0, (t,s)∈D0;

(ⅱ)H(t,s)φ(s)exists a continuous and nonpositive partial derivative on D0with respect to the variable s and satisfies the equality

If

for any T≥t0,whereλ=1-Pand

then all solutions of the boundary value problems(E),(B)are oscillatory in G.

Proof.Proceeding as in the proof of theorem 2.1,we have still(2.14)holds.Multiplying both sides of(2.14)by H(t,s)φ(s)for t≥T ≥t4,integrating fromTto t,we have

Therefore,

Taking

From the fact that X2-2 XY+Y2≥0for any X,Y∈R,we obtain

Combining(2.19)—(2.20),we get

The above formula yields

This contradicts(2.18).The proof of Theorem 2.2is complete.

Corollary2.3If condition(2.18)of Theorem 2.2is replaced by

and

then the conclusions of Theorem 2.2remain true.

If the condition(2.18)don't hold,we have the following result.

Theorem2.4Assume that the other conditions of Theorem 2.2remain unchanged,the condition(2.18)of Theorem 2.2is replaced by

and

If there exists a functionψ(t)∈C(I,R)such that

and

whereψ+(s)= max{ψ(s),0},the definitions of A(t,T)and B(t,T)see(2.18),then all solutions of the boundary value problems(E),(B)are oscillatory in G.

Proof.Proceeding as in the proof of theorem 2.2,for any t≥T≥t4,we have still(2.21)holds,then

From(2.25)—(2.26),we have

and

From(2.24)and(2.27),we obtain

To complete the proof of this theorem,we merely need to prove that(2.29)is impossible.For this purpose,we definite

From(2.19)and(2.28),we have

From(2.22)and(2.29),we obtain

From(2.31),we have

Combining(2.32)and(2.33),we get

and

namely,

Fromthe above formula and(2.34),we have

On the other hand,by using the Schwarz's inequality,we obtain

Thus,we have

Noting that(2.35),we obtain

[1]Wu J H.Theory and applications of partial functional differential equations[M].New York:Springer-Verlag,1996.

[2]Yu Y H,Liu B,Liu Z R.Oscillation of solutions of nonlinear partial differential equations of neutral type[J].Acta Math.Sini.,1997,13(4):563-570.

[3]Liu X Z,Fu X L.Oscillation criteria for high order delay partial differential equations[J].J.Appl.Math.Stochastic A-nal.,1998,11(2):193-208.

[4]Wang P G,Yu Y H.Oscillation criteria for a nonlinear hyperbolic equations boundary value problem [J].Appl.Math.Lett.,1999,12(1):91-98.

[5]Wang P G,Feng C H.Oscillation of solutions for parabolic equation[J].Comput.Appl.Math.,2000,126(2):111-120.

[6]Luo J W,Liu Z R,Yu Y H.Oscillation theorems for hyperbolic equations of neutral type[J].Bull.Inst.Math.Acad.Sinica,2001,29(1):135-145.

[7]Kiguradze I T,Kusano T,Yoshida N.Oscillation criteria for a class of partial functional-differential equations of higher order[J].J.Appl.Math.Stochastic Anal.,2002,15(3):255-267.

[8]Saker S H.Oscillation criteria of hyperbolic equations with deviating arguments[J].Publ.Math.Debrecen,2003,62(1):165-185.

[9]Li W N,Debnath L.Oscillation of higher order neutral partial functional differential equations[J].Appl.Math.Lett.,2003,16:525-530.

[10]Wang P G,Teo K L.Oscillation of solutions of parabolic differential equations of neutral type[J].J.Math.Anal.Appl.,2005,311(2):616-625.

[11]Wang P G,Y.H.Wu Y H.Forced oscillation of a class of neutral hyperbolic differential equations[J].J.Comput.Appl.Math.,2005,177(2):301-308.

[12]Yang Q G.On the oscillation of certain nonlinear neutral partial differential equations[J].Appl.Math.Lett.,2007,20:900-907.

[13]Wang P G,Wu Y H,Caccetta L.Oscillation criteria for boundary value problems of high-order partial functional differential equations[J].J.Comput.Appl.Math.,2007,206(1):567-577.

[14]Li Y K.Oscillations of systems of hyperbolic differential equations with deviating arguments[J].Acta Math.Sinica 1997,40(1):100-105.

[15]Guan X P,Yang J.Oscillation of systems of nonlinear hyperbolic partial functional differential equations of neutral type[J].J.Sys.Sci.&Math.Scis.,1998,18(2):239-246.

[16]Li W N,Cui B T.Oscillation for systems of neutral delay hyperbolic differential equations[J].Indian J.Pure Appl.Math.,2000,31:933-948.

[17]Li W N.Oscillation properties for systems of hyperbolic differential equationsof neutral type[J].J.Math.Anal.Appl.,2000,248:369-384.

[18]Deng L H,Ge W G,Yu Y H.Oscillation of systems of quasilinear parabolic functional differential equations about boundary value problems[J].Acta Math.Appl.Sinica,2001,24(2):295-301.

[19]Li W N,Meng F W.Oscillation for systems of neutral partial differential equations with continuous distributed deviating arguments[J].Demonstratio Math.,2001,34:619-633.

[20]Li W N,Cui B T,Debnath L.Oscillation of systems of certain neutral delay parabolic differential equations[J].J.Appl.Math.Stochastic Anal.,2003,16(1):83-94.

[21]Wang P G,Wu Y H.Oscillation of solutions for systems of hyperbolic equations of neutral type[J].Electronic of Differential Equations,2004,2004(80):1-8.

[22]Deng L H,Mu C L.Oscillation of solutions of the systems of quasilinear hyperbolic equations under nonlinear boundary condition[J].Acta.Math.Scientia,2007,27B(3):656-662.

[24]Philos Ch G.A new criterion for oscillatory and asymptofic behavior of delay differential equations[J].Bull.Acad.Pol.Sci.Ser.Sci.Mat.,1981,29:367-370.

猜你喜歡
振動數學
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
噴水推進高速艇尾部振動響應分析
This “Singing Highway”plays music
我們愛數學
振動攪拌 震動創新
中國公路(2017年18期)2018-01-23 03:00:38
中立型Emden-Fowler微分方程的振動性
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
數學也瘋狂
UF6振動激發態分子的振動-振動馳豫
計算物理(2014年2期)2014-03-11 17:01:44
主站蜘蛛池模板: 91国内在线视频| 99这里只有精品免费视频| 精品一区二区三区视频免费观看| 伊人婷婷色香五月综合缴缴情| 91外围女在线观看| 亚洲人成成无码网WWW| 免费午夜无码18禁无码影院| 国产凹凸视频在线观看| 中日无码在线观看| 91青青草视频| 欧美一区二区三区不卡免费| 免费观看国产小粉嫩喷水| 国产成人1024精品| AV熟女乱| 亚洲综合网在线观看| 91精品专区| 国产女人在线观看| 香蕉久久国产精品免| 91国内外精品自在线播放| 欧美精品1区| 五月婷婷精品| 好吊日免费视频| 国产精品一区二区不卡的视频 | 亚洲激情区| 中文字幕有乳无码| 女人爽到高潮免费视频大全| 日韩麻豆小视频| 四虎永久在线精品影院| 国产精品冒白浆免费视频| 成人午夜精品一级毛片| 99热在线只有精品| 亚洲AV电影不卡在线观看| 欧美成人国产| 亚洲国产精品不卡在线| 亚洲精品欧美日本中文字幕| 日韩人妻无码制服丝袜视频| 波多野结衣一区二区三区四区视频 | 精品亚洲国产成人AV| 无码人妻热线精品视频| 亚洲欧美精品在线| 在线观看的黄网| 网友自拍视频精品区| 成人va亚洲va欧美天堂| 亚洲av无码成人专区| 婷婷久久综合九色综合88| 又黄又湿又爽的视频| 亚洲精品视频免费| 欧美笫一页| 亚国产欧美在线人成| 国产自在自线午夜精品视频| 欧美日韩福利| AV天堂资源福利在线观看| 亚洲精品成人7777在线观看| 国产欧美专区在线观看| 国内精品小视频在线| 久久99国产综合精品女同| 亚洲妓女综合网995久久| 亚洲人成网站观看在线观看| 中文字幕欧美日韩| 四虎永久在线精品国产免费| 欧美日韩在线国产| 一级毛片免费不卡在线| h视频在线播放| 久久国产热| 精品人妻AV区| 思思99热精品在线| 久久无码免费束人妻| 国产二级毛片| 欧洲熟妇精品视频| 欧美三級片黃色三級片黃色1| 日韩免费毛片| 国产精品视频系列专区| 亚洲swag精品自拍一区| 国产黄色视频综合| 亚洲精品亚洲人成在线| 久久午夜夜伦鲁鲁片无码免费| 久久亚洲国产视频| 久久久黄色片| 欧美日韩激情| 老汉色老汉首页a亚洲| 日本在线亚洲| 国产视频一区二区在线观看|