999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

廣義KdV-Burgers方程的勢對稱和不變解

2013-07-05 14:33:33朱永平吉飛宇陳曉艷
純粹數學與應用數學 2013年2期
關鍵詞:數學方法

朱永平,吉飛宇,陳曉艷

(1.西北大學數學系,陜西西安 710127;2.西安建筑科技大學理學院,陜西西安 710055)

廣義KdV-Burgers方程的勢對稱和不變解

朱永平1,吉飛宇2,陳曉艷1

(1.西北大學數學系,陜西西安 710127;2.西安建筑科技大學理學院,陜西西安 710055)

用微分形式的吳方法討論了廣義KdV-Burgers方程不同系數情況下的勢對稱,并且利用這些對稱求得了相應的不變解,這些解對進一步研究廣義KdV-Burgers方程所描述的物理現象具有重要意義.

KdV-Burgers方程;微分形式的吳方法;勢對稱;不變解

1 引言

偏微分方程的對稱理論和方法[1]是以求解線性微分方程的變量分離法,Fourier級數法及積分變換等為其特例的普適性方法,在求精確解和對稱約化方面具有廣泛的應用[23].由于古典對稱方法在構造微分方程的對稱中存在一定的局限性,因此,1981年Perk和Schultz提出了超對稱,1994年Zhdanow和Fokas以及Liu提出了廣義條件對稱等,這些均是對古典對稱的推廣.1989年,Bluman提出的勢對稱理論[4]是擴充方程(組)對稱的簡便有效方法.近期,有許多學者致力于某些重要的非線性偏微分方程的勢對稱及不變解的研究,得到了許多重要成果[5-7].

在物理學中是一類非常重要的非線性波動方程,可看作是Burgers方程及Kuramoro-Sivashinsky方程組合的一種簡單耗散模型.該類方程的很多理論結果受到了廣泛關注[911].本文采用微分形式的吳方法[12]作為輔助計算,對KdV-Burgers方程的勢對稱和不變解進行了研究,將方程中系數的各種情況分類討論,獲得了與以往文獻不同的勢對稱和不變解,并且大大降低了求解確定方程組的難度.

2 廣義KdV-Burgers方程的勢對稱和不變解

2.1 基本理論

假設給定方程的自變量是x,t,其中u=u(x,t)是未知函數,并且該方程可以寫成守恒形式:

引入勢變量v,得到方程(2)的輔助系統:

設輔助系統的(3)的古典對稱向量為:

2.2 廣義KdV-Burgers方程的勢對稱和不變解

將方程(1)寫成守恒形式:

引入勢變量v,得到相應的輔助系統:

設方程組(6)對應的古典對稱向量為:

下面對方程組(6)的系數α,β,γ分八種情形進行討論.

情形1α/=0,β/=0,γ/=0.

用微分形式的吳方法計算得到(6)式的確定方程組為:

3 結論

本文利用微分形式的吳方法計算了廣義KdV-Burgers方程在不同系數情況下的勢對稱,并且求得了對應的不變解,獲得了與以往文獻不同的結果.這對進一步研究廣義KdVBurgers方程具有重要的意義.對于可寫成守恒形式的微分方程在什么樣的情況下允許勢對稱,有待于繼續研究.

[1]Peter J Olver.Applications of Lie Groups to Differential Equations[M].New York:Spring-Verlag,1986.

[2]王珍,吉飛宇.mKdV方程的對稱和群不變解[J].純粹數學與應用數學,2011,27(6):778-780.

[3]姬利娜,張穎.多孔介質方程的廣義條件對稱和精確解[J].純粹數學與應用數學,2011,27(3):339-342.

[4]George W Bluman,Sukeyuki Kumei.Symmetries and Integration Methods for Differential Equations[M]. New York:Spring-Verlag,1989.

[5]Gandarias M L.New potential symmetries for some evolution equations[J].Physica A,2008,387(10):2234-2242.

[6]張紅霞,鄭麗霞.Benney方程的勢對稱和不變解[J].動力與控制學報,2008,6(3):220-222.

[7]饒云高,朝魯.廣義KdV-Burgers方程新形勢下的勢對稱分類[J].內蒙古工業大學學報,2012,31(1):1-6.

[8]郭柏靈.一類更廣泛的Kdv方程的整體解[J].數學學報,1982,25(6):641-656.

[9]Ablowitz M J.Clarkson P A.Solitons,Nonlinear Evolution Equations and Inverse Scatting[M].New York: Cambridge University Press,1991.

[10]Zhang S L,Wang Y,Lou S Y.Approximate generalized conditional symmetries for perturbed evolution equations[J].Commu.Theor.Phys.,2007,47(6):975-980.

[11]Zhang S L,Li J N.Initial-value problem for extended KdV-Burgers equations via generalized conditional symmetries[J].Chinese Physics Letters,2007,24(6):1433-1436.

[12]朝魯.微分方程(組)對稱向量的吳-微分特征列算法及其應用[J].數學物理學報,1999,19(3):326-332.

Potential symmetries and invariant solutions of generalized KdV-Burgers equation

Zhu Yongping1,Ji feiyu2,Chen Xiaoyan1
(1.Department of Mathematics,Northewest University,Xi′an710127,China; 2.School of Science,Xi′an University of Architecture and Technology,Xi′an710055,China)

In this paper,the symmetries of generalized KdV-Burgers equation with different coefficients are discussed with the help of Wu′s method in differential forms.And new potential symmetries are obtained. Furthermore,the corresponding invariant solutions can be obtained by using the above symmetries.The solutions have are of great importance to further researching the physical phenomena described by generalized KdVBurgers equation.

KdV-Burgers equation,Wu′s method in differential forms,potential symmetries, invariant solutions

O175.2

A

1008-5513(2013)02-0164-08

10.3969/j.issn.1008-5513.2013.02.009

2012-11-22.

國家自然科學基金(10671156).

朱永平(1986-),碩士生,研究方向:偏微分方程.

2010 MSC:35Q53

猜你喜歡
數學方法
我們愛數學
學習方法
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
數學也瘋狂
錯在哪里
主站蜘蛛池模板: 亚洲成a人片7777| 国产精品视频免费网站| 欧美精品一区二区三区中文字幕| 色呦呦手机在线精品| 欧美三级不卡在线观看视频| 玖玖免费视频在线观看| 日韩无码真实干出血视频| 婷婷久久综合九色综合88| 国产免费网址| 无码AV日韩一二三区| 91小视频在线观看| 日韩精品欧美国产在线| 亚洲国产午夜精华无码福利| 自拍亚洲欧美精品| 亚洲午夜综合网| 九色91在线视频| 中国一级特黄大片在线观看| 国产精品自在拍首页视频8| 亚洲国产日韩在线观看| 在线99视频| 国产无人区一区二区三区| 国产a网站| 国产18在线播放| 亚洲v日韩v欧美在线观看| 久久久噜噜噜久久中文字幕色伊伊| 欧美精品啪啪一区二区三区| 欧美性猛交一区二区三区| 114级毛片免费观看| 污视频日本| 成人在线欧美| 国产精品美女免费视频大全| 在线观看91精品国产剧情免费| 免费一级毛片不卡在线播放| 97在线碰| 婷婷综合色| 亚洲精品麻豆| 亚洲精品高清视频| 亚洲国产精品VA在线看黑人| 日韩在线第三页| 成人中文在线| 久久亚洲国产一区二区| 在线一级毛片| 免费高清毛片| 欧美黄网站免费观看| 成人午夜福利视频| 中文字幕在线观看日本| 激情国产精品一区| 色AV色 综合网站| 国产91成人| 亚洲国产天堂久久综合| 欧美午夜在线视频| 欧美午夜精品| 日韩中文字幕亚洲无线码| 免费xxxxx在线观看网站| 蜜臀AV在线播放| 极品国产一区二区三区| 国产JIZzJIzz视频全部免费| 色哟哟色院91精品网站| 在线免费a视频| 久久精品国产在热久久2019| 日本精品视频一区二区| 国产在线精品人成导航| 国产尤物视频网址导航| 美女无遮挡拍拍拍免费视频| 国产一级裸网站| lhav亚洲精品| 无码中文AⅤ在线观看| 尤物视频一区| 国产第一页免费浮力影院| 亚洲av无码人妻| 九九九精品成人免费视频7| 亚洲VA中文字幕| 成年看免费观看视频拍拍| 2021亚洲精品不卡a| 国产精品色婷婷在线观看| 国产精品尤物铁牛tv| 97青青青国产在线播放| 在线观看国产网址你懂的| 国产欧美成人不卡视频| 国内a级毛片| 国产高清不卡视频| 毛片网站在线播放|