999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

廣義KdV-Burgers方程的勢對稱和不變解

2013-07-05 14:33:33朱永平吉飛宇陳曉艷
純粹數學與應用數學 2013年2期
關鍵詞:數學方法

朱永平,吉飛宇,陳曉艷

(1.西北大學數學系,陜西西安 710127;2.西安建筑科技大學理學院,陜西西安 710055)

廣義KdV-Burgers方程的勢對稱和不變解

朱永平1,吉飛宇2,陳曉艷1

(1.西北大學數學系,陜西西安 710127;2.西安建筑科技大學理學院,陜西西安 710055)

用微分形式的吳方法討論了廣義KdV-Burgers方程不同系數情況下的勢對稱,并且利用這些對稱求得了相應的不變解,這些解對進一步研究廣義KdV-Burgers方程所描述的物理現象具有重要意義.

KdV-Burgers方程;微分形式的吳方法;勢對稱;不變解

1 引言

偏微分方程的對稱理論和方法[1]是以求解線性微分方程的變量分離法,Fourier級數法及積分變換等為其特例的普適性方法,在求精確解和對稱約化方面具有廣泛的應用[23].由于古典對稱方法在構造微分方程的對稱中存在一定的局限性,因此,1981年Perk和Schultz提出了超對稱,1994年Zhdanow和Fokas以及Liu提出了廣義條件對稱等,這些均是對古典對稱的推廣.1989年,Bluman提出的勢對稱理論[4]是擴充方程(組)對稱的簡便有效方法.近期,有許多學者致力于某些重要的非線性偏微分方程的勢對稱及不變解的研究,得到了許多重要成果[5-7].

在物理學中是一類非常重要的非線性波動方程,可看作是Burgers方程及Kuramoro-Sivashinsky方程組合的一種簡單耗散模型.該類方程的很多理論結果受到了廣泛關注[911].本文采用微分形式的吳方法[12]作為輔助計算,對KdV-Burgers方程的勢對稱和不變解進行了研究,將方程中系數的各種情況分類討論,獲得了與以往文獻不同的勢對稱和不變解,并且大大降低了求解確定方程組的難度.

2 廣義KdV-Burgers方程的勢對稱和不變解

2.1 基本理論

假設給定方程的自變量是x,t,其中u=u(x,t)是未知函數,并且該方程可以寫成守恒形式:

引入勢變量v,得到方程(2)的輔助系統:

設輔助系統的(3)的古典對稱向量為:

2.2 廣義KdV-Burgers方程的勢對稱和不變解

將方程(1)寫成守恒形式:

引入勢變量v,得到相應的輔助系統:

設方程組(6)對應的古典對稱向量為:

下面對方程組(6)的系數α,β,γ分八種情形進行討論.

情形1α/=0,β/=0,γ/=0.

用微分形式的吳方法計算得到(6)式的確定方程組為:

3 結論

本文利用微分形式的吳方法計算了廣義KdV-Burgers方程在不同系數情況下的勢對稱,并且求得了對應的不變解,獲得了與以往文獻不同的結果.這對進一步研究廣義KdVBurgers方程具有重要的意義.對于可寫成守恒形式的微分方程在什么樣的情況下允許勢對稱,有待于繼續研究.

[1]Peter J Olver.Applications of Lie Groups to Differential Equations[M].New York:Spring-Verlag,1986.

[2]王珍,吉飛宇.mKdV方程的對稱和群不變解[J].純粹數學與應用數學,2011,27(6):778-780.

[3]姬利娜,張穎.多孔介質方程的廣義條件對稱和精確解[J].純粹數學與應用數學,2011,27(3):339-342.

[4]George W Bluman,Sukeyuki Kumei.Symmetries and Integration Methods for Differential Equations[M]. New York:Spring-Verlag,1989.

[5]Gandarias M L.New potential symmetries for some evolution equations[J].Physica A,2008,387(10):2234-2242.

[6]張紅霞,鄭麗霞.Benney方程的勢對稱和不變解[J].動力與控制學報,2008,6(3):220-222.

[7]饒云高,朝魯.廣義KdV-Burgers方程新形勢下的勢對稱分類[J].內蒙古工業大學學報,2012,31(1):1-6.

[8]郭柏靈.一類更廣泛的Kdv方程的整體解[J].數學學報,1982,25(6):641-656.

[9]Ablowitz M J.Clarkson P A.Solitons,Nonlinear Evolution Equations and Inverse Scatting[M].New York: Cambridge University Press,1991.

[10]Zhang S L,Wang Y,Lou S Y.Approximate generalized conditional symmetries for perturbed evolution equations[J].Commu.Theor.Phys.,2007,47(6):975-980.

[11]Zhang S L,Li J N.Initial-value problem for extended KdV-Burgers equations via generalized conditional symmetries[J].Chinese Physics Letters,2007,24(6):1433-1436.

[12]朝魯.微分方程(組)對稱向量的吳-微分特征列算法及其應用[J].數學物理學報,1999,19(3):326-332.

Potential symmetries and invariant solutions of generalized KdV-Burgers equation

Zhu Yongping1,Ji feiyu2,Chen Xiaoyan1
(1.Department of Mathematics,Northewest University,Xi′an710127,China; 2.School of Science,Xi′an University of Architecture and Technology,Xi′an710055,China)

In this paper,the symmetries of generalized KdV-Burgers equation with different coefficients are discussed with the help of Wu′s method in differential forms.And new potential symmetries are obtained. Furthermore,the corresponding invariant solutions can be obtained by using the above symmetries.The solutions have are of great importance to further researching the physical phenomena described by generalized KdVBurgers equation.

KdV-Burgers equation,Wu′s method in differential forms,potential symmetries, invariant solutions

O175.2

A

1008-5513(2013)02-0164-08

10.3969/j.issn.1008-5513.2013.02.009

2012-11-22.

國家自然科學基金(10671156).

朱永平(1986-),碩士生,研究方向:偏微分方程.

2010 MSC:35Q53

猜你喜歡
數學方法
我們愛數學
學習方法
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
用對方法才能瘦
Coco薇(2016年2期)2016-03-22 02:42:52
四大方法 教你不再“坐以待病”!
Coco薇(2015年1期)2015-08-13 02:47:34
賺錢方法
捕魚
數學也瘋狂
錯在哪里
主站蜘蛛池模板: 国产男女免费完整版视频| 五月婷婷导航| a级毛片在线免费观看| 日本午夜精品一本在线观看| 国产一级特黄aa级特黄裸毛片 | 9999在线视频| 国产欧美高清| 中文国产成人精品久久一| 国产成人AV男人的天堂| 国产幂在线无码精品| 日韩av无码精品专区| 高潮毛片无遮挡高清视频播放| 欧美亚洲国产日韩电影在线| 色婷婷亚洲综合五月| 国产成人做受免费视频| 少妇高潮惨叫久久久久久| 日韩毛片基地| 女人18毛片久久| 国产噜噜噜| 亚洲天堂.com| 亚洲综合第一页| 98超碰在线观看| 欧美www在线观看| 欧美色亚洲| 国产sm重味一区二区三区| 日韩A∨精品日韩精品无码| 欧美天堂久久| 国产主播福利在线观看| 亚洲天堂免费在线视频| 无码中字出轨中文人妻中文中| 日韩国产黄色网站| 99热国产这里只有精品9九| 色婷婷国产精品视频| 欧美精品成人一区二区视频一| 久久精品免费国产大片| 无码内射在线| 中文字幕va| 高h视频在线| 成年人午夜免费视频| 四虎永久免费地址在线网站| 欧美成人手机在线观看网址| 青青操国产| 午夜影院a级片| 久久久亚洲国产美女国产盗摄| 亚洲中文制服丝袜欧美精品| 日韩精品免费在线视频| 无码一区二区三区视频在线播放| 欧美在线天堂| 欧美成人第一页| 国产精品永久不卡免费视频| 中文字幕亚洲无线码一区女同| 日韩美女福利视频| 沈阳少妇高潮在线| 无码日韩精品91超碰| 欧美日韩国产成人高清视频| 波多野结衣AV无码久久一区| 日韩高清一区 | 国内老司机精品视频在线播出| 亚洲日韩精品综合在线一区二区 | 国产无码网站在线观看| 欧美在线精品一区二区三区| 午夜福利视频一区| 91福利一区二区三区| 精品视频一区在线观看| 九色综合视频网| 原味小视频在线www国产| 国产成人精品亚洲日本对白优播| 成人福利在线观看| 精品人妻AV区| 在线观看国产精品日本不卡网| 视频国产精品丝袜第一页| www.精品视频| AⅤ色综合久久天堂AV色综合| 久久国产高清视频| 亚洲永久色| 日本精品影院| a级毛片免费网站| 久久特级毛片| 国产91熟女高潮一区二区| 国产亚洲欧美在线视频| 福利小视频在线播放| 婷婷六月激情综合一区|