中圖分類號:G623.5 文獻標識碼:B文章編號:1008-925X(2012)11-0135-01
分析和解決問題的能力是指能閱讀、理解對問題進行陳述的材料;能綜合應用所學數學知識、思想和方法解決問題,包括解決在相關學科、生產、生活中的數學問題,并能用數學語言正確地加以表述.它是邏輯思維能力、運算能力、空間想象能力等基本數學能力的綜合體現.由于高考數學科的命題原則是在考查基礎知識的基礎上,注重對數學思想和方法的考查,注重數學能力的考查,強調了綜合性.這就對考生分析和解決問題的能力提出了更高的要求,也使試卷的題型更新,更具有開放性.縱觀近幾年的高考,學生在這一方面失分的普遍存在,這就要求我們教師在平時教學中注重分析和解決問題能力的培養,以減少在這一方面的失分.筆者就分析和解決問題能力的組成及培養談幾點芻見.
1 分析和解決問題能力的組成
審題是對條件和問題進行全面認識,對與條件和問題有關的全部情況進行分析研究,它是如何分析和解決問題的前提.審題能力主要是指充分理解題意,把握住題目本質的能力;分析、發現隱含條件以及化簡、轉化已知和所求的能力.要快捷、準確在解決問題,掌握題目的數形特點、能對條件或所求進行轉化和發現隱含條件是至關重要的.
2 培養和提高分析和解決問題能力的策略
2.1 重視通性通法教學,引導學生概括、領悟常見的數學思想與方法:
數學思想較之數學基礎知識,有更高的層次和地位.它蘊涵在數學知識發生、發展和應用的過程中,它是一種數學意識,屬于思維的范疇,用以對數學問題的認識、處理和解決.數學方法是數學思想的具體體現,具有模式化與可操作性的特征,可以作為解題的具體手段.只有對數學思想與方法概括了,才能在分析和解決問題時得心應手;只有領悟了數學思想與方法,書本的、別人的知識技巧才會變成自已的能力.
每一種數學思想與方法都有它們適用的特定環境和依據的基本理論,如分類討論思想可以分成:(1)由于概念本身需要分類的,象等比數列的求和公式中對公比的分類和直線方程中對斜率的分類等;(2)同解變形中需要分類的,如含參問題中對參數的討論、解不等式組中解集的討論等.又如數學方法的選擇,二次函數問題常用配方法,含參問題常用待定系數法等.因此,在數學課堂教學中應重視通性通法,淡化特殊技巧,使學生認識一種“思想”或“方法”的個性,即認識一種數學思想或方法對于解決什么樣的問題有效.從而培養和提高學生合理、正確地應用數學思想與方法分析和解決問題的能力.
2.2 加強應用題的教學,提高學生的模式識別能力: 高考是注重能力的考試,特別是學生運用數學知識和方法分析問題和解決問題的能力,更是考查的重點,而高考中的應用題就著重考查這方面的能力,這從新課程版的《考試說明》與原來的《考試說明》中對能力的要求的區別可見一斑.(新課程版將“分析和解決問題的能力”改為“解決實際問題的能力”)
數學是充滿模式的,就解應用題而言,對其數學模式的識別是解決它的前提.由于高考考查的都不是原始的實際問題,命題者對生產、生活中的原始問題的設計加工使每個應用題都有其數學模型.如2007年的“運輸成本問題”為函數與均值不等式;2008年的“污水池問題”為函數、立幾與均值不等式;2009年的“減薄率問題”是數列、不等式與方程;2010年的“西紅柿問題”是分段式的一次函數與二次函數等等.在高中數學教學中,不但要重視應用題的教學,同時要對應用題進行專題訓練,引導學生總結、歸納各種應用題的數學模型,這樣學生才能有的放矢,合理運用數學思想和方法分析和解決實際問題.
2.3 適當進行開放題和新型題的訓練,拓寬學生的知識面: 要分析和解決問題,必先理解題意,才能進一步運用數學思想和方法解決問題.近年來,隨著新技術革命的飛速發展,要求數學教育培養出更高數學素質、具有更強的創造能力的人才,這一點體現在高考上就是一些新背景題、開放題的出現,更加注重了能力的考查.由于開放題的特征是題目的條件不充分,或沒有確定的結論,而新背景題的背景新,這樣給學生在題意的理解和解題方法的選擇上制造了不少的麻煩,導致失分率較高.如2005年理科的第16題和第21題,很多學生由于對“壟”和“減薄率不超過”不理解而不知所措;又如2007年文科第16題和第21題、2001年春季高考的第11題,只有在讀懂所給的圖形的前提下,才能正確作出解答.因此,在高中數學教學中適當進行開放題和新型題的訓練,拓寬學生的知識面是提高學生分析和解決問題能力的必要的補充.
2.4 重視解題的回顧V 在數學解題過程中,解決問題以后,再回過頭來對自己的解題活動加以回顧與探討、分析與研究,是非常必要的一個重要環節.這是數學解題過程的最后階段,也是對提高學生分析和解決問題能力最有意義的階段.
解題教學的目的并不單純為了求得問題的結果,真正的目的是為了提高學生分析和解決問題的能力,培養學生的創造精神,而這一教學目的恰恰主要通過回顧解題的教學來實現.所以,在數學教學中要十分重視解題的回顧,與學生一起對解題的結果和解法進行細致的分析,對解題的主要思想、關鍵因素和同一類型問題的解法進行概括,可以幫助學生從解題中總結出數學的基本思想和方法加以掌握,并將它們用到新的問題中去,成為以后分析和解決問題的有力武器.
參考文獻
[1] 張洪國.高中數學運算能力的組成及培養策略.《中學數學教學參考》2007.1-2
[2] 簡衛權.例談高考應用題對能力的考查.《中學數學研究》2010.3
[3] 普通高等學校招生全國統一考試說明.2011