999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

百兩金皂苷類似物的化學與藥理學研究進展

2012-12-23 04:10:56蔡佳仲胡英杰
天然產物研究與開發 2012年11期
關鍵詞:結構研究

蔡佳仲,胡英杰

廣州中醫藥大學熱帶醫學研究所,廣州510405

百兩金皂苷屬于齊墩果烷型五環三萜類,代表化合物是百兩金皂苷A 和B(ardisiacrispin A/B),苷元均為西克拉明皂苷元A(cyclamiretin A)。百兩金皂苷結構類似物主要來自紫金牛科(Myrsinaceae)紫金牛屬(Ardisia)、鐵仔屬(Myrsine),報春花科(Primulaceae)報春花屬(Primula)、珍珠菜屬(Lysimachia)、仙客來屬(Cyclamen)和點地梅屬(Androsace)植物[1-4]。已有報道,百兩金皂苷A 和B(ardisiacrispin A/B)對白血病細胞HL-60、肝癌細胞Bel-7402、口腔上皮癌細胞KB、宮頸癌細胞HeLa、卵巢癌細胞SKOV-3、胃癌細胞BGC-823、乳腺癌細胞MCF-7 等均具有較強的細胞毒作用,機理與誘導細胞凋亡、抑制增殖有關[5,6]。不僅如此,結構類似西克拉明皂苷元A 的一些化合物也表現出一定的細胞毒活性,如Ardipusilloside III 在體外能濃度依賴性地抑制非小細胞肺癌NCI-H460 和膠質瘤細胞U251MG 的生長而誘導其凋亡[7,8];而Saxifragifolin A、C 和D 體外對卵巢癌細胞SKOV-3、肺腺癌細胞A549、黑色素瘤細胞SK-MEL-2、平滑肌瘤細胞MESSA、結直腸腺癌細胞HCT-15 均顯示了較強的細胞毒,其IC50在0.19~2.37 μM 之間[9]。顯示這類化合物具有潛在的抗腫瘤藥物研究開發價值。迄今發現的百兩金皂苷類似物約有56 個,對該類化合物的研究似乎成為植物藥研究的一個熱點,因此我們將百兩金皂苷類似物的化學和藥理學研究情況作一綜述。

1 化學結構

百兩金皂苷三萜母核結構的重要特征有:(1)共有取代基13β,28-環氧醚,(2)共有取代基30-氧化甲基,(3)共有取代基3β-OH 或3β-O-糖鏈(由β-D-吡喃葡萄糖(β-D-glucopyranose),α-L-吡喃鼠李糖(α-L-rhamnopyranose),β-D-吡喃木糖(β-D-xylopyranose),α-L-吡喃阿拉伯糖(α-L-arabinopyranose)和β-D-吡喃葡萄糖醛酸(β-D-glucopyranuronic acid)等構成)[1-11],以及(4)16α-羥基等。根據30-氧化甲基氧化程度的不同,結構涉及醛/縮醛、醇、羧酸等。

1.1 30-醛/縮醛

這類化合物30 位是一個醛基,具有西克拉明皂苷元A 的基本結構(圖1)。根據苷元16 位或30 位取代基氧化情況可再劃分成:(I)16α-羥基-30-醛;(II)16-羰基-30-醛;(III)30-縮醛等(表1)。

圖1 具有30-醛/縮醛結構的西克拉明皂苷元A 類似物Fig.1 Structures of cyclamiretin A analogues with 30-aldehyde

表1 具有30-醛/縮醛結構的西克拉明皂苷元A 類似物Table 1 Derivatives of cyclamiretin A with 30-aldehyde structure

11 Lysichriside A H H OH CH3 β-D-xylopyranosyl-(1 →2)-β-D-glucopyranosyl-(1→4)-[β-D-6-acetyl-glucopyranosyl- (1→2)]-α-L-arabinopyranosyl-CHO 12 [13]12 Paridiformoside H H OH CH3 α-L-rhamnopyranosyl-(1 →2)-β-D-glucopyranosyl-(1 →2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranosyl-CHO 15 [36]13 Ardicrenin H H OH CH3 α-L-rhamnopyranosyl-(1 →4)-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl-CHO 2,13 [21,33]14 Cyclacoumin H H OH CH2OH β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1 →2)]-α-L-arabinopyranosyl-CHO 18,19 [23,24]15 Cyclamin H H OH CH3 β-D-glucopyranosyl-(1 →3)-[β-D-xylopyranosyl-(1 →2)]-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl-CHO 6,19,20 [24,25,32,37]16 Isocyclamin H H OH CH3 β-D-glucopyranosyl -(1 →6)-[β-D-xylopyranosyl-(1 →2)]-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl-CHO 19 [24,37]17 Saxifragifolin D H H OH CH3 β-D-xylopyranosyl -(1 →2)-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl -(1 →4)-β-D-glucopyranosyl-(1 →2)]-α-L-arabinopyranosyl-CHO 22,23 [26,29]18 Cyclamiretin A-3β-O-α-L- rhamnopyranosyl-(1 →4)-β -Dglucopyranosyl-(1→2)H H OH CH3 α-L-rhamnopyranosyl-(1→4)-β-D-glucopyranosyl- (1 →2)-[β-D-glucopyranosyl-CHO 6 [38,39]-[β-D-glucopyranosyl-(1 →4)]-α-L-arabinopyranoside (1→4)]-α-L-arabinopyranosyl-19 Cyclamiretin A-3β-O-β-D- xylopyranosyl-(1 →2)-β-D- glucopyranosyl-(1 →2)-[β-D-glucopyranosyl-(1→4)]-α-L-arabinopyranoside H H OH CH3 β-D-xylopyranosyl -(1 →2)-β-D-glucopyranosyl-(1 →2)-[β-D-glucopyranosyl -(1 →4)]-α-L-arabinopyranosyl-CHO 16 [40]20 Cyclamiretin A-3β-O-β-D- glucopyranosyl uronic acid-(1 →2)-β-D-xylopyranoside H H OH CH3 β -D-glucopyranosyl uronic acid-(1→2)-β-D-xylopyranosyl- CHO 14 [34]21 Cyclamiretin A-3β-O-β-D-glucopyranosyl-(1→2)-{β-D-xylopyranosyl-(1→2)-[β-D-glucopyranosyl-(1 →3)-β-D-glucopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)}-α-L-arabinopyranoside H H OH CH3 β-D-glucopyranosyl- (1 →2)-{β-D-xylopyranosyl- (1 →2)-[β-D-glucopyranosyl-(1 →3)-β-D-glucopyranosyl-(1 →3)]-β-D-glucopyranosyl-(1 →4)}-α-L-arabinopyranosyl-CHO 4 [16]22 Cyclamiretin A-3β-O-α-L- rhamnopyranosyl-(1 →3)[β-Dxylopyranosyl-(1 →2)] -β-Dglucopyranosyl-(1→4)-[β-Dglucopyranosyl-(1 →2)]-α-Larabinopyranoside H H OH CH3 α-L-rhamnopyranosyl-(1 →3)[β-D-xylopyranosyl-(1→2)]-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl-CHO 3 [15]

23 Cyclamiretin A-3β-O-α-L- rhamnopyranosyl-(1 →3)[β-Dglucopyranosyl-(1→3)-β-D-xylopyranosyl-(1→2)]-β-D-glucopyranosyl-(1→4)-[β-D-glucopyranosyl-(1 →2)]-α-L-arabinopyranoside H H OH CH3 24 Cyclamiretin A-3β-O-α-L- rhamnopyranosyl-(1→3)-[β-Dxylopyranosyl-(1 →2)] -β-Dglucopyranosyl-(1→4)-[β-D-6-O-acetyl- glucopyranosyl-(1→2)]-α-L-arabinopyranoside H H OH CH3 25 Cyclamiretin A-3β-O-β-D- xylopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1 →2)]-β-Dglucopyranosyl-(1→4)-[β-Dglucopyranosyl-(1 →2)]-α-Larabinopyranoside H H OH CH3 26 Cyclamiretin A-3β-O-4-O-[3-hydroxyl-3- methylglutaryl]-β-D-xylopyranosyl-(1 →2)-β-Dglucopyranosyl-(1 →4)-[β-Dglucopyranosyl-(1 →2)]-α-Larabinopyranoside H H OH CH3 27 Deglucocyclamin II H H OH CH3 28 Denticin H H OH CH3 29 Denticulation H H OH CH3 30 Saxifragifolin A H OAc OH CH3 α-L-rhamnopyranosyl-(1 →3)[β-D-glucopyranosyl-(1 →3)-β-D-xylopyranosyl-(1→2)]-β-D-glucopyranosyl-(1→4)-[β-D-glucopyranosyl-(1 →2)]-α-L-arabinopyranosyl-CHO 3 [15]α-L-rhamnopyranosyl-(1→3)-[β-D-xylopyranosyl-(1→2)]-β-D-glucopyranosyl-(1 →4)-[β-D-6-O-acetyl- glucopyranosyl-(1 →2)]-α-L-arabinopyranosyl-CHO 3 [15]β-D-xylopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranosyl-CHO 6 [32]4-O-[ 3-hydroxyl-3-methylglutaryl]-β-D-xylopyranosyl -(1 →2)-β-D-glucopyranosyl -(1 →4)-[β-D-glucopyranosyl -(1 →2)]-α-L-arabinopyranosyl-CHO 20 [25]β-D-glucopyranosyl -(1 →3)-[β-D-xylopyranosyl -(1→2)]-β-D-glucopyranosyl -(1→4)-α-L-arabinopyranosyl-CHO 21 [2]β-D-glucopyranosyl- (1 →4)-[β-D-xylopyranosyl-(1→2)]-β-D-glucopyranosyl- (1 →4)-[β-D-glucopyranosyl- (1 →2)]-β-D-arabinopyranosyl-CHO 10 [19]β-D-glucopyranosyl-(1→2)-β-D-glucopyranosyl-(1 →4)-[β-D-xylopyranosyl- (1 →2)]-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1 →2)]-α-L-arabinopyranosyl-CHO 10 [19]β-D-xylopyranosyl-(1 →2)-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1 →2)]-α-L-arabinopyranosyl-CHO 22 [27]31 Androsacenol H OAc OH CH3 H CHO — [27]32 Androsacenol-3β-O-β-D- glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranoside H OAc OH CH3 33 Saxifragifolin C H OAc OH CH3 β-D-glucopyranosyl- (1 →4)-[β-D-glucopyranosyl- (1 →2)]-α-L-arabinopyranosyl-CHO — [27]β-D-xylopyranosyl-(1 →2)-β-D-glucopyranosyl-(1 →4)-[β-D-glucopyranosyl-(1→4)β-Dglucopyranosyl-(1 →2)]-α-Larabinopyranosyl-CHO 23 [29]

注:植物來源(Origin):1.Ardisia crispa 2. Ardisia crenata 3. Ardisia gigantifolia 4. Ardisia pusilla 5. Ardisia mamillata 6. Ardisia japonica 7. Ardisia punctate 8.Myrsine australis 9.Myrsine pellucida 10. Primula denticulate 11.Lysimachia thysiflora 12.Lysimachia christinae 13. Lysimachia patungensis 14.Lysimachia davurica 15.Lysimachia paridiformis 16. Lysimachia microcarpa 17. Cyclamen repandum 18. Cyclamen coum 19. Cyclamen mirabile 20.Cyclamen trocopteranthum 21.Cyclamen europaeum 22.Androsace saxifragaefolia 23.Androsace umbellate 24.Remusatia vivipara 25.Eupatorium chinense.

這些化合物中除了cyclamiretin A、androsacenol、androsacenol-3β-O-β-D-glucopyranosyl -(1 →4)-[β-D-glucopyranosyl-(1→2)]-α-L-arabinopyranoside 和cyclamigenin B 等苷元和次生苷外,都是來源于紫金牛科和報春花科植物的天然產物。上述苷元和次生苷可以通過酸水解或高碘酸鈉水解或酶解法獲得[12,27,42]。其中,cyclamiretin A 是ardisiacrispin A的原生苷元,而cyclamiretin A 繼續酸水解縮合則生成次生苷元cyclamiretin D。Androsacenol 和androsacenol-3β-O-β-D-glucopyranosyl-(1→4)-[β-D-glucopyranosyl-(1 →2)]-α-L-arabinopyranoside 是saxifragifolin A 的原生苷元和次生皂苷。而cyclamigenin B則是第二亞類化合物的原生苷元。

1.2 30/29-醇,以及30/29-羧酸

這兩類化合物,29 或30 位碳為羥甲基(30/29-醇),或為羧基(30/29-羧酸)(圖2)(表2)。

圖2 具有30/29-醇或羧酸結構的西克拉明皂苷元A 類似物結構Fig.2 Structures of cyclamiretin A analogues with 30/29-alcohol,or with 30/29-carboxylic acid

表2 具有13β,28-環醚-30/29-醇結構的西克拉明皂苷元A 類似物Table 2 Derivatives of cyclamiretin A with 13β,28-epoxy-30/29-alcohol structure

注:植物來源(Origin):1.Ardisia crenata 2. Ardisia japonica 3.Ardisia mamillata 4.Lysimachia christinae 5.Lysimachia davurica 6. Ardisia gigantifolia.

劉岱琳等[10,48]還從朱砂根(Ardisia crenata)中分得一個30 位甲基缺失的罕見三萜類似物朱砂根皂苷L。

百兩金皂苷類似物中的13β,28-環氧醚結構和30 位含氧基團的核磁共振波譜數據是鑒定其苷元母核結構的重要特征。由于13β,28-環醚的存在,百兩金皂苷類似物的核磁共振波譜具有相應特征[10,49]:往往出現化學位移值為86.6 的13 位連氧季碳信號和化學位移值為77.5 的28 位連氧亞甲基碳信號;如果28 位碳再有一個羥基取代的話,28 位不再出現亞甲基信號,而是在低場形成一個連氧次甲基碳信號,其化學位移值為99.0;苷元結構中30位如果是醛基,其碳-13 譜化學位移值為207 左右。

2 藥理活性

2.1 細胞毒作用

研究報道較多的是百兩金皂苷A 和B、九節龍皂苷Ⅰ、П 和Ш 等少數幾個化合物。

其中,朱砂根皂苷A、B、I 和J、百兩金皂苷A 和B 對人乳腺癌細胞MCF-7、人非小細胞肺癌NCIH460 和人神經膠質瘤細胞SF-268 均有一定的細胞毒作用,半數抑制濃度IC50在2.0~13.0 μM 之間,其中以百兩金皂苷A 和B 的作用較強,而且百兩金皂苷A 體外對人腎胚正常細胞293 的毒性較弱[10]。有研究顯示,百兩金皂苷A 對肝癌細胞HepG 2 的細胞毒作用,是通過阻滯細胞于亞G1 期,從而激活caspase-8 和caspase-9,使線粒體膜電位下降,釋放細胞色素C,并使磷脂絲氨酸外化和PARP 降解機理誘導細胞凋亡[28]。有學者報道了百兩金皂苷A體外抗人黑色素瘤細胞HTB-140 和對人人正常皮膚成纖維細胞HSFs 的毒性實驗研究。結果顯示百兩金皂苷A 能明顯影響HTB-140 細胞的活力、增殖、形態和細胞骨架,具有時間濃度依賴性地抑制腫瘤細胞的活力,通過使肌動蛋白細胞空泡化并解聚而影響腫瘤細胞的轉移和增殖。但同時也能降低人正常皮膚成纖維細胞HSFs 的活力和生長[50]。由此可見,百兩金皂苷A 在體外對多種腫瘤細胞具有較強的細胞毒活性,但對一些正常人體細胞也具有一定程度的毒性。雖然百兩金皂苷A、B 的體外抗腫瘤研究有較多報道,但體內抗腫瘤實驗結果仍未見報道。

對九節龍皂苷Ⅰ、П 和Ш 的體內外藥理研究也有一些報道。Zhang 等研究報道了九節龍皂苷I 體外對人非小細胞肺癌NCI-H460 具有明顯的抑制作用,藥物作用細胞后,使細胞阻滯于亞G1 期,并使核固縮,染色質濃集而形成凋亡小體,結果表明能時間、濃度依賴性地抑制腫瘤細胞的生長,從而誘導其凋亡[7]。林洪等也發現了九節龍皂苷Ш 能通過阻滯人膠質瘤細胞U251MG 于G2/M 期,引起時間濃度依賴性地使BAD 去磷酸化,并激活caspase-8 和caspase-3,從而抑制細胞增殖[8]。對于體內抗腫瘤研究,李偉芳等報道了九節龍皂苷Ⅰ和П 經腹腔注射,對小鼠肉瘤和艾氏腹水瘤的生長有一定的抑制作用,使瘤體生長緩慢,抑瘤率為16%~39%,而九節龍皂苷Ⅰ對小鼠黑色素瘤抑瘤率為27.3%,九節龍皂苷П 對小鼠肝癌的抑制率為23.3%[51]。

也有學者研究了davuricoside C(苷元結構中有16α-OH)體外對人卵巢癌細胞A2780 的增殖抑制作用,并提出16 位碳上有α-羥基比沒有α-羥基的顯示出更強的細胞毒作用[34];劉岱琳等也通過對比百兩金皂苷A 和B、朱砂根皂苷I 和J 這四種皂苷體外對多種腫瘤細胞和人腎胚正常細胞293 的細胞毒作用,探討了結構與細胞毒活性之間的關系,得出一些見解:①16 位α-羥基和13β,28-環氧醚結構對活性起著決定性作用;②碳3-O-連接的糖鏈越長,其活性也越強;③苷元中碳30 的取代基對活性影響也很大,其對活性影響順序為:-CHO > -CH(OCH3)2>-CH2OH >-COOH[10]。

2.2 抗炎

有實驗顯示,用100 μM 百兩金皂苷A 作用于人巨噬細胞THP-1 能明顯抑制脂多糖誘導的IL-8和TNF-α 的釋放,并降低mRNA 轉錄水平,從而發揮其抗炎作用[22]。

2.3 收縮子宮

Chaweewan 等(1987)研究報道了百兩金皂苷A和B 具有收縮子宮的作用,在8 μg/mL 的皂苷溶液中小鼠子宮的收縮程度相當于0.2 μg/mL 乙酰膽堿所起的作用[14]。在此基礎上,Calis 等也對百兩金皂苷A、primulanin A、cyclamin 和cyclacoumin 進行了體外小鼠子宮收縮反應試驗,結果顯示,化合物的濃度分別為7.5 ×10-6、8.6 × 10-6、7.4 ×10-6和6.5 ×10-6μM 時,作用效果分別相當于10-5.2、10-4.9、10-5.2和10-4.9M 的乙酰膽堿的作用[24]。作用機理目前尚不明確。

2.4 抗真菌

據研究[24],百兩金皂苷A、primulanin A、cyclamin、cyclacoumin 和isocyclamin 均具有一定的抗真菌作用,前三個化合物的最小抑菌濃度MIC 在80-160 μg/mL 之間,作用要強于后兩者。

2.5 其他藥理作用

百兩金皂苷類似物在其他方面的藥理活性,還包括抗cAMP 磷酸二酯酶作用等[52]。

3 結語

百兩金皂苷類似物的結構和數目具有一定的多樣性,其藥理作用特別是抗腫瘤活性研究也已發現一些有意義的苗頭。因此,進一步從中篩選具有抗腫瘤活性且對人體毒性較小的活性類似物并作為結構優化的基礎,對發現抗腫瘤藥物先導化合物具有重要意義。

1 Sparg SG,et al.Biological activities and distribution of plant saponins.J Ethnopharmacol,2004,94:219-243.

2 Foubert K,et al.Chemistry,distribution and biological activities of 13,28-epoxy-oleanane saponins from the plant families Myrsinaceae and Primulaceae.Curr Org Chem,2008,12:629-642.

3 Chang HT(常海濤),et al. Chemical and pharmacological advances of study on Lysimachia . Chin J Chin Mater Med(中國中藥雜志),2004,29:295-298.

4 Huang XA(黃新安),Yang RZ(楊仁洲). Progress in the triterpenoids from the Genus Lysimachia L. J Trop Subtrop Bot(熱帶亞熱帶植物學報),2007,15:175-182.

5 Wei SY(魏少蔭),et al. Study on inhibitory efects and mechanism of ardisiacrispin(A +B)on human promyeloleukemic HL-60 cells. Chin Pharm Bull(中國藥理學通報),2007,23:586-590.

6 Li M,et al. Pro-apoptotic and microtubule-disassembly effects of ardisiacrispin (A +B),triterpenoid saponins from Ardisia crenata on human hepatoma Bel-7402 cells. J Asian Nat Prod Res,2008,10:729-736.

7 Zhang Y,et al.Ardipusilloside I purified from Ardisia pusilla competitively binds VEGFR and induces apoptosis in NCIH460 cells.Phytomedicine,2010,17:519-526.

8 Lin H,et al.Apoptosis induced by ardipusilloside III through BAD dephosphorylation and cleavage in human glioblastoma U251MG cells.Apoptosis,2008,13:247-257.

9 Park JH,et al.Cytotoxic effects of triterpenoid saponins from Androsace umbellata against multidrug resistance (MDR)and non-MDR cells.Arch Pharm Res,2010,33:1175-1180.

10 Liu DL(劉岱琳). Studies on the bioactive constituents of Ardisia crenat Sims and Bulbophyllum ororatissimum Lindl.Shenyang:Shenyang Pharmaceutical University(沈陽藥科大學),PhD.2004.

11 Zheng ZF,et al.Cytotoxic triterpenoid saponins from the roots of Ardisia crenata.J Asian Nat Prod Res,2008,10:833-839.

12 Dorchaí Ró,Thomson JB. Triterpenoids-III:The structure of cyclamigenin B.Tetrahedron,1968,24:1377-1384.

13 Tian LJ,et al. Triterpene saponins from Lysimachia christinae.J Asian Nat Prod Res,2008,10:265-269.

14 Chaweewan J,et al. Ardsiacrispin A and B,two utero -contracting saponins from Ardisia crispa .Planta Med,1987,53:405-409.

15 Wen P,et al. Four new triterpenoid saponins from Ardisia gigantifolia Stapf. and their cytotoxic activity. J Asian Nat Prod Res,2008,10:873-880.

16 Tian Y,et al. Triterpenoid saponins from Ardisia pusilla and their cytotoxic activity.Planta Med,2009,75:70-75.

17 Lavaud C,et al.Triterpene saponins from Myrsine pellucida.Phytochemistry,1994,37:1671-1677.

18 Bloor SJ,Qi L.Cytotoxic saponins from New Zealand Myrsine species.J Nat Prod,1994,57:1354-1360.

19 Ahmad VU,et al.Triterpenoid saponins from Primula denticulate.Planta Med,1990,56:94-97.

20 Podolak I,et al.A triterpene saponin from Lysimachia thyrsiflora L.Acta Pol Pharm,2007,64:39-43.

21 Huang XA(黃新安),et al.Triterpenoid saponins from Lysimachia patungensis and their anti-tumor activities in vitro. J Trop Subtrop Bot(熱帶亞熱帶植物學報),2007,15:363-365.

22 Dall'Acqua S,et al.Triterpene glycosides with in vitro anti -inflammatory activity from Cyclamen repandum tubers.Carbohydr Res,2010,345:709-714.

23 Calis I,et al. Triterpene saponins from Cyclamen coum var.coum.Planta Med,1997,63:166-170.

24 Calis I,et al.Triterpene saponins from Cyclamen mirabile and their biological activities.J Nat Prod,1997,60:315-318.

25 Mihci-Gaidi G,et al.Triterpene saponins from Cyclamen trocopteranthum.Planta Med,2010,76:818-821.

26 Pal BC,Mahato SB. New triterpenoid pentasaccharides from Androsace saxifragifolia .J Chem Soc,Perkin Trans 1,1987:1963-1967.

27 Waltho JP,et al.Structure elucidation of two triterpenoid tetrasaccharides from Androsace saxifragifolia.J Chem Soc,Perkin Trans 1,1986:1527-1531.

28 Zhang DM,et al. Saxifragifolin B from Androsace umbellata induced apoptosis on human hepatoma cells.Biochem Biophys Res Commun,2007,362:759-765.

29 Wang Y,et al. Triterpenoid saponins from Androsace umbellata and their anti-proliferative activities in human hepatoma cells.Planta Med,2008,74:1280-1284.

30 Tang HF,et al. Two new triterpenoid saponins cytotoxic to human glioblastoma U251MG cells from Ardisia pusilla.Chem Biodivers,2009,6:1443-1452.

31 Huang J,et al.Triterpenoid saponins from Ardisia mamillata.Phytochemistry,2000,54:817-822.

32 Chang XL,et al. Biologically active triterpenoid saponins from Ardisia japonica. J Nat Prod,2007,70:179-187.

33 Wang MT,et al.A new triterpenoid saponin from Aridsia crenata.Planta Med,1992,58:205-207.

34 Liang B,et al.Triterpenoid saponins from Lysimachia davurica.Chem Pharm Bull,2006,54:1380-1383.

35 Zhang QH(張清華),Wang XJ(王曉娟). Studies on the saponin constituents of Jiu jielong(Ardisia Pusilia). Acta Pharm Sin(藥學學報),1993,28:673-678.

36 Han DX(韓定獻),et al.Studies on the paridiformoside.Acta Pharm Sin(藥學學報),1987,22:746-749.

37 Reznicek G,et al.Saponins in Cyclamen species:Configuration of cyclamiretin C and structure of isocyclamin. Phytochemistry,1989,28:825-828.

38 De TN,et al.Characterization of three new triterpenoid saponins from Ardisia japonica.J Nat Prod,1993,56:1669-1675.

39 Li YF,et al.PTP1B inhibitors from Ardisia japonica.J Asian Nat Prod Res,2005,7:13-18.

40 Ding ZH(丁智慧),et al.The chemical constituents of Lysimachia microcarpa. Acta Bot Yunnan(云 南 植 物 研 究),1993,15:201-204.

41 Huang J,et al.Ardisimamillosides G and H,two new triterpenoid saponins from Ardisia mamillata. Chem Pharm Bull,2003,51:875-877.

42 Dorchaí Ró,et al. Triterpenoids-IV:The cyclamigenins A1,A2,C,and D.Tetrahedron,1968,24:5649-5654.

43 Jia Z,et al.Triterpenoid saponins from Ardisia crenata.Phytochemistry,1994,37:1389-1396.

44 Huang J,et al.Ardisimamillosides C-F,four new triterpenoid saponins from Ardisia mamillata. Chem Pharm Bull,2000,48:1413-1417.

45 Tian JK(田景奎),et al.Two new triterpenoid saponins from Lysimachia davurica. Acta Pharm Sin(藥學學報),2004,39:194-197.

46 Tian JK,et al.Two New Saponins from Lysimachia davurica.Chin Chem Lett,2005,16:212-214.

47 Mu LH,et al. Triterpenoid saponins from Ardisia gigantifolia.Chem Pharm Bull,2010,58:1248-1251.

48 Liu DL,et al.Two new triterpenoid saponins from Ardisia crenata.J Asian Nat Prod Res,2007,9:119-127.

49 Liu DL(劉岱琳),et al.NMR spectroscopy features of triterpenoid saponins from Ardisia.J Shenyang Pharm Univ(沈陽藥科大學學報),2004,21:394-400.

50 Galanty A,et al. The influence of LTS-4,a saponoside from Lysimachia thyrsiflora L.,on human skin fibroblasts and human melanoma cells.Cell Mol Boil Lett,2008,13:585-598.

51 Li WF(李偉芳),et al.The antitumor activity of ardipusilloside in vivo. Chin J Trad Chin Med Pharm(中國醫藥學報),2003,18:60-61.

52 Jia Z,et al. Triterpenoid saponins from Ardisia crenata and their inhibitory activity on cAMP phosphodiesterase. Chem Pharm Bull,1994,42:2309-2314.

猜你喜歡
結構研究
FMS與YBT相關性的實證研究
《形而上學》△卷的結構和位置
哲學評論(2021年2期)2021-08-22 01:53:34
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
論結構
中華詩詞(2019年7期)2019-11-25 01:43:04
新型平衡塊結構的應用
模具制造(2019年3期)2019-06-06 02:10:54
EMA伺服控制系統研究
新版C-NCAP側面碰撞假人損傷研究
論《日出》的結構
主站蜘蛛池模板: 欧美精品亚洲日韩a| 谁有在线观看日韩亚洲最新视频| 最新日韩AV网址在线观看| 国产精品不卡片视频免费观看| 日韩国产欧美精品在线| 亚洲中文字幕国产av| 色综合中文| 久久毛片网| 日韩无码真实干出血视频| 2020国产免费久久精品99| 亚洲成AV人手机在线观看网站| 亚洲欧美成人综合| 天堂成人在线| 亚洲色图综合在线| 国产h视频免费观看| 欧美性精品不卡在线观看| 久久一本日韩精品中文字幕屁孩| 日韩欧美国产精品| 国产成人久视频免费| 亚洲人成人伊人成综合网无码| 午夜少妇精品视频小电影| 国产国语一级毛片在线视频| 国产麻豆永久视频| 午夜视频免费试看| 久久综合九色综合97婷婷| 中文字幕在线观| 99久久亚洲精品影院| 日本AⅤ精品一区二区三区日| 蜜桃视频一区| 性网站在线观看| 网久久综合| 免费jjzz在在线播放国产| 欧美亚洲香蕉| 青青草综合网| www亚洲天堂| 手机在线看片不卡中文字幕| 精品综合久久久久久97| 中文字幕 欧美日韩| 免费看av在线网站网址| 99伊人精品| 狠狠色成人综合首页| 在线欧美日韩| 97超碰精品成人国产| 国产精品流白浆在线观看| 五月天福利视频| 精品少妇人妻无码久久| 国产美女精品在线| 亚洲欧美成人综合| 91免费国产高清观看| 伊人精品成人久久综合| 亚洲Av综合日韩精品久久久| 精品久久久久久久久久久| 国产门事件在线| 亚洲精品在线影院| 久久精品一品道久久精品| 中文字幕首页系列人妻| 国产成人av一区二区三区| 无码精油按摩潮喷在线播放 | 91在线激情在线观看| 亚洲天堂区| 亚洲国产看片基地久久1024| 亚洲Aⅴ无码专区在线观看q| 91精品国产丝袜| 色网站在线视频| 日韩高清一区 | 日韩国产一区二区三区无码| 亚洲精品第一页不卡| 亚洲va欧美ⅴa国产va影院| 亚洲精品福利网站| 亚洲区视频在线观看| 免费a在线观看播放| 国产精品嫩草影院视频| 亚洲综合二区| 一区二区三区成人| 91国内在线观看| 亚洲自拍另类| 一区二区三区在线不卡免费| 免费在线色| 国产一区二区三区在线观看免费| 国产乱人伦偷精品视频AAA| 免费在线色| 国产欧美视频一区二区三区|