鄭春華
(陜西工業職業技術學院基礎部,陜西 咸陽 712000)
近年來,p-Laplacian方程的多點邊值問題被廣泛研究,已取得了一些重要的研究結果[1-3],但關于具有時滯的p-Laplacian方程的多點邊值問題的研究成果還很少.在文獻[4]中,作者利用錐上的不動點定理研究了非共振邊值問題

多個正解的存在性.
對于具有時滯的p-Laplacian方程的共振邊值問題,由于討論起來難度更大,因此已有的研究工作還相對較少.在本文中,我們利用推廣的Mawhin連續性定理研究具有時滯的p-Laplacian方程3點共振邊值問題:







[1]葛渭高.非線性常微分方程邊值問題[M].北京:科學出版社,2007:147-222.
[2]Feng Hanying,Ge Weigao.Triple symmetri-c positive solutions for multipoint boundary value problems with one dimensional p-Laplacian[J].Mathematical and Computer Modelling,2008,47(1-2):186-195.
[3]Wang Youyu,Zhao Meng,Hu Yingping.Triple positive solutions for a multi-point boundary value problem with one-dimensional p-Laplacian [J].Journal of Computers& Mathematics and Applications,2010,60(6):1792-1802.
[4]Du Bo,Hu Xueping,Ge Weigao.Positive solutions to a type of multi-point boundary value problem with delay and one dimensional p-Laplacian[J].Applied Mathematics and Computation,2009,208(2):501-510.
[5]Ge Weigao,Ren Jingli.An extension of Mawhin’s continuation theorem and its application to boundary value problems with a p-Laplacian[J].Nonlinear analysis:Theory,Methods & Applications,2004,58(3-4):477-488.