呂亞臣 齊作玉 于中海 任運來
(1.上海重型機器廠有限公司,上海 200245;2.上海電機學院, 上海 200240)
為了穩(wěn)定控制和不斷提升大鍛件的產(chǎn)品質(zhì)量,我們提出在大鍛件生產(chǎn)領域中應用統(tǒng)計學理論,分析了以單件小批量生產(chǎn)為特征的大鍛件生產(chǎn)領域里應用統(tǒng)計學的現(xiàn)狀和困難[1、2]。同時,針對大鍛件的單件小批量生產(chǎn)特點,給出了大鍛件統(tǒng)計學Chi-square test的研究和應用實例[3]。至此,我們在難度極高的大鍛件小樣本統(tǒng)計學的研究應用上已經(jīng)取得了一定的突破。
然而,Chi-square test所用的統(tǒng)計資料只是計數(shù)資料,其所對應的概率論中的變量也只是離散型的隨機變量。我們在實際統(tǒng)計應用中遇到的變量通常是兩大類,即離散型隨機變量和連續(xù)型隨機變量,它們所對應的統(tǒng)計學資料也是兩個大類:即計數(shù)資料和計量資料。到目前為止,在大鍛件小樣本統(tǒng)計學的應用研究上,對離散型隨機變量或計數(shù)資料的研究應用僅僅是起步,仍需要針對連續(xù)型隨機變量或計量資料展開深入研究。
離散型隨機變量或計數(shù)資料在實際應用中占據(jù)很大比重,它們是對每個觀察單位用定量的方法測定某項指標所得的資料。這類資料大都是用測量工具或儀器測得的,帶有度、量或其它單位,所以叫測量或計量資料,如抗拉強度、屈服強度、伸長率、收縮率、沖擊功和硬度等。因此針對連續(xù)型隨機變量或計量資料來研究大鍛件小樣本統(tǒng)計學是十分必要的。
根據(jù)大鍛件的單件小批量生產(chǎn)特點和統(tǒng)計學的基本理論方法,本文論述了大鍛件的小樣本Student test,即t檢驗,并給出了具體應用示例。該方法可用于大鍛件工藝參數(shù)的科學分析和生產(chǎn)驗證,也可用于大鍛件質(zhì)量分析和判斷,還可用于構(gòu)建新一代大鍛件工藝與產(chǎn)品質(zhì)量控制系統(tǒng),幫助實現(xiàn)穩(wěn)定和提升大鍛件工藝和產(chǎn)品質(zhì)量的目的。
在統(tǒng)計抽樣研究中進行數(shù)量分析和比較時,如果以樣本均數(shù)來估計總體的均數(shù)則叫點估計值。點估計值屬于就數(shù)論數(shù)。從科學的角度,我們不能對就數(shù)論數(shù)下結(jié)論,而應該對數(shù)量加以必要的統(tǒng)計處理再下結(jié)論。在科學研究中,通常用區(qū)間估計,即估計總體均數(shù)落在什么范圍,我們把這種范圍叫做均數(shù)的可信區(qū)間。
不可能將總體的全部個體都進行觀察,只能從中抽取部分進行試驗研究。用部分的研究結(jié)果說明總體規(guī)律性,這種方法叫做抽樣調(diào)查。抽樣調(diào)查的結(jié)果受到偶然現(xiàn)象的影響,所得結(jié)果與總體之間存在一定的差異叫作抽樣誤差。抽樣誤差總是存在于抽樣調(diào)查之中,統(tǒng)計處理就是研究各數(shù)之差是不是由抽樣誤差引起的一種方法(所以也叫誤差檢驗)。如果樣本之間的差異是由抽樣誤差引起的,那么這些樣本可能來自規(guī)律相同的總體,就其總體規(guī)律來說沒有差異。如果各數(shù)間的差異不是由抽樣誤差引起的,那么這些樣本可能不是來自一個總體,而是來自規(guī)律不同的兩個或幾個總體。也就是說,這些有差別的樣本可能代表著幾個不同的總體,所以差異顯著。
統(tǒng)計上用概率P來表示由抽樣誤差引起的可能性有多大。習慣上將P≤0.05 或P≤0.01稱為小概率事件,表示事件發(fā)生的可能性很小。統(tǒng)計學上習慣規(guī)定P>0.05為差異不顯著,0.05≥P>0.01為差異顯著,P≤0.01為差異非常顯著。
t檢驗是根據(jù)t分布(標準正態(tài)分布)原理建立起來的顯著性檢驗方法。
自由度為n的t分布的概率密度為[4]:
(1)
式中,-∞ 根據(jù)f(t)的圖形,它關于t=0是對稱的,并且形狀類似于正態(tài)變量概率密度的圖形。該圖形適合于用小的自由度n或者小的樣本量來表示。在t分布表格中,n通常也是比較小的數(shù)值,有些t表格只表示了最大為45的n值。n越大,t值的變化越小。 統(tǒng)計學研究的結(jié)果表明,我們應該根據(jù)所抽取樣本量的大小來選擇不同的顯著性檢驗方法。通過對統(tǒng)計學方法的分析歸納,可以得出以下觀點: 對于計量資料的顯著性檢驗,當樣本含量較小,比如200例以下,應該選用t(Student)檢驗;當樣本含量大于200,則采用n→∞的標準正態(tài)分布的檢驗。 關于最小樣本量,目前沒有確切的要求,但原則是應該滿足統(tǒng)計要求。比如,正態(tài)性檢驗,它適用于7~2 000的樣本量。而根據(jù)t值和t分布的特征和各種統(tǒng)計學應用實例,樣本量應該在6~200之間。 長軸類鍛件軸端的力學性能在拔長比達到一定條件后容易出現(xiàn)各向異性,它們之間的比值稱為異性系數(shù)。 20世紀80年代,上海重型機器廠為上海電機廠生產(chǎn)45鋼電機軸時常常會碰到電機軸切向性能不能滿足技術要求的問題。在對1987年的電機軸統(tǒng)計中發(fā)現(xiàn),全年有39個鍛件在試驗檢查中出現(xiàn)了切向力學性能不合格的問題。進一步的統(tǒng)計發(fā)現(xiàn),39個不合格鍛件中,軸端鍛比大于10的占95%,切向斷面收縮率不合格的占97%,延伸率不合格的占3%。 這是典型的各向異性問題,表現(xiàn)是軸端部拔長比過大。但是,鋼錠必須經(jīng)過鐓粗拔長的變形過程,最后的成品必須是有細的軸頸。因此,鍛造上根本不能回避大拔長比的問題。 為此,有研究者提出改善電機軸切向力學性能的根本性措施是:改進冶煉工藝,研究鋼錠缺陷,發(fā)展冶煉鑄錠技術,提高冶金質(zhì)量[5]。 國內(nèi)其它重機廠也同樣碰到過類似的問題。到底靠冶煉能否解決長軸類鍛件的軸端各向異性呢? 為了解決40A船用電機軸的各向異性問題,文獻[6]統(tǒng)計計算了堿性電爐鋼和電渣熔煉鋼的各向異性系數(shù),包括延伸率、斷面收縮率和沖擊值的各向異性系數(shù)。該文獻最后只是對數(shù)據(jù)進行了經(jīng)驗性直觀判斷,并沒有給出科學的分析判斷。 1987年統(tǒng)計電機軸的數(shù)據(jù)時發(fā)現(xiàn),通常只出現(xiàn)軸向斷面收縮率不合格與延伸率不合格的情況,故本文只討論延伸率和斷面收縮率的t檢驗應用。 電爐鋼與電渣鋼的延伸率異向系數(shù)見表1。 采用兩樣本均數(shù)比較的t檢驗方法進行分析,給出分析結(jié)果。 延伸率統(tǒng)計數(shù)據(jù)經(jīng)處理后得到表2。 延伸率各向異性系數(shù)的檢驗步驟如下: (1)建立假設和確定檢驗水準 H0: 電爐鋼延伸率異性系數(shù)的總體均數(shù)μ1與電渣鋼延伸率異性系數(shù)μ2相同,即μ1=μ2。 H1:μ1≠μ2。 表1 電爐鋼與電渣鋼的延伸率異向系數(shù)Table 1 Elongation anisotropy coefficients of electric furnace steel and electric slag steel 表2 電爐鋼與電渣鋼延伸率的各向異性系數(shù)Table 2 Elongation anisotropy coefficients of electric furnace steel and electric slag steel (2)計算t值 1)合并方差 s02=[∑X12-(∑X1)2/n1+∑X22- (∑X2)2/n2]/(n1+n2-2)=0.013 7 2)均數(shù)之差的標準誤 S(m1-m2) = [s02(1/n1+1/n2)]1/2= 0.053 8 3)計算均數(shù) m1=∑X1/n1=1.237 m2=∑X2/n2=1.091 4 4)計算t值 t=(m1-m2)/S(m1-m2)=4.047 7 (3)確定P值 自由度n′=n1+n2-2=17 按n′和t界值表,所以P<0.001。 (4)判定結(jié)果 按α=0.05準則,拒絕原假設,可以認為電爐鋼延伸率異性系數(shù)的總體均數(shù)μ1與電渣鋼延伸率異性系數(shù)μ2差異顯著。 電爐鋼與電渣鋼的斷面收縮率異向系數(shù)見表3。 斷面收縮率統(tǒng)計數(shù)據(jù)經(jīng)處理后得到表4。 收縮率各向異性系數(shù)的檢驗步驟如下: (1)建立假設和確定檢驗水準 H0: 電爐鋼收縮率異性系數(shù)的總體均數(shù)μ1與電渣鋼收縮率異性系數(shù)μ2相同,即μ1=μ2。 H1:μ1≠μ2。 (2)計算t值 1)合并方差 s02=0.034 0 2)均數(shù)之差的標準誤 S(m1-m2) = 0.084 8 3)計算均數(shù) m1=∑X1/n1=1.396 m2=∑X2/n2=0.972 2 4)計算t值 t=(m1-m2)/S(m1-m2)=5.000 5 (3)確定P值 自由度n′=n1+n2-2=17 表3 電爐鋼與電渣鋼的斷面收縮率異向系數(shù)Table 3 Area reduction anisotropy coefficients of electric furnace steel and electric slag steel 表4 電爐鋼與電渣鋼斷面收縮率的各向異性系數(shù)Table 4 Area reduction anisotropy coefficients of electric furnace steel and electric slag steel t=5.000 5 按n′和t界值表,所以P<0.001。 (4)判定結(jié)果 按α=0.05準則,拒絕原假設,可以認為電爐鋼收縮率異性系數(shù)的總體均數(shù)μ1與電渣鋼收縮率異性系數(shù)μ2差異顯著。 根據(jù)以上統(tǒng)計學方法的檢驗計算可得出結(jié)論,采用電渣鋼可解決長軸類鍛件的各向異性問題。 大鍛件小樣本統(tǒng)計學的研究還有許多內(nèi)容值得繼續(xù)展開。大鍛件小樣本統(tǒng)計學是大鍛件生產(chǎn)行業(yè)的一項關鍵共性技術,它的成果將廣泛應用于整個大鍛件行業(yè)或領域中。關鍵共性技術研發(fā)是一項長期的基礎性工作。由于關鍵共性技術的研究難度大、周期長,效果也是多年后才能顯現(xiàn),較難受到企業(yè)的高度重視,已經(jīng)成為制約我國大鍛件產(chǎn)業(yè)持續(xù)健康發(fā)展的核心問題。加快大鍛件生產(chǎn)行業(yè)關鍵共性技術的研究和發(fā)展,尚需國家、行業(yè)和國有大型企業(yè)的共同努力。 [1] 齊作玉.大鍛件生產(chǎn)統(tǒng)計學方法與概念的探討.大型鑄鍛件,2010,(5):38-41. [2] 呂亞臣,任運來,齊作玉.構(gòu)建新一代大鍛件工藝與質(zhì)量控制系統(tǒng). 大型鑄鍛件,2010,(6):42-45. [3] 齊作玉,呂亞臣,任運來.大鍛件統(tǒng)計學Chi-square test的研究和應用.大型鑄鍛件,2011,(1):9-25. [4] 浙江大學數(shù)學系高等數(shù)學教研組編. 概率論與數(shù)理統(tǒng)計.第1版.北京:高等教育出版社,1979, 208-226. [5] 《大型鍛件的生產(chǎn)》編寫組編. 大型鍛件的生產(chǎn).第1版.北京:機械工業(yè)出版社,1978,30-41. [6] 李兆勁.電渣重熔對鋼的各向異性的改善.大型鑄鍛件,1995,(2):28-32.2 t檢驗方法和實例
2.1 長軸類鍛件不合格原因分析
2.2 延伸率t檢驗應用


2.3 斷面收縮率t檢驗應用電爐鋼與電渣鋼的斷面


3 結(jié)束語