摘 要:課堂教學是學生在校期間學習文化科學知識的主陣地,也是對學生進行思想品德教育的主渠道。
關鍵詞:課堂教學藝術;設疑法教學
中圖分類號:G642 文獻標識碼:A 文章編號:1674-7712 (2012) 12-0166-01
課堂教學不但要加強雙基而且要提高智力;不但要發展學生的智力,而且要發展學生的創造力;不但要讓學生學會,而且要主張學生會學,特別是自學;不但要提高學生的智力因素,而且要提高45分鐘的課堂教學教育的效率,盡量在有限的時間里,出色地完成教學任務。
一、教學目標明確
教學目標分為三大領域,即認知領域、情感領域和動作技能領域。因此,在備課時要圍繞這些目標選擇教學的策略、方法和媒體,進行必要的內容重組。在數學教學中,要通過師生的共同努力,使學生在知識、能力、技能、心理、思想品德等方面達到預定的目標,以提高學生的綜合素質。
二、靈活的運用設疑法教學能突出本課重點、化解難點
在數學教學中,教師根據課堂情況、學生的心理狀態和教學內容的不同,適時地提出經過精心設計、目的明確的問題,這對啟發學生的積極思維和學好數學有很大的作用。每一堂課都要有一個重點,而整堂的教學都是圍繞著這個重點來逐步展開的。為了讓學生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內容簡短地寫出來,以便引起學生的重視。講授重點內容,是整堂課的教學高潮。教師要通過聲音、手勢、板書等的變化或應用模型、投影儀等直觀教具,刺激學生的大腦,使學生能夠興奮起來,對所學內容在大腦中刻下強烈的印象,激發學生的學習興趣,提高學生對新知識的接受能力。教學從矛盾開始就是從問題開始。思維自疑問和驚奇開始,在教學中可設計一個學生不易回答的懸念或者一個有趣的故事,激發學生強烈的求知欲望,起到啟示誘導的作用。如第八章的《橢圓》第一課時,其教學的重點是掌握橢圓的定義和標準方程,難點是橢圓方程的化簡。教師可從太陽、地球、人造地球衛星的運行軌道,談到圓的直觀圖、圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生對橢圓有一個直觀的了解。為了強調橢圓的定義,教師事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解了。在進一步求標準方程時,學生容易遇到這樣一個問題:化簡出現了麻煩。這時教師可以適當提示:化簡含有根號的式子時,我們通常有什么方法?學生回答:可以兩邊平方。教師問:是直接平方好呢還是恰當整理后再平方?學生通過實踐,發現對于這個方程,直接平方不利于化簡,而整理后再平方,最后能得到圓滿的結果。
這樣,橢圓方程的化簡這一難點也就迎刃而解了。同時也解決了以后將要遇到的求雙曲線的標準方程時的化簡問題。
教材中有些內容是枯燥乏味,艱澀難懂的。如數列的極限概念及無窮等比數列各項和的概念比較抽象,是難點。如對于=1這一等式,有些同學學完了數列的極限這一節后仍表懷疑。為此,一位教師在教學中插入了一段“關于分牛傳說的析疑”的故事:傳說古代印度有一位老人,臨終前留下遺囑,要把19頭牛分給三個兒子。老大分總數的1/2,老二分總數的1/4,老三分總數的1/5。按印度的教規,牛被視為神靈,不能宰殺,只能整頭分,先人的遺囑更必須無條件遵從。老人死后,三兄弟為分牛一事而絞盡腦汁,卻計無所出,最后決定訴諸官府。官府一籌莫展,便以“清官難斷家務事”為由,一推了之。鄰村智叟知道了,說:“這好辦!我有一頭牛借給你們。這樣,總共就有20頭牛。老大分1/2可得10頭;老二分1/4可得5頭;老三分1/5可得4頭。你等三人共分去19頭牛,剩下的一頭牛再還我!”真是妙極了!不過,后來人們在欽佩之余總帶有一絲懷疑。老大似乎只該分9.5頭,最后他怎么竟得了10頭呢?老師經過分析使問題轉化為學生所學的無窮等比數列各項和公式(|q|<1)的應用。寓解疑于趣味之中。
三、認真剖析學生易出錯的地方
學生在學習過程中常會犯的錯誤是,沒有認真分析條件或研究范圍的變化或解完一道題后不檢查、不思考。故在學生易出錯之處,讓學生去嘗試,去“碰壁”和“跌跤”,讓學生充分“暴露問題”,然后順其錯誤認真剖析,不斷引導,使學生恍然大悟,留下深刻印象。
如:若函數圖象都在X軸上方,求實數a的取值范圍。