劉曉冰,周克琴,苗淑杰,隋躍宇,張興義
(中國科學院東北地理與農業生態研究所黑土區農業生態重點實驗室,黑龍江哈爾濱 150081)
土壤侵蝕是指土壤及其母質在水力、風力、凍融、重力等外營力作用下,被破壞、剝蝕、搬運和沉積的過程。對于農業土壤而言,土壤侵蝕導致同一田塊土壤的重新分配、土壤結構破壞、有機質和養分含量減少,水分有效性降低,形成對干旱更敏感的條件,耕層變薄,肥力下降,限制已有作物的種植,增加化肥投入的成本,生產力降低[1-3]。而且,基于糧食生產和食品安全的原因,土壤侵蝕引起的肥力損失最終導致土地的廢棄,引起土地價值的實質性降低[4-5]。從環境角度出發,控制土壤侵蝕就是降低土壤有機碳向大氣中的釋放、減少N 的移動和溶解態P 以及顆粒態P 的遷移,即控制土壤侵蝕具有固碳、恢復退化土壤及改善水質的潛力。世界范圍內,土壤侵蝕每年都導致巨大經濟損失。據報道美國每年損失3 000 億美元~4 400 億美元[6],我國東北農民經濟損失55 億人民幣[7]。因此,控制土壤侵蝕幾乎對世界任何一個國家都十分必要[8-9]。結合所在的科研團隊近年來在黑土土壤侵蝕與作物生產力領域的研究工作,分析了國內外土壤侵蝕研究的相關動態,強調適當的農藝措施,尤其是有機肥的施用對增肥保水,恢復侵蝕土壤生產力的重要性。
土壤侵蝕引起不同土壤和生態區作物減產已被廣泛證實[10-13]。據觀測,同一坡耕地小麥最高產量與最低產量差異高達5 倍以上[14],侵蝕坡地玉米和大豆的產量均顯著低于附近平地或坡地坡腳的產量[15-16]。普遍接受的結論是作物因土壤侵蝕減產10%以上,嚴重侵蝕地塊作物減產50%[17],表土層消失玉米減產高達90%以上[18-19]。
多數研究表明,表層土壤變薄是導致坡耕地作物產量降低的最主要也是最直接的原因[12,20-22]。肥沃的表層土壤對作物產量的形成至關重要,表層土壤的有機碳含量和厚度與作物產量呈正相關[11]。Monreal等[23]報道,每損失1 cm 土壤,淋溶土和黑土種植的小麥分別減產6.4%,黑土減產6.7%。Larney 等[18]在加拿大對5 塊旱地和1 塊水澆地分別進行表土剝離0、5 cm、10 cm、15 cm、20 cm,模擬研究不同侵蝕程度對作物產量的影響,得出作物產量與表土層厚度有顯著相關性,表土剝離0~5 cm,作物減產20%~41%;表土剝離20 cm,作物減產高達63%~95%。綜合分析表明,每損失1 cm 老成土,小麥產量減少75 kg·hm-2,其他土壤都低于40 kg·hm-2;玉米產量老成土減少153 kg·hm-2,淋溶土減少92 kg·hm-2,而黑土減少40 kg·hm-2[12,24]。Larney 等[25]研究表明小麥產量5 cm 土壤剝離減產8%,10 cm 減產28%,15 cm 減產39%,20 cm 減產53%。
我們在一黑土層總厚度為30 cm 的坡耕地上的研究表明,5 cm 和10 cm 表土被剝離后,大豆的產量分別降低3.1%和3.2%,玉米產量只降低1.9%和4.7%;當20 cm 表層黑土被剝離時,大豆玉米產量分別降低34.2%和34.6%;而當30 cm 耕層剝離即黑土層消失時,大豆產量降低59.2%,而玉米產量降低高達95.4%[19,26-27],可見黑土層的存在對黑土農田作物產量的維持至關重要。此外,土壤侵蝕對產量的影響年際間也有差異。干旱年份侵蝕土壤造成植物有效持水量或入滲速率低,產量明顯低于非侵蝕土壤,而在正常年份或降雨高于平均水平的年份產量基本相當[10,28]。
土壤侵蝕對作物產量的不利影響可歸納為以下幾個方面:①表土層變薄,有機碳含量降低[27,29];②土壤氮磷儲量減少[8],有效水容量降低[11,30];③土壤水穩性團聚體減少,密度增加[20];④土壤黏粒含量改變[29,31],土壤的NO-3-N、有效磷、Zn、Fe、Mn、CEC 降低[5]。盡管不同區域土壤侵蝕對作物產量的影響不同,但影響程度與侵蝕強度顯著相關[17],其影響總體可歸納為水肥兩個方面,一是因地形以及地表覆蓋的改變導致降水在地表空間上分配失調,致使坡面作物生長發生水分脅迫;二是由于地表徑流導致表層土壤及其部分養分流失,土壤質量下降[16,22]。坡耕地土壤含水量坡腳最高,坡降最大的坡肩位置最低,水分脅迫是造成作物局部減產的主要原因[14,19]。然而,同等坡位條件下,水分脅迫顯然不是引起產量降低的直接原因。即坡耕地侵蝕影響作物的產量涉及到坡度、坡長、土壤性狀、表土層厚度等諸因子[32-33]。隨著表土不斷被剝離,勢必導致土壤有機質含量的降低[27]。顯然,耕層變薄是土壤侵蝕影響產量的表面現象,而實質是侵蝕引起土壤物理化學生物因素,尤其是土壤養分、pH 和微生物活性等改變,限制了作物根際效應,導致根系生長發育不良而引起的。
土壤侵蝕嚴重影響根系分泌物和微生物的種類和活性。根系分泌物和微生物活性影響著土壤養分循環、根系生長并促進植物發育[34-36]。根際效應在根際沉積物最多的完整根部表現最明顯。然而,死根是地下微生物基本的能量來源,同時死根提供了另外一個焦點即所謂的次生根際效應。研究者們發現,豆科植物分泌物的黃酮類物質能夠誘導根瘤菌結瘤基因的表達,促進結瘤[37]。禾本科作物的根分泌物有較多的含碳有機化合物,如糖類和有機酸等,而有些植物根系的分泌物還具有嚴格的專一性,如燕麥根能分泌7-羥基-6-甲氧基香豆素,蘋果根能分泌根皮苷,苜蓿根能分泌皂角苷,玉米的根分泌物卻為含氮和不含氮的有機化合物。這些物質釋放到土壤中,可以起到養分活化、促進有益微生物繁殖、提高土壤生物化學活性和土壤有機質含量的作用[13,38]。
研究表明不同作物對土壤磷素利用效率的明顯差異與低磷脅迫誘導作物根系分泌物、根形態、根構型等變化有關[39-40]。白羽扇豆在低磷條件下,形成排根,并在排根處分泌大量的有機酸,通過有機酸的絡合溶解、酸溶解等途徑活化土壤中的難溶性磷[41]。大豆磷營養脅迫時,促進根系分泌有機酸,但是總量并不高[42]。苗淑杰[43]比較水培條件下固氮和供給硝態氮大豆根系分泌有機酸時,發現固氮大豆根系分泌的有機酸總量較高,尤其以丙二酸的含量最大。
根系分泌物對土壤微生物的影響既有促進作用,也有抑制作用[44-45]。小麥根分泌物及其提取液刺激球形節桿菌的繁殖,水稻根分泌的有機酸和氨基酸可能成為糞產堿菌良好的碳源和氮源,有利于糞產堿菌的生長,支持其在根際的繁殖,大麥的根系分泌物有利于細菌的富集,棉花根系分泌物能促進苜蓿根瘤菌發育,而玉米、亞麻的分泌物阻礙根瘤菌的發育[46-48]。
Germida 和Siciliano[49]證實不同植物根際土壤微生物群落結構存在較大的差異,同一植物不同的發育階段或不同根區根際土壤微生物群落結構也存在較大的差異。Seldin 等[50]指出在幼根和未成熟的根系上,r-型菌(快生型)為優勢種群,而在成熟的根系上,k-型菌(慢生型)為優勢種群。Duineveld 等[51]也觀察到幼齡菊花植株根際土壤的細菌群落不同于其它生長階段,根尖樣品與幼齡植株之間的微生物群落結構有著高度相似的DGGE 圖譜,而與成熟根際土壤微生物群落結構差異較大。Marschner 等[52]研究表明白羽扇豆排根與非排根之間、新形成的排根與成熟的排根之間根際微生物群落結構存在差異性,在白羽扇豆生長35 d 和51 d 比21 d 體現的更顯著,主要與不同區域根系產生的分泌物有關,成熟的排根分泌檸檬酸,新形成的排根分泌蘋果酸,而老化的排根具有高的磷酸酶活性。Marschner 等[53]進一步指出,微生物的生長及其代謝加快固定化的無機P、K 礦物質及有機P、K 的分解和釋放,促進植物營養元素的有效化和對植物的可供性。
根際分泌物強烈的影響根際有機碳的轉化[54],表現為能夠顯著激發或抑制土壤有機碳的礦化。根際分泌物對土壤有機碳分解的這種促進或抑制作用,稱為激發效應。研究表明,植物光合作用能夠顯著影響根際分泌物的釋放,從而影響土壤有機質分解的激發強度[55-56]。當光合作用增強時,根際分泌物增多,激發作用增強,反之則隨之減弱。根際分泌物產生正激發效應的機制在于分泌物釋放進入土壤后,根際微生物迅速利用這些低糖類物質,微生物活性大大增強,從而加快土壤有機碳的分解;此外,根系生長能夠破碎土壤團聚體,也加快了土壤有機碳的礦化[57]。根際微系統中,土壤有機質分解的激發效應不僅僅是土壤微生物的單一過程,而是土壤微生物-土壤動物-植物根系共同作用的相互過程,這些過程的相互關聯決定了根際微系統的復雜性。
恢復侵蝕土壤的生產力,有兩種選擇。最普通的選擇就是額外增加化學肥料降低由侵蝕而引起的養分損失。有機肥施用是恢復生產力的另一種選擇[58]。早在1948 年,Hays 等就指出養分虧缺是侵蝕土壤生產力降低的主要原因,在蒙大拿州單施N 肥不足以恢復侵蝕土壤的生產力[59]。Mbagwu 等[60]研究發現土壤剝離后,亞耕層土壤中的N、P、K 和Mg 含量有限,限制玉米養分的吸收。Izaurralde 等[24]研究了表層土壤剝離后,化肥施用對小麥產量的影響,結果表明,N、P 化肥的施用對侵蝕地塊的小麥,不僅表現出產量的增加,同時也表現為N、P 養分吸收含量的增加,然而,增加的產量并未達到非侵蝕土壤相同化肥施用量的產量。但是,土壤剝離和化肥施用均不影響印度尼西亞花生地上部的K 營養水平。
研究表明,在正常化肥施用量基礎上,增施15 t·hm-2腐熟的牛糞,能夠彌補5 cm (大豆)和10 cm(玉米)耕層土壤流失的產量損失[13,19,26]。增施牛糞顯著增加玉米、大豆地上部干物質積累,促進作物的根系生長,耕層水穩性團聚體(>0.25 mm)及其團聚體結合的有機碳含量明顯增加,并發現水穩性大團聚體(>1 mm)的多少與有機碳含量呈正相關,三葉期玉米根系表面積和地上部NPK 養分積累顯著增加,尤其是K 素含量[61-62]。而且驚奇地發現,嚴重侵蝕土壤 (30 cm 耕層剝離)在連續施用牛糞15 t·hm-27 a 之后,其大豆的生產力與未侵蝕僅施用化肥的產量相當。有機肥30 t·hm-2配合150 kg·hm-2N 和150 kg·hm-2P 具有較好的恢復效果,而且在干旱年份,有機肥的施用產量更高。其他研究同樣發現大量的化肥施用并不能使得產量恢復到非侵蝕土壤的水平[63-64]。這表明單純增加養分不足以恢復侵蝕土壤的生產力。Malhi 等[65]將厚度為34 cm 的表土層分別移出0、18%、35%、53%,建立田間裂區試驗,并加設施N 和P 肥小區,得出作物產量隨土壤流失深度的增加而降低,施N 和P 肥可增加侵蝕區作物產量,但達不到未侵蝕區產量水平。有機肥或廄肥在侵蝕土壤上的應用只是近20 年的事情[66-67]。與家禽糞便相比,作物殘茬、單施豌豆和苜蓿干草或NP 化肥與大麥秸稈混施,增加水穩性團聚體穩定性,而家禽糞便處理比單施化肥也提高了土壤水穩性團聚體的穩定性。Larney 和Janzen[68]研究了表層15 cm 土壤剝離后,家禽糞便、作物殘茬、秸稈與化肥結合、單施化肥對小麥產量的恢復,結果表明,豬糞、雞糞和苜蓿干草恢復效果最好。3 年的產量結果均與對照產量沒有差異。他們的研究結果提出,土壤剖面0~60 cm硝態氮的濃度可以解釋施肥處理恢復能力的71%,而0~15 cm 土層提取的P 濃度可以解釋16%,剩余的13%可能與土壤結構的改善有關。證明有機肥和作物殘體能夠替代損失的表層土壤,恢復侵蝕土壤的生產力。
Larney 等[25,69]進一步研究表明,在表層剝離10 cm 后,有機肥施用增產73%,化肥增產28%;表層20 cm 土壤剝離后,有機肥施用可以增加產量158%,而化肥僅增加40%。然而,他們同時發現,對未侵蝕土壤而言,化肥的增產作用效果高于有機肥。研究也注意到,有機肥恢復產量的作用,隨著侵蝕深度的增加效果越加明顯,對于非侵蝕土壤,在化肥基礎上增施有機肥大豆產量提高8.5%,玉米提高15%;而在30 cm 土層剝離后,增施有機肥增加大豆產量77%,增加玉米產量145%[27]。對亞耕層增施有機肥提高了玉米PK 的吸收,并明顯減少Mn 從表層土壤的淋溶[70]。Robbins 等[71]發現增施牛糞44 t·hm-2配合鋅肥施用能夠增加30 cm 剝離菜豆產量,與未剝離土壤產量相當。以上研究說明有機肥對侵蝕土壤的改良作用更為明顯,其明顯的增產效果可能與補償表層剝離后養分缺失密切相關,也就是有機肥施用到侵蝕黑土后,向耕層中釋放養分的能力增強了。鑒于有機肥養分的釋放轉化更多地受到土壤的生物化學活性和根際環境變化的影響,明確有機肥施用改善根際土壤環境,恢復土壤微生物原有的代謝活性、增強根系分泌物和關鍵土壤酶活性、提高土壤養分有效性、促進養分吸收轉化對恢復侵蝕黑土生產力的關鍵生物學效應,將為侵蝕黑土農田生產力的恢復提供系統科學數據和理論支撐。
[1]Cihacek L J,Swan H B. Effects of erosion on soil chemical properties in the north central region of the United States [J]. Journal of Soil and Water Conservation,1994,49 (3):259-265.
[2]Robins C W,Mackay B E,Freeborn L L. Improving exposed subsoils with fertilizers and crop rotations [J]. Soil Science Society of America Journal,1997,61 (4):1221-1225.
[3]Fenton T E.The impact of erosion on the classification and productivity of Mollisols in Iowa [M].In:Liu X B,Song C Y,Richard R M,et al.New advances in research and management of World Mollisols. Northeast Forestry University Press,Harbin,2010:68-70.
[4]Morgan R P C. Soil Erosion and Conservation [M]. USA:Blackwell Science Ltd,2005.
[5]Izaurralde R C,Malhi S S,Nyborg M,et al. Crop performance and soil properties in two artificially eroded soils in North-Central Alberta [J].Agronomy Journal,2006,98 (5):1298-1311.
[6]Uri N D,Lewis J A. The dynamics of soil erosion in US agriculture [J]. Science of the Total Environment,1998,218 (1):45-58.
[7]劉興土,閻百興. 東北黑土區水土流失與糧食安全[J]. 中國水土保持,2009,1:17-19.
[8]Bakker M M,Govers G,Rounsevell M D A. The crop productivity-erosion relationship:an analysis based on experimental work [J]. Catena,2004,57 (1):55-76.
[9]劉寶元,閻百興,沈 波,等. 東北黑土區農地水土流失現狀與綜合治理對策[J]. 中國水土保持科學,2008,6 (1):1-8.
[10]Shaffer M J,Schumacher T E,Ego C L. Simulating the effects of erosion on corn productivity [J]. Soil Science Society of America Journal,1995,59 (3):672-679.
[11]Lal R. Soil erosion impact on agronomic productivity and environmental quality [J]. Critical Reviews in Plant Sciences,1998,17 (4):319-464.
[12]Den Biggelaar C,Lal R,Wiebe K,et al. Impact of soil erosion on crop yields in North America [J]. Advances in Agronomy,2001,72,1-52.
[13]Liu X B,Zhang X Y,Wang Y,et al. Soil degradation:A problem threatening the sustainable development of agriculture in Northeast China[J]. Plant Soil and Environment,2010,56 (2):87-97.
[14]Reyniers M,Maertens K,Vrindts E. Yield variability related to landscape properties of a loamy soil in central Belgium [J]. Soil and Tillage Research,2006,88 (1-2):262-273.
[15]Khakural B R,Robert P C,Huggins D R. Variability of corn/soybean yield and soil/landscape properties across a southwestern Minnesota landscape [M]. In:Robert P C (ed. ). Proceedings of the Fourth International Conference on Precision Agriculture. American Society of Agronomy,Minneapolis,MN. ASA,CSSA,SSA,Madison,WI,1999:573-579.
[16]Marquesda Silva J R,Silva L L. Evaluation of the relationship between maize yield spatial and temporal variability and different topographic attributes [J]. Biosystems engineering,2008,101 (2):183-190.
[17]La Rosa D,Moreno J A,Mayol F,et al. Assessment of soil erosion vulnerability in western Europe and potential impact on crop productivity due to loss of soil depth using the ImpelERO model [J]. Agriculture,Ecosystems and Environment,2000,81 (3):179-190.
[18]Larney F J,Izaurralde R C,Jansen H H ,et al. Soil erosion-crop productivity relationships for six Alberta soils [J]. Journal of Soil and Water Conservation,1995,50 (1):87-91.
[19]張興義,孟令欽,劉曉冰,等. 黑土區水土流失對玉米干物質積累及產量的影響[J]. 中國水利,2007,22:47-49.
[20]Gollany H T,Schumacher T E,Evenson P D,et al. Topsoil depth and desurfacing effects on properties and productivity of a Typic Argiustoll[J]. Soil Science Society of America Journal,1992,56 (1):220-225.
[21]Lal R. Erosion-crop productivity relationships for soils of Africa [J]. Soil Science Society of America Journal,1995,59 (3):661-667.
[22]Rose C W,Dalal R C. Erosion and runoff of nitrogen:Proceedings of the Symposium on Advances in Nitrogen Cycling in Agricultural Ecosystems. Brisbane,Australia,11-15,May 1987. CAB International,Wallingford:1988,212-235.
[23]Monreal C M,Zentner R P,Robertson J A. The influence of management on soil loss and yield of wheat in chernozemic and luvisolic soils [J].Canadian Journal of Soil Science,1995,75:567-574.
[24]Izaurralde R C,Solberg E D,Nyborg M,et al. Immediate effects of topsoil removal on crop productivity loss and its restoration with commercial fertilizers [J]. Soil and Tillage Research,1998,46 (3-4):251-259.
[25]Larney F J,Olson B M,Janzen H H,et al. Early impact of topsoil removal and soil amendments on crop productivity [J]. Agronomy Journal,2000,92 (5):948-956.
[26]張興義,劉曉冰,隋躍宇,等. 人為剝離黑土層對大豆生育和產量的影響[J]. 大豆科學,2006,25 (2):123-126.
[27]Sui Y Y,Liu X B,Jin J,et al. Zhang. Differentiating the early impact of topsoil removal and soil amendments on crop performance/productivity of corn and soybean in eroded farmland of Chinese Mollisols [J]. Field Crops Research,2009,111 (3):276-283.
[28]Swan J B,Shaffer M J,Paulson W H,et al. Simulating the effects of soil depth and climatic factors on corn yield [J]. Soil Science Society of America Journal,1987,51 (4):1025-1032.
[29]Kreznor W R,Olson K R,Banwart W L,et al. Soil,landscape,and erosion relationships in a Northwest Illinois watershed [J]. Soil Science Society of America Journal,1989,53 (6):1763-1771.
[30]Jones A J,Lal R,Huggins D R. Soil erosion and productivity research:a regional approach [J]. American Journal of Alternative Agriculture,1997,12 (4):185-192.
[31]Tengberg A,Stocking M A,Da Virga M. The impact of erosion on the productivity of a Ferralsol and a Cambisol in Santa Catanina,southern Brazil [J]. Soil Use and Management,1997,13 (2):90-96.
[32]Cotching W E,Hawkins K,Sparrow L A,et al. Crop yields and soil properties on eroded slopes of red ferrosols in northwest Tasmania [J].Australian Journal of Soil Research,2002,40 (4):625-642.
[33]孟 凱,張興義,隋躍宇,等. 黑土農田水肥條件對作物產量及水分利用效率的影響[J]. 中國生態農業學報,2005,13 (2):119-121.
[34]張福鎖,李曉林,王敬國,等. 環境脅迫與植物根際營養[M]. 北京:中國農業出版社,1998.
[35]Sylvia D M,Chellemi D O. Interactions among root-inhabiting fungi and their implications for biological control of root pathogens [J]. Advance in Agronomy,2001,73:1-33.
[36]吳金水,林啟美,黃巧云,等. 土壤微生物生物量測定方法及其應用[M]. 北京:氣象出版社,2006.
[37]Redmond J W,Batley M,Djordjevic M A,et al. Flavones induce expression of nodulation genes in Rhizobium [J]. Nature,1986,323:632-635.
[38]王振宇,呂金印,李鳳明,等. 根際沉積及其在植物-土壤碳循環中的作用[J]. 應用生態學報,2006,17 (10):1963-1968.
[39]王美麗,嚴小龍. 大豆根形態和根系分泌物特征與磷效率[J]. 華南農業大學學報,2001,22 (3):1-4.
[40]廖 紅,戈振揚,嚴小龍. 水磷耦合脅迫下植物磷吸收的理想根構型:模擬與應用適應[J]. 科學通報,2001,46 (8):641-647.
[41]Hoffland E,Finderegg G R,Nelmans J A. Solubilization of rock phosphate by rape. I. Evaluation of the role of the nutrient uptake pattern [J].Plant and Soil,1989,113 (2):155-160.
[42]Tang C,Han X Z,Qiao Y F,et al.Phosphorus deficiency does not enhance proton release by roots of soybean [Glycine max (L.)Merr.][J].Environmental and Experimental Botany,2009,67 (1):228-234.
[43]苗淑杰. 缺磷脅迫對大豆結瘤固氮和根系分泌物的影響[D]. 哈爾濱:中國科學院東北地理與農業生態研究所,2007.
[44]陸雅海,張福鎖. 根際微生物研究進展[J]. 土壤.2006,38 (2):113-121.
[45]Huerta E,Vidal O,Jarquin A,et al. Effect of Vermicompost on the growth and production of Amashito pepper,interactions with earthworms and rhizobacteria [J]. Compost Science and Utilization,2010,18 (4):282-288.
[46]Liljeroth E,Van Veen J A,Miller H J. Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations [J]. Soil Biology and Biochemistry,1990,22 (8):1015-1021.
[47]林 敏,尤崇杓. 水稻根分泌物及其與類產堿菌的相互作用[J]. 中國農業科學,1989,22 (6):6-12.
[48]朱麗霞,章家恩,劉文高. 根系分泌物與根際微生物相互作用研究綜述[J]. 生態環境,2003,12 (1):102-105.
[49]Germida J J,Siciliano S D,Freitas J R,et al. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L. )and wheat (Triticum aestivum L.)[J]. FEMS Microbioogy Ecology,1998,26 (1):43-50.
[50]Seldin L,Rosado A S,Da Cruz D W,et al. ,Comparison of Paenibacillus azotofixans strains isolated from rhizoplane,rhizosphere,and non-root-associated soil from maize planted in two different Brazilian soils [J]. Applied and Environment Microbiology,1998,64 (10):3860-3868.
[51]Duineveld B M,Kowalchuk G A,Keijzer A. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S Rrna [J]. Applied and Environment Microbiology,2001,67 (1):172-178.
[52]Marschner P. ,Neumann G. ,Kania A. ,et al. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.)[J]. Plant and Soil,2002,246 (2):167-174.
[53]Marschner P,Crowley D E,Yang C H. Development of specific rhizosphere bacterial communities in relation to plant species,nutrition and soil type [J]. Plant and Soil,2004,261 (1-2):199-208.
[54]王智平,陳全勝. 植物近期光合碳分配及轉化[J]. 植物生態學報,2005,29 (5):845-850.
[55]Kuzyakova Y,Cheng W. Photosynthesis controls of soil CO2efflux from maize rhizosphere [J]. Plant and Soil,2004,263 (1):85-99.
[56]Trumbore S. Carbon respired by terrestrial ecosystems:Recent progress and challenges [J]. Global Change Biology,2006,12 (2):141-153.
[57]Cheng W X,Coleman D C.The effect of living roots on soil organic matter decomposition [J].Soil Biology and Biochemistry,1990,22 (6):781-787.
[58]Dormaar J F,Lindwall C W,Kozub G C. Effectiveness of manure and commercial fertilizer in restoring productivity of an artificially eroded Dark Brown Chernozemic soil under dryland conditions [J]. Canadian Journal of Soil Science,1988,68:669-679.
[59]Reuss J O,Campbell R E. Restoring productivity to leveled land [J]. Soil Science Society of America Journal,1961,25 (4):302-304.
[60]Mbagwu J S C. Subsoil productivity of an Ultisol in Nigeria as affected by organic wastes and inorganic fertilizer amendments [J]. Soil Science,1985,140 (6):436-441.
[61]Zhou K Q,Liu X B,Zhang X Y,et al. Corn root growth and nutrient accumulation improved by five years of repeated cattle manure addition to eroded Chinese Mollisols [J]. Canadian Journal of Soil Science,2012,92 (3):521-527.
[62]Sui Y Y,Jiao X G,Liu X B,et al. Water-stable aggregates and their organic carbon distribution after five years of chemical fertilizer and manure treatments on eroded farmland of Chinese Mollisols [J]. Canadian Journal of Soil Science,2012,92 (3):551-557.
[63]Olsen S R. The role of organic matter and ammonium in producing high corn yields [J]. In Chen Y and Avnimelech Y (eds. ),The Role of Organic Matter in Modern Agriculture. Martinus Nijhoff. Dordrecht,1986.
[64]Massee T W. Simulated erosion and fertilizer effects on winter wheat cropping intermountain dryland area [J]. Soil Science Society of America Journal,1990,54 (6):1720-1725.
[65]Malhi S S,Izauralde R C,Nyborg M,et al. Influence of topsoil removal on soil fertility and barley growth [J]. Journal of Soil and Water Conservation,1994,49 (1):96-101.
[66]Eghball B,Power J F. Composted and non-composted beef feedlot manure effects on corn production and soil properties under conventional and no-till systems.1995,P.557-563. In C. C. Ross (ed. )Proc. Int. Symp. Agric. and Food Processing Wastes,7th,Chicago,IL.18-20 June 1995. ASAE,St. Joseph,MI
[67]Schlegel A J. Effect of composted manure on soil chemical properties and nitrogen use by grain sorghum [J]. Journal of Production Agriculture,1992,5 (1):153-157.
[68]Larney F J,Janzen H J. Restoration of productivity to a desurfaced soil with livestock manure,crop residue,and fertilizer amendments [J].Agronomy Journal,1996,88 (6):921-927.
[69]Larney F J,Akinremi O O,Lemke R L ,et al. Crop response to topsoil replacement depth and organic amendment on abandoned natural gas wellsites [J]. Canadian Journal of Soil Science,2003,83:415-423.
[70]Sharma B M,Yadav J S P. Leaching Losses of Iron and Manganese During Reclamation of Alkali [J]. Soil Science,1986,142 (3):149-152.
[71]Robbins C W,Mackey B E,Freeborn L L. Improving Exposed Subsoils with Fertilizers and Crop Rotations [J]. Soil Science Society of America Journal,1997,61 (4):1221-1225.