999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類帶移民的二次加權分枝模型

2011-09-26 09:10:10張紅霞李俊平
統計與決策 2011年17期
關鍵詞:定義模型

張紅霞,李俊平

1 模型建立

馬爾可夫過程是一類極為重要的隨機過程,是解決存儲問題、排隊問題、人口問題、風險問題等等的有效的數學工具。而馬爾可夫分枝過程又是馬爾可夫過程的重要分支,在排隊論、生物學、物理學等等中具有非常廣泛的應用。經典馬爾可夫分枝過程已得到廣泛研究,它的最基本的性質就是分枝性,直觀的說,分枝性就是系統中不同粒子之間是相互獨立、互不干擾的。然而,在大多數現實情況中,不同粒子之間往往不是相互獨立的,而是密切相關的,因此很多學者對經典馬爾可夫分枝模型進行了多種形式的推廣。如Pakes和Tavare[1]、Li.J.P和Chen.A.Y.[2,3]等等.本文是在前人工作的基礎上推廣了模型,同樣具有相當重要的研究意義。

針對于移民狀態下,建立以下分枝模型:

定義 1.1 一個 q-矩陣 Q={qij;??i,j?∈ Z+}被稱為 QWBI-q-矩陣,如果

在本文中,Z+={ }0,?1,?2… ,QWBI-q-矩陣:帶移民的二次加權q-矩陣;QWMBPI:帶移民的二次加權馬爾可夫分枝過程

定義1.2一個QWMBPI就是一個Z+-值的連續時間參數的馬爾可夫鏈,其轉移函數P(t)={pij()t;??i,j∈ Z+} 滿 足Kolmogorov向前方程:P'(t)=P(t)Q且Q形如(1.1).

分別表示平均出生率,移入率,死亡率。

2 吸收概率

設 ??{X(t);?t≥ 0} 是給定的 WBI-q-矩陣 Q 的(唯一的)WMBPI,顯然0為吸收狀態.

為 ??{X(t);?t≥ 0}的吸收時刻,對 ?i≥ 1,有pi(τ0<∞)表示粒子從狀態i出發,而被吸收的概率,即到達狀態0的概率。由[4]及式(1)易知狀態集{1,2,…}構成一個連通類,所以對?i≥1,要么ai0=1,要么ai0<1.

由文獻[1,5]易知下面的引理2.1成立.

x*i=qi0=0(0 ≤ xj≤ 1?,?i?≥ 1)的最小解.

下面的定理2.2.利用引理2.1得到了吸收概率ai0=1(?i≥1)的充分必要條件以及在三種情況下的表達式。

定理2.1記s0為方程 B(s)+s?A(s)=0在[0,1]內的最小根,q為方程B(s)=0在[0,1]內的最小根,若定義

對?i≥1,ai0=1當且僅當mb≤b0,J=+∞

而且

①若mb≤b0,J=+∞,則對?i≥1,有

②若mb≤b0,J<+∞,則對?i≥1,有

③若b0≤mb≤+∞,則對?i≥1,有

證明對?i≥1,令

由[6](4)知:F(s)<∞,由[7]和[6]知,對 ?s∈[ )0?,1 ,有

當mb≤b0,J=+∞時,對?s∈[ )0?,1,?i≥ 1,解(6)得:

當 J=+∞時,必有ai0=1,否則若ai0<1,則在(7)兩端令s↑1,右端趨于-∞,而左端非負,因此矛盾。

當mb≤b0,J<+∞時,由 J的定義知,當 J<+∞時有,對 ?s∈i≥ 1,由(7)知

在(8)中令 s↑1,得,

則對 ?i≥1,有,

因此由引理 2.1 知:ai0≤ xi(i≥ 1).

當b0<mb≤+∞時,易知,

(mb-b0)+ma>0,0<s0<q<1.由[7]知:

在(10)中令 s=q,則

因 此 ai0≤qi<1,且 ai0=qi當 且 僅 當 a0=0.對?s∈(q,1)有

所以ai0≤qi.對?s∈[ )0?,s0

所以ai0≥si0.因此 si0≤ai0≤qi<1.

綜上所述,對 ??i≥1,ai0=1當且僅當 mb?≤b0,J=+∞ .

本文討論的這類分枝模型.得到了馬爾可夫分枝過程在狀態0的吸收概率的表達式,對研究一些現象如生物繁殖、細胞癌變、原子分裂等等有重要的意義。

[1]Pakes A.G.Expiosive Markov Branching Processes[J]:Entrance Laws and Limiting Behavior[J].Adv.Appl.Prob.,1993,25.

[2]Chen A.Y.,Li J.P.,Remesh N.I.Uniqueness and Hitting Time of Weighted Markov bran-ching Processes[J].Methodology and Compu-tingin Applied Probability,2005,7.

[3]Li J.P.Markov Branching Processwith I-mmigration and Resurrection[J].Markov Pro-cessesand Related Fields,2006,12.

[4]Anderson W.J.Continuous-Time Markov Chains[M].Berlin:Springer,1990.

[5]Pakes A.G.Absorbing Markov Branching Processes with a State-dependent Immigration[J].Adv.Proc.Appl.,1993,(48).

[6]張紅霞,李樹君,一類帶移民的加權分枝過程的有關結論[J].黑龍江科技信息,2010,(37).

[7]張紅霞,李樹君,一類帶移民的二次加權馬爾可夫分枝過程[J].科技經濟市場,2010,(3).

猜你喜歡
定義模型
一半模型
永遠不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
重要模型『一線三等角』
定義“風格”
重尾非線性自回歸模型自加權M-估計的漸近分布
3D打印中的模型分割與打包
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
FLUKA幾何模型到CAD幾何模型轉換方法初步研究
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
山的定義
公務員文萃(2013年5期)2013-03-11 16:08:37
主站蜘蛛池模板: 中文字幕调教一区二区视频| 国产在线观看91精品亚瑟| 91年精品国产福利线观看久久| 极品尤物av美乳在线观看| 国产97视频在线| 青草精品视频| 真实国产精品vr专区| 日本高清在线看免费观看| 91九色最新地址| 精品久久久久无码| 国产精品亚洲精品爽爽| 欧美三级日韩三级| 国产一区二区三区在线观看免费| 四虎国产永久在线观看| 日本不卡视频在线| 91亚洲精选| 91精品国产自产91精品资源| 免费大黄网站在线观看| 国产精品蜜臀| 日韩精品成人网页视频在线| 在线亚洲精品自拍| 老熟妇喷水一区二区三区| 激情综合网激情综合| 国产成人综合欧美精品久久| 99re66精品视频在线观看| 免费jizz在线播放| 久久久亚洲色| 久无码久无码av无码| 福利小视频在线播放| 国产精品久久久久久影院| 免费人成网站在线观看欧美| 91精品专区国产盗摄| 黄色网在线| 99视频精品全国免费品| 69国产精品视频免费| 亚洲欧美日韩精品专区| 日日摸夜夜爽无码| 亚洲国产成人久久精品软件| 久久黄色免费电影| 2022精品国偷自产免费观看| 国产精品黑色丝袜的老师| 又黄又湿又爽的视频| 幺女国产一级毛片| 久久中文无码精品| 国产地址二永久伊甸园| 国产91小视频| 在线观看欧美国产| 亚洲人成人伊人成综合网无码| 亚洲国产精品一区二区第一页免| 欧美色视频网站| 国产97视频在线观看| 久久a毛片| 不卡无码h在线观看| 高清大学生毛片一级| 一本久道久久综合多人| 国产欧美日韩精品第二区| 亚洲国产精品日韩av专区| 青青青草国产| 国产精品无码AⅤ在线观看播放| 日韩欧美在线观看| 亚洲欧州色色免费AV| 波多野结衣一区二区三区88| 黄色网站在线观看无码| 亚洲天堂精品视频| 9999在线视频| 在线播放国产99re| 日韩国产综合精选| 亚洲大尺度在线| 午夜免费视频网站| 久久国语对白| 日韩欧美91| 欧美日韩午夜| 日本久久免费| 日韩欧美综合在线制服| 国产主播喷水| 激情综合婷婷丁香五月尤物| 国产一在线| 欧美激情二区三区| 在线观看免费人成视频色快速| 99免费视频观看| 91精品视频网站| 国产在线日本|