999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

運動對認知能力的影響及其神經生物學機制

2011-08-15 00:51:12王澤軍季瀏褚昕宇
中國運動醫學雜志 2011年11期
關鍵詞:海馬小鼠能力

王澤軍 季瀏 褚昕宇

1“青少年健康評價與運動干預”教育部重點實驗室,華東師范大學體育與健康學院(上海 200241)2 上海工程技術大學體育部

人體研究與動物實驗證明,運動會影響腦的多種功能,對腦的健康有著重要作用,包括提高認知能力[1],延緩由衰老引起的認知能力下降[2,3]以及降低抑郁癥狀[4,5]。關于運動影響腦功能的機制研究主要集中在運動后神經可塑性的變化方面,如神經發生、突觸可塑性、樹突棘密度與血管新生等[6,7]。特別是海馬作為與認知功能密切相關的腦區,在運動后其齒狀回(dentate gyrus,DG)的顆粒細胞下層(subgranular zone,SGZ)會產生大量的新生神經細胞[1,8,9]。因此認為,運動對認知能力的影響至少有部分依賴于海馬結構與突觸可塑性的改變。

1 運動對認知能力的影響

1.1 成年動物模型

近年來有大量研究都是集中于運動對成年嚙齒動物認知能力的影響。這些研究的結果不僅有力地支持了運動有益于腦功能的觀點,并有助于了解運動提高認知能力的細胞生物學機制。研究表明,自主跑轉輪運動與強迫跑臺跑訓練均能夠提高實驗動物在Morris水迷宮,Y-迷宮,T-迷宮與八臂迷宮測試中的空間記憶能力[10]。并且,運動提高了實驗動物在海馬依賴的行為測試中的成績,包括情景恐懼條件、被動回避學習與新奇事物認知[11-14]。最新的研究也表明,運動能夠提高成年小鼠海馬DG依賴的空間模式分離能力[15,16]。該研究中發現,運動組小鼠在較小的空間模式分離測試中成績更好,而在較大的空間模式分離測試中與對照組相比較并無顯著性差異[17]。

1.2 老年動物模型

動物實驗表明,學習新任務的能力會隨著年齡的增長而降低。從細胞水平來看,年齡的增加會導致海馬[18]與大腦皮層[19]神經突觸聯接的數量減少,突觸可塑性降低。新近研究表明,運動有助于提高老年嚙齒動物的空間記憶能力[7]與條件回避測試的成績[2]。實驗中發現裝有跑轉輪裝置的老年C57Bl/6雄性小鼠的水迷宮成績顯著好于對照組。進一步研究證實,跑臺跑訓練同樣能提高老年大鼠在水迷宮[20]和八臂迷宮測試中的成績[21]。新近研究中對26月齡的小鼠進行空間模式分離測試發現,雖然老年小鼠無法習得較小的空間模式分離能力,但是進行跑轉輪運動提高了老年小鼠在中等的空間模式分離測試中的成績[17]。由此看來,無法界定究竟什么樣的運動才能夠有效延緩或阻止由衰老引起的認知功能下降。

2 運動與神經退行性疾病

一般情況下,運動被認為能夠延緩神經退行性疾病的發病[22-24],促進腦損傷后的恢復[25]。然而很多證據顯示,運動對阿爾茨海默病(Alzheimer’s disease,AD)、亨廷頓病(Huntington’s disease,HD)以及腦缺血或腦卒中的作用效果并不一致[26]。例如,研究發現沙鼠在腦缺血前進行跑轉輪運動具有神經保護的作用[27]。但是,腦卒中后進行運動會引起不良后果[26]。因此,必須謹慎地評價不同病理條件下運動的作用效果。

2.1 運動與阿爾茨海默病

對多種小鼠AD模型的研究表明,無論是在發病前或發病后進行運動干預,均能夠提高認知能力。發病前5個月開始運動能夠提高水迷宮學習成績。此外,運動減少了海馬和大腦皮層β-淀粉樣斑塊的沉積[22]。而且,發病后開始的3周運動能夠提高老年AD Tg2576小鼠的工作與參考記憶[28],改變炎癥標志物水平[29]。運動同樣能夠提高轉基因Tg-NSE/PS2小鼠的水迷宮成績,增加腦源性神經營養因子(brain-derived neurotrophic factor,BDNF)表達,減少凋亡[30]。研究發現,載脂蛋白E基因的等位基因e4(epsilon 4 allele of the apolipoprotein E gene,APOE e4)是AD發病的風險因素[31],但運動能夠提高該轉基因小鼠的認知能力和突觸可塑性[32]。因此認為,即便在生命后期或者發病后開始運動,也會有助于提高正常小鼠與癡呆模型動物的認知能力。

2.2 運動與帕金森病

盡管研究采用的帕金森病(Parkinson’s disease,PD)動物模型不同,但是通常都會涉及具有神經毒性的6-羥多巴胺(6-hydroxydopamine,6-OHDA)或者1-甲基-4苯基-1,2,3,6-四氫吡啶(1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine,MPTP)[33]。較早研究發現,無論是6-OHDA大鼠還是單側MPTP老年小鼠模型在黑質紋狀體損毀后,進行跑臺跑均能夠延緩其運動能力下降和降低多巴胺神經元的易感性[24]。隨后的研究證實,跑臺跑訓練增加6-OHDA損毀大鼠黑質體多巴胺神經元的存活以及紋狀體的神經纖維投射[34]。另一方面,自主跑轉輪運動雖然能夠提高注射6-OHDA大鼠的運動成績,但這樣并不會顯著影響多巴胺神經末梢的作用[35]。Petzinger等使用MPTP損毀小鼠模型發現,跑臺跑訓練對運動成績的促進作用可能伴有黑質紋狀體多巴胺神經遞質的變化[36]。跑臺跑訓練不僅提高了PD動物跑步測試的整體成績,而且在降低焦慮的同時未改變其兒茶酚胺的水平[37]。新近的研究表明,跑臺跑訓練能通過BDNF的神經保護作用或者增加神經前體細胞的遷移來提高6-OHDA損毀大鼠的運動成績[38]。而運動同樣能夠增加MPTP小鼠紋狀體GluR2亞基的表達[39]。因此,強迫性跑臺跑運動對PD動物多巴胺神經元的保護作用或許是由于運動引起的神經發生、生長因子以及信號傳導的作用增強。進一步的研究應該集中于運動是否能夠有助于彌補PD動物的認知能力缺陷。

2.3 運動與亨廷頓病

從現有的研究資料來看,仍然不能確定運動是否會延緩或阻止HD的發生。早期的研究表明豐富環境能延緩R6/1轉基因小鼠HD癥狀的出現[40],而運動則是豐富環境的重要組成之一。運動有助于R6/1小鼠撫育行為正常化,延緩后腿抱握、運動協調和空間工作記憶缺陷的出現,但是,運動對跑步測試成績、可降解蛋白凝集、海馬BDNF蛋白水

平[41,42]和神經發生均無顯著影響[43]。此外,運動引起R6/2小鼠紋狀體中型多棘神經元在電生理方面發生積極的變化[44]。然而,最新的研究卻表明運動可能會不利于N171-82Q小鼠脆弱的神經系統。6周齡雄性N171-82Q小鼠(HD癥狀發生前)在進行跑轉輪訓練后,其疾病的發病加速,紋狀體體積減少并且運動能力損害。更令人驚訝的是,運動并不能對抗小鼠體重丟失、生命時期縮短、高血糖癥、Morris水迷宮學習缺陷、海馬神經發生損害、未成熟神經元與細胞核內含體形態缺陷,以及DG體積縮小[45]。至于從該HD小鼠上發現的可能機制與運動是否有直接的關系,以及能否從其他HD動物實驗中得到類似結果,還需要進一步的研究證實。

3 運動影響認知能力的可能機制

3.1 神經發生

抗抑郁藥物、豐富的環境和運動等因素會誘導成年海馬DG SGZ持續產生新的神經細胞;相反,應激、抑郁和衰老等因素,能夠抑制成年海馬神經發生[46]。Kempermann等發現,豐富的環境會誘導SGZ神經細胞的增殖與存活[47]。但是研究中采用的豐富環境包含了多個影響因素,如增加實驗動物學習、社會交往以及運動的機會,因而不能確定具體是哪個因素在海馬神經發生中具有更為重要的作用。為此,van Praag等[1,9]把其中的各個因素分離出來研究,發現自由跑轉輪運動能有效刺激成年小鼠海馬DG神經發生,并延長新生神經元的存活時間,同時運動還提高了小鼠的空間學習能力。有研究比較了跑轉輪訓練與不含跑轉輪的豐富環境對神經發生的作用,發現運動對神經發生具有更強的促進作用[48,49],認為跑轉輪訓練與不含跑轉輪的豐富環境對腦功能以及行為會有不同的作用,或者作用互補[50-52]。

另外,對小鼠跑轉輪訓練的跑動距離與新生細胞數量之間關系的研究發現,單籠飼養的C57Bl/6小鼠之間的跑動距離無顯著性差異[1],但是在新生細胞數量與空間模式分離成績之間存在著某種相關[17]。另有研究使用129SvEv小鼠,發現跑動距離與神經細胞的增殖與存活能力之間表現出了顯著的正相關[53]。同樣有研究對跑動距離長的小鼠連續繁殖超過26代,發現跑動距離、新生細胞數量以及空間學習能力之間并無顯著相關[54],認為可能是由于選擇性飼養導致了小鼠神經系統損傷,影響了腦的功能與行為[55]。

此外,Kronenberg對運動誘導細胞增殖與神經發生的作用進行了動力學研究,發現在運動24 h后海馬新生神經元數量增加2~3倍,并且細胞增殖效應在運動的第3天最為明顯,隨后細胞增殖可以一直持續到運動的第10天,但在第32天下降到基礎水平,這或許反映了細胞增殖對運動刺激的一種適應[56]。這種現象同樣存在于老年動物實驗中[57]。而有關晝夜節律的研究發現,單籠飼養的小鼠在夜間循環中間時段的細胞增殖能力最強[58],而循環開始初期是運動促進細胞增殖作用的最佳時間[59]。

值得注意的是,強迫性跑臺跑訓練同樣能夠誘導成年海馬神經發生[60]。并且,運動不僅可以提高成年小鼠海馬神經發生[1,9],同樣能夠提高老年小鼠海馬神經發生[7,56],但是后者的神經發生水平明顯較前者低。此外,亦有研究稱運動對26月齡小鼠的海馬神經發生無顯著影響[17]。上述實驗結果提示,運動可能是通過提高海馬DG新生細胞的增殖能力延緩由衰老引起的神經發生降低以及認知能力下降。

3.2 突觸可塑性

運動不僅提高了成年神經發生,同時也增強了海馬突觸可塑性,特別是有助于長時程增強(longterm potentiation,LTP)——一種推測的學習記憶生理模型[61]。早期研究發現,運動增強了小鼠海馬DG區LTP水平,但是對海馬CA1區LTP水平以及場興奮性突觸后電位(fi eld excitatory postsynaptic potential,fEPSP)沒有顯著影響[1]。隨后有研究對大鼠進行跑轉輪訓練[62]或者跑臺跑訓練[14],發現運動能夠有效增強海馬DG區LTP水平。此外,由于運動作用于突觸可塑性和神經發生的腦部位相同,提示新生神經細胞在運動誘導突觸可塑性變化過程中有著重要的功能作用。另一方面,研究發現相對于成熟神經細胞來說,更容易誘導出新生神經細胞的LTP[63]。并且,1~1.5月齡的新生神經元LTP幅度增加,誘導閾值減小[64]。

3.3 樹突棘密度

運動增加海馬DG新生神經元的同時,也會引起神經細胞的形態變化。樹突棘的結構可塑性也被認為是學習記憶的重要機制之一,并且與LTP是兩個互相依賴的過程[65,66]。研究發現,跑轉輪訓練可以誘導CA1區樹突增長和變細,增加CA1區錐體細胞和內嗅皮層III錐體細胞的樹突棘密度[67]。此外,運動會顯著增加DG區的樹突長度和復雜程度,以及顆粒細胞的樹突棘密度[68,69]。有趣的是,運動除了加速蘑菇型樹突的成熟過程,并不能影響成年海馬新生神經元的發育[70]。因此,海馬DG細胞結構的改變,包括增加新的神經元以及單個神經元的形態變化,都可能是運動提高海馬LTP以及海馬依賴的認知能力的細胞學基礎。

3.4 血管新生

運動能夠增強運動皮層[71],小腦[6,72]與海馬[7,73-75]的血管新生作用。早期研究發現,腦損傷前進行跑轉輪訓練會增加海馬DG腦缺血后存活的可能性,降低其損傷程度[27],認為運動引起的腦血管系統變化對神經系統起到保護作用,誘導血管的數量以及直徑增加。后來的研究興趣轉移到血管生長因子與神經發生的相互關系上。海馬DG新生細胞聚集于血管附近[76],對血管生長因子發生增殖反應[77,78]。這也導致了神經前體細胞與血管微環境相關的假說產生,認為神經發生與血管新生密切關聯。特別是海馬基因轉染血管內皮生長因子(vascular endothelial growth factor,VEGF)能夠誘導產生大約兩倍數量的新生神經元,并提高成年大鼠認知能力[77]。

另外,運動誘導的腦血管變化可能受到VEGF以及胰島素樣生長因子-1(insulin-like growth factor-1,IGF-1)作用的調控。運動提高了腦內皮細胞的增殖能力[79]以及血管新生作用[6,80-82]。同時,運動不僅能提高海馬IGF-1基因表達與蛋白水平[83-85],還會增加外周血循環中IGF-1與VEGF的含量[85,86];并且,阻斷外周VEGF與IGF-1會抑制運動誘導的神經發生[75,86]。

新近研究使用核磁共振成像技術發現,2周跑轉輪訓練能夠有效增加小鼠海馬DG血容量,認為血流量的改變可以作為一種間接測定人神經發生水平的方法[87]。然而有研究使用一種有助于神經發生的植物性黃烷醇(-)表兒茶精,誘導血管新生作用的同時并未發現細胞增殖能力提高[88],這也提示血管新生與神經發生兩者之間并不總是直接關聯的。更有研究認為,血管新生在運動影響認知能力中的作用比神經發生更為重要[89]。考慮到運動中腦血流量發生明顯變化,同時血流量的增加會增強神經活動,因此推測血管新生很可能是運動影響認知能力的重要因素。

4 結論與展望

綜上所述,對于成年和老年動物甚至人,運動都被認為是一種能提高認知能力的可量化活動。而運動的積極作用很可能是通過調節海馬可塑性實現的,包括神經發生、突觸可塑性、樹突棘密度與血管新生等。然而,結合最新研究可以認為,在腦損傷或某些神經退行性疾病存在的情況下,對運動的選擇應該謹慎。此外,有研究發現運動對成年小鼠海馬神經發生的促進作用要強于抗抑郁藥物氟西汀和度洛西汀[90];另一方面,注射運動模擬藥物能夠提高小鼠的空間記憶能力,增加海馬神經發生[91]。這些結果提示我們:在某種程度上,運動的積極作用會誘導出相應的藥理學反應。然而,運動的作用不僅僅局限在神經可塑性和認知的范圍內,藥物不能夠完全取代運動的作用。

[1]van Praag H,Kempermann G,Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci,1999,2(3):266-270.

[2]Adlard PA,Engesser-Cesar C,Cotman CW. Mild stress facilitates learning and exercise improves retention in aged mice. Exp Gerontol,2011,46(1):53-59.

[3]Erickson KI,Voss MW,Prakash RS,et al. Exercise training increases size of hippocampus and improves memory. Proc Nat Acad Sci USA,2011,108(7):3017-3022.

[4]Duman CH,Schlesinger L,Russell DS,et al. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res,2008,1199:148-158.

[5]Hunsberger JG,Newton SS,Bennett AH,et al.Antidepressant actions of the exercise-regulated gene VGF. Nat Med,2007,13(12):1476-1482.

[6]Black JE,Isaacs KR,Anderson BJ,et al. Learning causes synaptogenesis,whereas motor activity causes angiogenesis,in cerebellar cortex of adult rats. Proc Nat Acad Sci USA,1990,87(14):5568-5572.

[7]van Praag H,Shubert T,Zhao C,et al. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci,2005,25(38):8680-8685.

[8]van der Borght K,Havekes R,Bos T,et al. Exercise improves memory acquisition and retrieval in the Y-maze task:Relationship with hippocampal neurogenesis.Behav Neurosci,2007,121(2):324-334.

[9]van Praag H,Christie BR,Sejnowski TJ,et al.Running enhances neurogenesis,learning,and longterm potentiation in mice. Proc Nat Acad Sci USA,1999,96(23):13427-13431.

[10]van Praag H. Neurogenesis and exercise:Past and future directions. Neuromolecular Med,2008,10(2):128-140.

[11]Falls WA,Fox JH,MacAulay CM. Voluntary exercise improves both learning and consolidation of cued conditioned fear in C57 mice. Behav Brain Res,2010,207(2):321-331.

[12] L iu YF,Chen HI,Lin LC,et al. Treadmill exercise enhances passive avoidance learning in rats:the role of down-regulated serotonin systemin the limbic system.Neurobiol Learn Mem,2008,89(4):489-496.

[13]Mello PB,Benetti F,Cammarota M,et al. Physical exercise can reverse the defi cit in fear memory induced by maternal deprivation. Neurobiol Learn Mem,2009,92(3):364-369.

[14] O 'Callaghan RM,Ohle R,Kelly AM. The effects of forced exercise on hippocampal plasticity in the rat:A comparison of LTP,spatial- and non-spatial learning.Behav Brain Res,2007,176(2):362-366.

[15]Leutgeb JK,Leutgeb S,Moser MB,et al. Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science,2007,315(5814):961-966.

[16]McHugh TJ,Jones MW,Quinn JJ,et al. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science,2007,317(5834):94-99.

[17] C reer DJ,Romberg C,Saksida LM,et al. Running enhances spatial pattern separation in mice. Proc Nat Acad Sci USA,2010,107(5):2367-2372.

[18]Barnes CA. Normal aging:Regionally specifi c changes in hippocampal synaptic transmission. Trends Neurosci,1994,17(1):13-18.

[19] C hen KS,Masliah E,Mallory M,et al. Synaptic loss in cognitively impaired aged rats is ameliorated by chronic human growth factor infusion. Neuroscience,1995,68(1):19-27.

[20] A lbeck DS,Sano K,Prewitt GE,et al. Mild forced treadmill exercise enhances spatial learning in the aged rat. Behav Brain Res,2006,168(2):345-348.

[21]Kim SE,Ko IG,Kim BK,et al. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol,2010,45(5):357-365.

[22]Adlard PA,Perreau VM,Pop V,et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci,2005,25(17):4217-4221.

[23]Kaspar BK,Frost LM,Christian L,et al. Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol,2005,57(5):649-655.

[24]Tillerson JL,Caudle WM,Reveron ME,et al.Exercise induces behavioral recovery and attenuates neurochemical defi cits in rodent models of Parkinson’s disease. Neuroscience,2003,119(3):899-911.

[25]Gobbo OL,O’Mara SM. Exercise,but not environmental enrichment,improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor. Behav Brain Res,2005,159(1):21-26.

[26]Komitova M,Zhao LR,Gido G,et al. Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur J Neurosci,2005,21(9):2397-2405.

[27]Stummer W,Weber K,Tranmer B,et al. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke,1994,25(9):1862-1869.

[28]Nichol KE,Parachikova AI,Cotman CW. Three weeks of running wheel exposure improves cognitive performance in the aged Tg2576 mouse. Behav Brain Res,2007,184(2):124-132.

[29]Parachikova A,Nichol KE,Cotman CW. Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis,2008,30(1):121-129.

[30]Um HS,Kang EB,Koo JH,et al. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res,2011,69(2):161-173.

[31]Mahley RW,Weisgraber KH,Huang Y.ApolipoproteinE4:A causative factor and therapeutic target in neuropathology,including Alzheimer’s disease. Proc Nat Acad Sci USA,2006,103(15):5644-5651.

[32]Nichol K,Deeny SP,Seif J,et al. Exercise improves cognition and hippocampal plasticity in APOE epsilon4 mice. Alzheimers Dement,2009,5(14):287-294.

[33]Smith AD,Zigmond MJ. Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol,2003,184(1):31-39.

[34] Y oon MC,Shin MS,KimTS,et al. Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci Lett,2007,423(1):12-17.

[35] O ’Dell SJ,Gross NB,Fricks AN,et al. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection.Neuroscience,2007,144(3):1141-1151.

[36] P etzinger GM,Walsh JP,Akopian G,et al. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci,2007,27(20):5291-5300.

[37]Gorton LM,Vuckovic MG,Vertelkina N,et al.Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav Brain Res,2010,213(2):253-262.

[38]Tajiri N,Yasuhara T,Shingo T,et al. Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res,2010,1310:200-207.

[39] V anLeeuwen JE,Petzinger GM,Walsh JP,et al.Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinelesioned mouse model of basal ganglia injury. J Neurosci Res, 2010,88(3):650-668.

[40]van Dellen A,Blakemore C,Deacon R,et al. Delaying the onset of Huntington’s in mice. Nature,2000,404(6779):721-722.

[41]Pang TY,Stam NC,Nithianantharajah J,et al.Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience,2006,141(2):569-584.

[42]van Dellen A,Cordery PM,Spires TL,et al.Wheel running from a juvenile age delays onset of specifi c motor defi cits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci,2008,9:34.

[43] K ohlZ,Kandasamy M,Winner B,et al. Physical activity fails to rescue hippocampal neurogenesis defi cits in the R6/2 mouse model of Huntington’s disease. Brain Res, 2007,1155 :24-33.

[44] C epedaC,Cummings DM,Hickey MA,et al. Rescuing the corticostriatal synaptic disconnection in the R6/2 mouse model of Huntington's disease:Exercise,adenosine receptors and ampakines. PLoS Curr,2010,2 :RRN1182.

[45] P otterM,Yuan C,Ottenritter C,et al. Exercise is not benefi cial and may accelerate symptom onset in a mouse model of Huntington’s disease. PLoS Curr,2010,2 :RRN1201.

[46]Gage FH,Kempermann G,Song H. Adult Neurogenesis. New York,USA :Cold Spring Harbor Laboratory Press,2008.

[47]Kempermann G,Kuhn HG,Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature,1997,386(6624):493-495.

[48]Ehninger D,Kempermann G. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex.Cereb Cortex,2003,13(8):845-851.

[49] F abelK,Wolf SA,Ehninger D,et al. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci,2009,3:50.

[50]Hendriksen H,Prins J,Olivier B,et al. Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressantresistant animal model for PTSD. PLoS One,2010,5(8):e11943.

[51]Meshi D,Drew MR,Saxe M,et al. Hippocampal neurogenesis is not required for behavioral effects of environmental enrichment. Nat Neurosci,2006,9(6):729-731.

[52]Kobilo T,Liu Q-R,Gandhi K,et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem,2011,18(9):605-609.

[53]Allen DM,van Praag H,Ray J,et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev,2001,15(5):554-566.

[54]Rhodes JS,Hosack GR,Girard I,et al. Differential sensitivity to acute administration of cocaine,GBR 12909,& fluoxetine in mice selectively bred for hyperactive wheel-running behavior.Psychopharmacology,2001,158(2):120-131.

[55]Rhodes JS,van Praag H,Jeffrey S,et al. Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav Neurosci,2003,117(15):1006-1016.

[56]Kronenberg G,Bick-Sander A,Bunk E,et al. Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging,2006,27(10):1505-1513.

[57] K annangara TS,Lucero MJ,Gil-Mohapel J,et al.Running reduces stress and enhances cell genesis in aged mice. Neurobiol Aging,2011,32(12):2279-2286.

[58]Holmes MM,Galea LA,Mistlberger RE,et al.Adult hippocampal neurogenesis and voluntary running activity:Circadian and dose-dependent effects. J Neurosci Res,2004,76(2):216-222.

[59] v an der BorghtK,Ferrari F,Klauke K,et al.Hippocampal cell proliferation across the day:Increase by running wheel activity,but no effect of sleep and wakefulness. Behav Brain Res,2006,167(1):36-41.

[60]Uda M,Ishido M,Kami K,et al. Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Res,2006,1104 :64-72.

[61]Bliss TV,Collingridge GL. A synaptic model of memory:Long-term potentiation in the hippocampus.Nature,1993,361(6407):31-39.

[62]Farmer J,Zhao X,van Praag H,et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience,2004,124(1):71-79.

[63]Schmidt-Hieber C,Jonas P,Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature,2004,429(6988):184-187.

[64]van Praag H,Schinder AF,Christie BR,et al.Functional neurogenesis in the adult hippocampus.Nature,2002,415(6875):1030-1034.

[65]Lang C,Barco A,Zablow L,et al. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Nat Acad Sci USA,2004,101(47):16665-16670.

[66]Zhou Q,Homma KJ,Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron,2004,44(5):749-757.

[67]Stranahan AM,Khalil D,Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus,2007,17(11):1017-1022.

[68]Eadie BD,Redila VA,Christie BR. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation,dendritic complexity,and spine density. J Comp Neurol,2005,486(1):39-47.

[69]Redila VA,Christie BR. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience,2006,137(4):1299-1307.

[70] Z haoC,Teng EM,Summers RG Jr,et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci,2006,26(1):3-11.

[71]McCloskey DP,Adamo DS,Anderson BJ. Exercise increases metabolic capacity in the motor cortex and striatum,but not in the hippocampus. Brain Res,2001,891:168-175.

[72]Isaacs KR,Anderson BJ,Alcantara AA,et al. Exercise and the brain:Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab,1992,12(1):110-119.

[73]Carro E,Trejo JL,Busiguina S,et al. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci,2001,21(15):5678-5684.

[74]Lorens-Martin M,Torres-Aleman I,Trejo JL.Pronounced individual variation in the response to the stimulatory action of exercise on immature hippocampal neurons. Hippocampus,2006,16(5):480-490.

[75]Trejo JL,Carro E,Torres-Aleman I. Circulating insulinlike growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci,2001,21(5):1628-1634.

[76]Palmer TD,Willhoite AR,Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol,2000,425(4):479-494.

[77] Cao L,Jiao X,Zuzga DS,et al. VEGF links hippocampal activity with neurogenesis,learning and memory. Nat Genet,2004,36(8):827-835.

[78]Jin K,Zhu Y,Sun Y,et al. Vascular endothelial growth factor( VEGF) stimulates neurogenesis in vitro and in vivo. Proc Nat Acad Sci USA,2002,99(18):11946-11950.

[79]Lopez-Lopez C,LeRoith T,Torres-Aleman I.Insulinlike growth factor I is required for vessel remodeling in the adult brain. Proc Nat Acad Sci USA,2004,101(26):9833-9838.

[80]Anderson BJ,Eckburg PB,Relucio KI. Alterations in the thickness of motor cortical subregions after motorskill learning and exercise. Learn Mem,2002,9(1):1-9.

[81]Kleim JA,Cooper NR,VandenBerg PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res,2002,934(1):1-6.

[82]Swain RA,Harris AB,Wiener EC,et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat.Neuroscience,2003,117(4):1037-1046.

[83]Ding Q,Vaynman S,Akhavan M,et al. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience,2006,140(3):823-833.

[84]Ding YH,Li J,Zhou Y,et al. Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Curr Neurovasc Res,2006,3(1):15-23.

[85]Carro E,Nunez A,Busiguina S,et al. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci,2000,20(8):2926-2933.

[86]Fabel K,Fabel K,Tam B,et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci,2003,18(10):2803-2812.

[87] P ereira AC,Huddleston DE,Brickman AM,et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Nat Acad Sci USA,2007,104(13):5638-5643.

[88]van Praag H,Lucero MJ,Yeo GW,et al. Plant-derived flavanol( -)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci,2007,27(22):5869-5878.

[89] K err AL,Steuer EL,Pochtarev V,et al.Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience,2010,171(1):214-226.

[90]Marlatt MW,Lucassen PJ,van Praag H. Comparison of neurogenic effects of fl uoxetine,duloxetine and running in mice. Brain Res,2010,1341:93-99.

[91]Kobilo T,Yuan C,van Praag H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem,2011,18(2):103-107.

猜你喜歡
海馬小鼠能力
消防安全四個能力
海馬
小鼠大腦中的“冬眠開關”
海馬
大興學習之風 提升履職能力
人大建設(2018年6期)2018-08-16 07:23:10
你的換位思考能力如何
米小鼠和它的伙伴們
“海馬”自述
抄能力
海馬
主站蜘蛛池模板: 国产18在线播放| 亚洲成人网在线观看| 99r在线精品视频在线播放 | 亚洲aⅴ天堂| 女同国产精品一区二区| 亚洲成人精品久久| 日韩 欧美 小说 综合网 另类| 午夜视频日本| 99久久国产综合精品2020| 国产真实乱了在线播放| 日韩精品免费一线在线观看| 3p叠罗汉国产精品久久| 国产高清在线精品一区二区三区 | 1769国产精品视频免费观看| 国产熟女一级毛片| 日韩精品少妇无码受不了| 18禁色诱爆乳网站| 精品91在线| 欧美国产日韩在线| 91视频首页| 国产精品极品美女自在线网站| 99精品在线视频观看| 亚洲欧美色中文字幕| 精品久久高清| 高清欧美性猛交XXXX黑人猛交| 日韩免费毛片视频| 人妻无码一区二区视频| 亚洲综合色在线| 亚洲Av综合日韩精品久久久| 国产99在线| 日韩第九页| 在线亚洲天堂| 欧美日本中文| 青青国产视频| 91国内外精品自在线播放| 午夜日韩久久影院| 天天婬欲婬香婬色婬视频播放| 国产美女无遮挡免费视频| 日本精品视频一区二区| 国产内射在线观看| 伊在人亚洲香蕉精品播放| 国产精品19p| 一本久道久综合久久鬼色| 亚洲国产精品不卡在线| 夜夜操天天摸| 欧美在线一二区| 免费人欧美成又黄又爽的视频| 99re免费视频| 国产香蕉国产精品偷在线观看| 亚洲网综合| 亚洲国产综合精品中文第一| 综合色区亚洲熟妇在线| 免费视频在线2021入口| 欧美成人午夜视频免看| 国产91色在线| 黄色网址免费在线| 国产人成网线在线播放va| 秋霞午夜国产精品成人片| 伊人成人在线| 成人综合在线观看| 又污又黄又无遮挡网站| 1级黄色毛片| 国产成人乱无码视频| 熟妇人妻无乱码中文字幕真矢织江| 婷婷六月在线| 国产午夜精品一区二区三| 亚洲精品自在线拍| 久久精品亚洲中文字幕乱码| 波多野结衣视频一区二区| 日本精品一在线观看视频| 成人国产精品2021| 超碰免费91| 国产成人8x视频一区二区| 国产视频自拍一区| 亚洲永久色| 国产日韩久久久久无码精品| 伊大人香蕉久久网欧美| 中文成人在线视频| 在线国产91| 亚洲成aⅴ人在线观看| 免费人成在线观看视频色| 丁香婷婷激情综合激情|