999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

三維軸對稱駐點流系統的一些研究

2011-06-29 06:13:28張明捷黨龍飛徐艷芝
成都信息工程大學學報 2011年6期
關鍵詞:數學

張明捷, 黨龍飛, 徐艷芝

(成都信息工程學院數學學院,四川成都610225)

1 Introduction

In this paper,we are concerned with the following third order differential equations arising in the boundary layer theory

with boundary conditions

Which has been used to describe the 3D axisymmetric inviscid stagnation flow[1,2].A solution of(1)~(3)is called a similarity solution.The two-dimensional case,λ=g=0,was solved by Hiemenz[3].The axisymmetric stagnation flow towards a plate,λ=1 and g=f,was solved by Homann[4].Howarth[5]studied the case 0<λ<1 which can be applied to the stagnation region of an ellipsoid.Davey[6]investigated the stagnation region near a saddle point(-1<λ<0).For λ≤-1 the vorticity generated is not confined in the boundary layer and the existence of solutions cannot be shown[2].Up to now,there is a little study on the case of λ≤-1.

Utilizing the integral methods[7,8],Du Hauang and Zhang[9]presented a system of two integral equations on the case of λ<0 and obtained some properties and a non-existence result of(1)~ (3)on the case of λ<-4.

In this paper,we shall study(1)~ (3)for the case of λ∈ R and λ≠0,we shall obtain further results on(1)~(3)and a new non-existence result on the case of λ≤-1.

2 Positive solutions of a system of two integral equations

In[9],Du,Hauang,Zhang presented a system of two integral equations

Where G0,1(t,s)denotes the Green function for u″(t)=0 with u(0)=0 and u(1)=0 defined by

They obtained the following results:

(i)For λ<0(1)~(3)has a solution in∑if and only if(4)~(5)has a positive solution

(ii)For λ<-4(1)~(3)has no solution in ∑.

In this paper,let

and

Theorem1 If(λ,z,w)∈(-∞,+∞)×Q is a solution of(4)~(5),then

(iii)w(0)=0,w(1)=1 and w(t)≥-1 for t∈[0,1]if λ<0 and w(t)≤1 for t∈[0,1]if λ>0.

(i)Firstly,we prove z(t)=0.

If z(1)≠0,then z(t)≠0,t∈[0,1].

By the continuity of z(t),then m=min{z(t),t∈[0,1]}>0.From this and λ>0,we obtain by(4)

This implies

a contradiction.Hence,(i)holds.

Since z(t)>0 for t∈(0,1),we have

Integrating this inequality from 0 to ξ,we have

From this we obtain

Letting ξ→1-in the last inequality,we have,which contradicts∞.Thus,(ii)holds.

(iii)Letting t=0 and t=1 in(5),we have w(0)=0 and w(1)=1.

If λ>0 and there exist t0∈[0,1]such that w(t0)>1.Since w(0)=0,and w(1)=1,there must be exist t*∈(0,1)such that w(t*)=max{w(t):t∈[0,1]}and w(t*)>1.

By(5),we have

Reamrk1 Since we do not assume λ<0 and Q ?Q*,hence Theorem 1 in[9]is improved.

Utilizing the solutions of(z,w)∈Q*,we may construct the solutions of(1)~(3)and then the use of(4)~(5)is expanded.

Theorem2 If(z,w)∈Q*is a solution of(4)~(5),then(1)~(3)has a solution(f,g).

Proof.Let(z,w)∈Q*be a solution of(4)~(5).By Theorem 1(ii),we have

Let

Then η(t)is strictly increasing on[0,1)and

Let t=h(η)be the inverse function to η=η(t),we define the function

Then

and

From(6),we have

Differentiating(7)with respect to η,we have

Then f″(η)>0 for 0≤η<+∞.

Differentiating(8)with respect to η,we have

Differentiating(4)with respect to t,we have

By setting s=f′(α)and utilizing t=f′(η)and(8),we have

By(8)~(11),we have

Combing(10)and(11),we obtain

This completes the proof.

3 A non-existence result on(1)~(3)

Let

Lemma1 Let λ<0.If(f,g)∈Γis a solution of(1)~(3),then g″(∞)=0.

Proof.Since g′(+∞)=1,we have

Since(1)~(3),we have g?(0)=-λ,and λ<0.then g?(0)>0 and g″(η)>0.we have ?η*,such that g″(η)is increasing on[0,η*].(12)implies that there exists η0∈[η*,+∞)such that g″(η0)<g″(η*).Then we prove that g″(η)is decreasing on(η0,+∞).If there must exist η1,η2∈[ η0,+∞)with η1<η2such that g″(η1)<g″(η2).So let ?η∈[ η*,η2]such that g″(?η)=min{g″(η):η∈[ η*,η2]}.This implies g?(?η)=0 and g(4)(?η)≥0.

Differentiating(2)with η,we have

then

By(f,g)∈Γand λ<0,we have g(4)(?η)≤0,a contradiction.Hence g″(η)is decreasing on[ η0,+∞)and thenexists.By(12),we obtain g″(∞)=0.

Theorem3 If λ≤-1,then(1)~ (3)has no solution in Γ.

Proof.The proof is by a contradiction.If(1)~ (3)has a solution(f,g)in Γ,then g″>0.

Let η:=η(t)=(g′)-1(t)for t∈[0,1)be the inverse function to t=g′(η):[0,∞)→[0,1).It follows that g′is strictly increasing with[0,+∞)and η(t)=(g′)-1(t):[0,1)→[0,∞)with(g′)-1(0)=0

Let x(t)=g″(η)>0 for t∈[0,1),by Lemma 1,x(1)=.This implies that x(t)>0 for t∈[0,1)and x is continuous on[0,1).By Lemma 1,we see that x is continuous from the left at 1.Hence,we have x(t)∈C[0,1]and x(1)=0.

Using the Chain Rule to x(t)=g″(η),we obtainand by the Inverse Function Theorem,we have

This,together with g′(η)=t,implies

Integrating the last equality from 0 to t implies

Let y(t)=f′(η)for t∈[0,1),y(1)=1,then y(t)∈ C[0,1)and 0≤y(t)≤1.Notice thatwe have

Substituting g,g′,g″,g?and f into(2)implies

Integrating(13)from t to 1,we have

By x(1)=0,then

we have

Reamrk2 Theorem 12 improves non-existence result of(1)~ (3)in[6]from λ<-1 to λ≤-1.

[1]C Y Wang.Axisymmetric stagnation flow on a cylinder[J].Quart.Appl.Math.1974,32:207-213.

[2]C Y Wang.Similarity stagnation point solutions of the Navier-Stokes equations-review and extension[J].European Journal of Mechanics B/Fluids,2008,27:678-683.

[3]K Hiemenz.Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder[J].Dinglers Polytech.J,1911,326:321-324.

[4]F Homann.Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel[J].Z.Angew.Math.Mech.,1936,16:153-164.

[5]L Howarth.The boundary layer in three dimensional flow-Part∏.The flow near a stagnation point,Philos[J].Mag.Ser.,1951,742:1433-1440.

[6]A Davey.A boundary layer flow at a saddle point of attachment[J].J.Fluid.Mech.,1961,10:593-610.

[7]G C Yang.Existence of solutions of laminar boundary layer equations with decelerating external flows[J].Nonlinear Analysis,2010,72:2063-2075.

[8]K Q Lan,G C Yang.Positive solutions of the Falker-Skan equation arising in boundary layer theory[J].Canad.Math.Bull.,2008,51(3):386-398.

[9]C Du,S J Huang,M J Zhang.On 3D axisymmetric inviscid stagnation flow related to Navier-Stokes equations[J].Nonlinear Analysis Form,2011,16:67-75.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 日本一区中文字幕最新在线| 亚洲视频二| 国产乱论视频| 欧美色视频网站| 欧美成一级| 伊人国产无码高清视频| 国产无码精品在线| 97人人做人人爽香蕉精品| 亚洲v日韩v欧美在线观看| 亚洲国产精品一区二区高清无码久久| 国产欧美一区二区三区视频在线观看| 国产99在线观看| 99久久国产自偷自偷免费一区| 97视频在线观看免费视频| 91年精品国产福利线观看久久| 亚洲色图在线观看| 青青网在线国产| 成人永久免费A∨一级在线播放| 97视频精品全国在线观看| 女人18一级毛片免费观看| 亚洲乱码视频| 国产精品久久久久鬼色| 中文字幕乱码二三区免费| 精品一区二区三区自慰喷水| 国产精品国产三级国产专业不| 黄色网站不卡无码| 999精品免费视频| 99精品影院| 精品视频一区在线观看| 国产成人精品第一区二区| 亚洲精品国偷自产在线91正片| 无码专区国产精品一区| 伊人蕉久影院| 在线无码私拍| 99精品欧美一区| 亚洲精品第一在线观看视频| 亚洲欧洲日本在线| 毛片手机在线看| 热这里只有精品国产热门精品| 亚洲视频四区| a毛片在线播放| 日韩一区二区在线电影| 看你懂的巨臀中文字幕一区二区| 亚洲天堂高清| 操国产美女| 欧美亚洲另类在线观看| 韩日午夜在线资源一区二区| 国产高清在线精品一区二区三区 | 黑人巨大精品欧美一区二区区| 亚洲国产AV无码综合原创| 全午夜免费一级毛片| 亚洲IV视频免费在线光看| 欧美精品高清| 日韩精品成人在线| 2022国产91精品久久久久久| 狠狠干欧美| 欧美一级高清片欧美国产欧美| 国产成+人+综合+亚洲欧美| 精品免费在线视频| 亚洲精品国产精品乱码不卞| 日韩激情成人| 国产噜噜噜| 97视频免费在线观看| 欧洲极品无码一区二区三区| 亚洲视频四区| 国内精品久久人妻无码大片高| 男人的天堂久久精品激情| 一级毛片在线免费视频| 国产精品久久久久无码网站| 91人人妻人人做人人爽男同| 亚洲男人天堂2020| 91国内在线视频| 蜜桃视频一区二区三区| 亚洲午夜国产片在线观看| 999精品在线视频| 久久黄色影院| 日韩在线中文| 97视频在线精品国自产拍| 91福利在线观看视频| 国产拍揄自揄精品视频网站| 欧美a级在线| 欧美亚洲第一页|