馬青山,余占橋,韓冰,張日俊
中國農(nóng)業(yè)大學(xué)飼料生物技術(shù)實驗室 動物營養(yǎng)學(xué)國家重點實驗室,北京 100193
抗菌肽融合表達研究進展
馬青山,余占橋,韓冰,張日俊
中國農(nóng)業(yè)大學(xué)飼料生物技術(shù)實驗室 動物營養(yǎng)學(xué)國家重點實驗室,北京 100193
抗菌肽抗菌譜廣、活性穩(wěn)定,且具有與抗生素不同的抗菌機制,在抑殺病原微生物的同時不易產(chǎn)生耐藥性,因而在食品、飼料、醫(yī)藥等領(lǐng)域具有重要的應(yīng)用價值。基因工程技術(shù)是降低抗菌肽生產(chǎn)成本的主要方式,其中融合表達在提高抗菌肽產(chǎn)量方面起到了重要作用。文中綜述了抗菌肽融合表達的國內(nèi)外研究進展,探討了部分融合標簽用于抗菌肽表達的策略,并對今后的發(fā)展提出了自己的看法。
抗菌肽,基因工程技術(shù),融合表達
抗菌肽是由生物細胞通過核糖體合成機制產(chǎn)生的一類具有抗菌活性的多肽或蛋白質(zhì),按來源可分為哺乳動物抗菌肽、昆蟲抗菌肽、魚類抗菌肽、蛙類抗菌肽、植物抗菌肽和微生物抗菌肽 (細菌素);按結(jié)構(gòu)特點可分為 α-螺旋型抗菌肽、β-折疊型抗菌肽、具有片層結(jié)構(gòu)的抗菌肽和具有環(huán)狀結(jié)構(gòu)的抗菌肽[2]。抗菌肽抗菌譜廣,且有著不同于傳統(tǒng)抗生素的抗菌機制,一般由20~60個氨基酸殘基組成,分子量約為2~7 kDa,通常為陽離子形式存在,具有強堿性,同時具有熱穩(wěn)定性和較寬的pH耐受范圍等特點,許多抗菌肽在100 ℃加熱10 min后仍能保持一定活力[3]。
抗菌肽在體內(nèi)可以通過自身的免疫機制來抵御環(huán)境中容易侵染宿主的病原微生物[4-5],而且近年研究發(fā)現(xiàn),某些抗菌肽同時具有選擇殺傷腫瘤細胞[6]、抑制HBV、HIV等病毒的復(fù)制等功能,且抗菌肽僅作用于原核細胞和發(fā)生病變的真核細胞,對正常的真核細胞幾乎無作用[7-8]。
迄今為止,大約有 2 000多種抗菌肽已經(jīng)被分離出來,部分已應(yīng)用于畜牧業(yè)、食品加工業(yè)、醫(yī)療衛(wèi)生業(yè)等行業(yè)[9],但由于生產(chǎn)成本居高不下,制約了抗菌肽大規(guī)模應(yīng)用。同天然提取及化學(xué)合成法相比,通過生物表達系統(tǒng)異源表達抗菌肽顯著降低了生產(chǎn)成本,具有良好的應(yīng)用前景[10]。但由于抗菌肽一般是一些陽離子小分子多肽,極易在蛋白酶的作用下降解,而且表達產(chǎn)物往往對宿主細胞有毒性作用,易造成宿主細胞的死亡,因此,為了降低抗菌肽對宿主細胞的毒性,同時提高其表達量、簡化分離純化過程,抗菌肽的異源表達經(jīng)常融合一些蛋白標簽,其作用類似于天然抗菌肽產(chǎn)生過程中能夠保護抗菌肽及宿主菌的前導(dǎo)肽部分[11]。抗菌肽融合表達經(jīng)常使用的融合標簽如下:谷胱甘肽硫轉(zhuǎn)移酶 (Glutathione S-transferase)[12-14],硫氧化還原蛋白 (Thioredoxin)[15-17],綠色熒光蛋白 (Green fluorescent protein)[18-19],Protein PaP3.30[20],外殼蛋白 (Site-mutated coat protein)[21-22],類彈性蛋白(Elastin-like polypeptides)[23-25],CMP-3-脫氫-D-甘露-辛酮糖酸合成酶 (CMP-KDO synthetase)[26],酮類固醇異構(gòu)酶 (Ketosteroid isomerase)[27],小分子泛素樣修飾蛋白 (Small ubiquitin-related modifier)[28-29]等(見表1)。
以上標簽與抗菌肽融合表達最終是為了獲取抗菌肽,因此需要將融合蛋白進行切割,進一步分離純化出抗菌肽。近年,亦有部分研究者將抗菌肽與其他功能蛋白融合表達,使融合蛋白具有雙功能特性,融合蛋白即是目的蛋白,不需進一步分離。Pan等將具有免疫原性的Ag85B基因與α2b干擾素基因在酵母中融合表達,在發(fā)酵上清中檢測到了具有抗病毒活性的融合蛋白,該融合蛋白可能同時實現(xiàn)Ag85B刺激產(chǎn)抗體功能及α干擾素的抗病毒和免疫調(diào)節(jié)因子功能[30]。

表1 抗菌肽融合表達統(tǒng)計表Table 1 Antimicrobial peptides expressed as fusion proteins

續(xù)表1
抗菌肽融合蛋白標簽的選擇常遵循以下原則:1) 融合蛋白標簽的分子量最好為抗菌肽的3~4倍,這樣將有利于后期抗菌肽的分離、純化。2) 等電點至少高于或低于抗菌肽等電點 2個 pH單位。Wei等選擇等電點為 5.83的桿狀病毒多角體蛋白(Baculoviral Polyhedrin Protein) 作為融合蛋白標簽,表達等電點為8.24的抗菌肽Halocidin,獲得占菌體蛋白 30%、純度 90%以上的目的抗菌肽[37]。3) 由于目前發(fā)現(xiàn)的抗菌肽多具有陽離子性質(zhì),所以可選擇酸性的融合蛋白標簽以中和其正電荷,以降低對宿主菌的毒性[38]。Wang等將抗菌肽HKABF與酸性前導(dǎo)肽融合表達,而后利用腸激酶進行切割,發(fā)現(xiàn)表達的重組抗菌肽顯示出良好的抑菌活性[10]。4) 融合蛋白標簽同抗菌肽的融合位點應(yīng)存在化學(xué)試劑或蛋白酶特異切割位點,以便抗菌肽的活性恢復(fù)及后續(xù)的分離純化[39]。5) 對表達宿主無害。Rao等以綠膿桿菌噬菌體蛋白 PaP3.30為融合蛋白標簽,該蛋白完全滿足上述 5個條件,將該蛋白的編碼基因連接入pQE-32構(gòu)建成大腸桿菌表達載體pQE-PaP30,成功實現(xiàn)了6種抗菌肽hPAB-β、MSI-78、蜂毒素、天蠶素 A、一種來源于羊的陰離子多肽在大腸桿菌中的高效表達[20]。
如前所述,降低抗菌肽對表達宿主的毒性作用及被蛋白酶降解的程度,同時簡化后續(xù)的分離純化工作是選擇融合蛋白標簽的主要目的[27],通過對最新文獻檢索發(fā)現(xiàn),抗菌肽融合蛋白標簽的使用主要集中在硫氧化還原蛋白 (Trx)、谷胱甘肽硫轉(zhuǎn)移酶(GST) 等 (表 2),而表達宿主主要是大腸桿菌表達系統(tǒng) (表3)。
硫氧化還原蛋白是一類存在于細菌、植物及動物等多種生物體內(nèi)的耐熱蛋白[41],作為E. coli核苷酸還原酶的電子供體第一次被發(fā)現(xiàn)[42],相對分子質(zhì)量為17 kDa,溶解度很高,大腸桿菌中最高表達量可達到菌體蛋白總量的40%。由于Trx融合蛋白不僅能夠增加重組蛋白的可溶性,降低重組蛋白被宿主蛋白酶降解的機率,而且能夠催化胞質(zhì)中重組蛋白二硫鍵的形成[43],所以目前利用Trx蛋白融合表達的重組抗菌肽數(shù)目遠多于使用其他融合標簽[40]。但是,由于 Trx融合蛋白標簽不能用專門的親和基質(zhì)純化,所以融合蛋白構(gòu)建時最好與可用于純化的小親和標簽聯(lián)用,如 6×His標簽。Bang等將抗菌肽hin/MSH與6×His-Trx蛋白融合表達,發(fā)現(xiàn)融合蛋白占菌體總蛋白的 20%以上,并且 50%以上以可溶形態(tài)存在,后期通過 Ni柱親和層析純化及腸激酶切割復(fù)性,重組抗菌肽產(chǎn)量達210 mg/L,且具有良好的抗菌活性[31]。另外,Wang等利用Trx融合蛋白系統(tǒng)表達人源防御素-4,融合蛋白占菌體蛋白量高達60%,切割純化后目標蛋白產(chǎn)量達102 mg/L,且具有良好的生物活性[30]。值得注意的是在使用Trx融合蛋白時采用低溫誘導(dǎo)能夠提高融合抗菌肽的可溶性[44]。至于切割方式的選擇,不同的研究有著不同的結(jié)果,大部分研究認為酶切是比較有效的切割方式,但也有些研究表明化學(xué)切割效率更高[45-48]。
GST融合表達是將谷胱甘肽S轉(zhuǎn)移酶與目標蛋白以融合蛋白的方式進行外源表達,融合蛋白可從未經(jīng)處理的裂解液中用固定化的谷胱甘肽瓊脂糖親和層析加以純化,結(jié)合的融合蛋白在非變性條件下用10 mmol/L還原型谷胱甘肽進行洗脫[49],融合蛋白通過位點專一的蛋白酶如凝血酶或 Xa-因子切除GST部分,獲得目的蛋白。由于GST標簽有助于保護重組蛋白免受胞外蛋白酶的降解,提高其穩(wěn)定性、可溶性,并且通過親和層析簡化后續(xù)的純化工作,所以抗菌肽同GST標簽融合表達將顯著提高其表達量、降低生產(chǎn)成本。本研究組利用GST標簽表達植物乳桿菌素PlnE和PlnF,經(jīng)親和層析純化后,獲得2種產(chǎn)量高達30%的純品融合蛋白,表明此種融合表達對宿主不會產(chǎn)生毒害作用,但酶切后未檢測到抑菌活性,這可能是由于酶切后PlnE和PlnF摩爾配比未達到最佳造成,不過值得肯定的是GST標簽在表達對宿主細胞有毒害作用的蛋白中發(fā)揮的重要作用[50]。另外,F(xiàn)an等將4.7 kDa的抗菌肽PR-39與 GST標簽融合表達,通過谷胱甘肽瓊脂糖親和層析純化及腸激酶切割,獲得具有抗菌活性目的蛋白 1.9 mg/L[13]。但是,也有研究發(fā)現(xiàn)將抗菌肽CecropinB和 GST標簽融合表達后造成了宿主細胞
E. coli的死亡,這可能是由于融合蛋白具有殺傷原核細胞的作用[51],形成包涵體或者利用真核細胞表達系統(tǒng)可能是解決這一問題的一個途徑。GST融合蛋白標簽表達抗菌肽的另一個問題是由于其分子量比較大 (27 kDa),而抗菌肽通常是小分子量多肽,這樣會造成抗菌肽在融合蛋白中比例偏低,降低表達效率[40]。

表2 抗菌肽融合表達標簽使用情況統(tǒng)計表Table 2 Tags for fusion expression of antimicrobial peptides

表3 重組抗菌肽不同表達宿主使用情況統(tǒng)計表Table 3 Antimicrobial peptides expressed with different host
最近,一種新型的表達系統(tǒng)漸漸發(fā)展了起來,即將小分子泛素樣修飾蛋白基因與目的蛋白基因連接,組成融合表達載體進行表達。SUMO是一種同泛素結(jié)構(gòu)類似但功能不同的小分子量蛋白質(zhì) (大約由 100個氨基酸組成),能夠幫助目的蛋白正確折疊,由于其具有疏水的核心及親水的表面,可明顯提高目的蛋白的可溶性及表達量[52]。融合蛋白表達出來后,經(jīng)過特異性的SUMO蛋白酶進行切割,不同于其他的蛋白酶,SUMO蛋白酶能夠特異識別SUMO的三級結(jié)構(gòu),這樣就能夠完全避免對目的抗菌肽的切割,使酶切后的目的蛋白具有天然的 N端,這對于保持抗菌肽活性至關(guān)重要[53-55]。另外,同Trx融合標簽類似,SUMO融合標簽分子量比較小 (12 kDa),提高了目的肽在融合蛋白中的比例,這對提高抗菌肽的產(chǎn)量比較有利。基于以上優(yōu)點,SUMO表達系統(tǒng)表達抗菌肽獲得比較理想的效果,在我們目前的研究工作中,利用大腸桿菌SUMO表達系統(tǒng)表達細菌素 Lactin Q,融合蛋白 6×His SUMO-Lactin Q主要以可溶形態(tài)存在,過 Ni-NTA柱純化后,其產(chǎn)量約為 110 mg/L,融合蛋白經(jīng)SUMOase切割后,發(fā)現(xiàn)重組Lactin Q對金黃色葡萄球菌有明顯抑制作用。Li等利用大腸桿菌SUMO表達系統(tǒng)表達天蠶抗菌肽ABP-CM4、人源防御素-4,表達量分別達到48 mg/L、166 mg/L,并且抗菌活性與天然抗菌肽相當[28,32]。Chen等構(gòu)建枯草芽胞桿菌SUMO表達系統(tǒng)并用其表達重組抗菌肽 Cecropin AD,產(chǎn)量達到30.6 mg/L,對金黃色葡萄球菌的MICs (Minimal inhibitory concentrations,最小抑菌濃度)僅為0.2 μg/mL[56]。總的來看,SUMO融合表達抗菌肽的報道還不是很多,但隨著商品化的SUMO表達載體的開發(fā),SUMO融合表達系統(tǒng)以其高的表達量、簡單高效的純化方式,必將在抗菌肽生產(chǎn)中發(fā)揮重要作用。
隨著新型融合標簽表達系統(tǒng)的不斷開發(fā),抗菌肽融合表達越來越受到研究者的青睞,同Trx、GST及SUMO等標簽融合表達能夠顯著提高重組抗菌肽可溶性、產(chǎn)量;簡化分離純化過程;降低生產(chǎn)成本,但不同抗菌肽表達結(jié)果不同。為提高其產(chǎn)量及活性,需進行融合標簽同表達載體及菌株等的優(yōu)化組合并進行相關(guān)的遺傳設(shè)計與改造,同時需對溫度、pH、培養(yǎng)基組成等表達條件進行優(yōu)化。
從長遠來看,在抗菌肽融合表達研究方面,如何進一步提高產(chǎn)量及進一步降低分離純化成本仍是需要解決的主要問題,串聯(lián)表達目的抗菌肽及構(gòu)建分泌型表達載體或許是解決這一問題的新途徑。隨著技術(shù)的發(fā)展,越來越多的融合標簽系統(tǒng)用于抗菌肽的異源表達,使低成本大量生產(chǎn)抗菌肽成為可能。在細菌耐藥性日益嚴重的今天,抗菌肽的應(yīng)用將在醫(yī)學(xué)、食品衛(wèi)生、畜牧行業(yè)中發(fā)揮重要的作用。
REFERENCES
[1] Makovitzki A, Avrahami D, Shai Y. Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA, 2006, 103(43): 15997?16002.
[2] Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol, 2005, 3(3): 238?250.
[3] Svetoch EA, Eruslanov BV, Perelygin VV, et al. Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. J Agric Food Chem, 2008, 56(6): 1942?1948.
[4] Kagan BL, Selsted ME, Ganz T, et al. Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA, 1990, 87(1): 210?214.
[5] Sugiarto H, Yu PL. Avian antimicrobial peptides: the defense role of β-defensins. Biochem Biophys Res Commun, 2004, 323(3): 721?727.
[6] Rajanbabu V, Chen JY. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides, 32(2): 415?420.
[7] Dean RE, O'Brien LM, Thwaite JE, et al. A carpet-based mechanism for direct antimicrobial peptide activity against vaccinia virus membranes. Peptides, 2010, 31(11): 1966?1972.
[8] Wachinger M, Kleinschmidt A, Winder D, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol, 1998, 79(4): 731?740.
[9] Lazarev VN, Govorun VM. Antimicrobial peptides and their use in medicine. Appl Biochem Microbiol, 2010, 46(9): 803?814.
[10] Wang L, Lai CE, Wu QF, et al. Production and characterization of a novel antimicrobial peptide HKABF by Pichia pastoris. Process Biochem, 2008, 43(10): 1124?1131.
[11] Vassilevski AA, Kozlov SA, Grishin EV. Antimicrobial peptide precursor structures suggest effective production strategies. Recent Pat Inflamm Allergy Drug Discov, 2008, 2(1): 58?63.
[12] Ouyang P, Gao Y, Lei LC, et al. Prokaryotic expression and antimicrobial activity of human lysozymetachyplesins fusion protein. Chin J Biologicals, 2010, 23(8): 829?833.
[13] Fan F, Wu Y, Liu J. Expression and purification of two different antimicrobial peptides, PR-39 and Protegrin-1 in Escherichia coli. Protein Expr Purif, 2010, 73(2): 147?151.
[14] Feng XJ, Liu CL, Guo JY, et al. Expression and purification of an antimicrobial peptide, bovine lactoferricin derivative LfcinB-W10 in Escherichia coli. Curr Microbiol, 2010, 30(3): 179?184.
[15] Wang LN, Yu B, Han GQ, et al. Molecular cloning, expression in Escherichia coli of Attacin A gene from Drosophila and detection of biological activity. Mol Biol Rep, 2010, 37(5): 2463?2469.
[16] Jing XL, Luo XG, Tian WJ, et al. High-level expression of the antimicrobial peptide plectasin in Escherichia coli. Curr Microbiol, 2010, 61(3): 197?202.
[17] Krahulec J, Hyr?ováM, Pepeliaev S, et al. High level expression and purification of antimicrobial human cathelicidin LL-37 in Escherichia coli. Appl Microbiol Biotechnol, 2010, 88(1): 167?175.
[18] Skosyrev VS, Rudenko NV, Yakhnin AV, et al. EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expr Purif, 2003, 27(1): 55?62.
[19] Lin CY, Yang PH, Kao CL, et al. Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish. Fish Shellfish Immun, 2010, 28(3): 419?427.
[20] Rao XC, Li S, Hu JC, et al. A novel carrier molecule for high-level expression of peptide antibiotics in Escherichia coli. Protein Expr Purif, 2004, 36(1): 11?18.
[21] Cheng XW, Lu WG, Zhang SQ, et al. Expression and purification of antimicrobial peptide CM4 by Nprofusion technology in E. coli. Amino Acids, 2010, 39(5): 1545?1552.
[22] Zhang Z, Ke T, Zhou Y, et al. High expression of antimicrobial peptide Cecropin AD in Escherichia coli by fusion with EDDIE. Chin J Biotechnol, 2009, 25(8): 1247?1253.
[23] Hu F, Ke T, Li X, et al. Expression and purification of an antimicrobial peptide by fusion with elastin-like polypeptides in Escherichia coli. Appl Biochem Biotechnol, 2010, 160(8): 2377?2387.
[24] Guo CY, Diao H, Lian YD, et al. Recombinant expression and characterization of an epididymis-specific antimicrobial peptide BIN1b/SPAG11E. J Biotechnol, 2009, 139(1): 33?37.
[25] Hu F, Ke T, Li X, et al. Expression and purification of the antimicrobial polypeptide by fusion with elastin-like polypeptide. J Mol Cell Biol, 2008, 41(3): 233?237.
[26] Peng H, Yang M, Huang WS, et al. Soluble expression and purification of a crab antimicrobial peptide scygonadin in different expression plasmids and analysis of its antimicrobial activity. Protein Expr Purif, 2010, 70(1): 109?115.
[27] Sun YL, Kuan TC, Lin YJ, et al. Construction and expression of rabbit neutrophil peptide-1 gene in Escherichia coli. Ann Microbiol, 2010, 60(2): 329?334.
[28] Li JF, Zhang J, Zhang Z, et al. SUMO mediating fusion expression of antimicrobial peptide CM4 from two joined genes in Escherichia coli. Curr Microbiol, 2010, 62(1): 296?300.
[29] Bommarius B, Jenssen H, Elliott M, et al. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides, 2010, 31(11): 1957?1965.
[30] Pan Y, Gao BY, Wang HH, et al. Fusion expression of genes IFNα2b and Ag85B in Pichia pastoris. J Fudan Univ: Nat Sci, 2005, 4(4): 511?516.潘穎, 高卜渝, 王洪海, 等. α2b干擾素基因與Ag85B基因在畢赤氏酵母中的融合表達. 復(fù)旦學(xué)報: 自然科學(xué)版, 2005, 4(4): 511?516.
[31] Bang SK, Kang CS, Han MD, et al. Expression of recombinant hybrid peptide hinnavin II/β-melanocytestimulating hormone in Escherichia coli: Purification and characterization. J Microbiol, 2010, 48(1): 24?29.
[32] Li JF, Zhang J, Zhang Z, et al. Production of bioactive human beta-defensin-4 in Escherichia coli using SUMO fusion partner. Protein J, 2010, 29(5): 314?319.
[33] Shen Y, Ai HX, Song R, et al. Expression and purification of moricin CM4 and human β-defensins 4 in Escherichia coli using a new technology. Microbiol Res, 2010, 165(8): 713?718.
[34] Upadhyay SK, Saurabh S, Rai P, et al. SUMO fusion facilitates expression and purification of garlic leaf lectin but modifies some of its properties. J Biotechnol, 2010, 146(1/2): 1?8.
[35] Wang AP, Su YP, Wang S, et al. High efficiency preparation of bioactive human α-defensin 6 in Escherichia coli Origami (DE3) pLysS by soluble fusion expression. Appl Microbiol Biotechnol, 2010, 87(5): 1935?1942.
[36] Wang YL, Jiang Y, Gong TX, et al. High-level expression and novel antifungal activity of mouse beta defensin-1 mature peptide in Escherichia coli. Appl Biochem Biotechnol, 2010, 160(1): 213?221.
[37] Wei Q, Kim YS, Seo JH, et al. Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl Environ Microbiol, 2005, 71(9): 5038?5043.
[38] Lee JH, Kim JH, Hwang SW, et al. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem Biophys Res Commun, 2000, 277(3): 575?580.
[39] Haught C, Davis GD, Subramanian R, et al. Recombinant production and purification of novel antisense antimicrobial peptide in Escherichia coli. Biotechnol Bioeng, 1998, 57(1): 55?61.
[40] Li YF. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem, 2009, 54(1): 1?9.
[41] Hlavac F, Rouer E. Expression of the protein-tyrosine kinase p56lck by the pTRX vector yields a highly soluble protein recovered by mild soni-cation. Protein Expr Purif, 1997, 11(3): 227?232.
[42] Laurent TC, Moore EC, Reichard P. Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli. J Biol Chem, 1964, 239: 3436?3444.
[43] Stewart EJ, ?slund F, Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J, 1998, 17(19): 5543?5550.
[44] Gagliardo B, Faye A, Jaouen M, et al. Production of biologically active forms of recombinant hepcidin, the iron-regulatory hormone. FEBS J, 2008, 275(15): 3793?3803.
[45] Li YF, Li X, Wang GS. Cloning, expression, isotope labeling, and purification of human antimicrobial peptide LL-37 in Escherichia coli for NMR studies. Protein Expr Purif, 2006, 47(2): 498?505.
[46] Li BC, Zhang SQ, Dan WB, et al. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABP-CM4 from the Chinese silk worm, Bombyx mori. Biotechnol Lett, 2007, 29(7): 1031?1036.
[47] Li YF, Li X, Li H, et al. A novel method for purifying recombinant human host defense cathelicidin LL-37 by utilizing its inherent property of aggregation. Protein Expr Purif, 2007, 54(1): 157?165.
[48] Gibbs GM, Davidson BE, Hillier AJ. Novel expression system for large-scale production and purification of recombinant class IIa bacteriocins and its application to piscicolin 126. Appl Environ Microbiol, 2004, 70(6): 3292?3297.
[49] Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol, 2003, 60(5): 523?533.
[50] Yang F, Yu ZQ, Zhang RJ. Heterologly expression of plantaricin genes PlnE and PlnF in E. coli. Chin Anim Husb Vet Med, 2010, 37(12): 55?60.楊芳, 余占橋, 張日俊. 乳酸菌素基因PlnE和PlnF在大腸桿菌中的異源表達. 中國畜牧獸醫(yī), 2010, 37(12): 55?60.
[51] Hu YL, Hu TS, Lin SK, et al. The site-directed mutagenesis and expressing of Cecropin B Gene. Pharm Biotechnol, 1999, 6(4): 193?197.胡云龍, 胡泰山, 林世康, 等. Cecropin B抗菌肽基因的定向誘變與表達. 藥物生物技術(shù), 1999, 6(4): 193?197.
[52] Sun Z, Xia Z, Bi F, et al. Expression and purification of human urodilatin by small ubiquitin-related modifier fusion in Escherichia coli. Appl Microbiol Biotechnol, 2008, 78(3): 495?502.
[53] Bayer P, Arndt A, Metzger S, et al. Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol, 1998, 280(2): 275?286.
[54] Butt TR, Edavettal SC, Hall JP, et al. SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif, 2005, 43(1): 1?9.
[55] Zuo X, Mattern MR, Tan RB, et al. Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expr Purif, 2005, 42(1): 100?110.
[56] Chen X, Zhu F, Cao Y, et al. Novel expression vector for secretion of cecropin AD in Bacillus subtilis with enhanced antimicrobial activity. Antimicrob Agents Chemother, 2009, 53(9): 3683?3689.
Research progress in fusion expression of antimicrobial peptides
Qingshan Ma, Zhanqiao Yu, Bing Han, and Rijun Zhang
Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
Antimicrobial peptides (AMPs) are of great significance in the field of food, feed and medicine due to their wide spectrum of antimicrobial activity and new mechanism of action different from conventional antibiotics. AMPs production from natural sources is usually limited, and chemical synthesis is not economically practical, especially for the production of long peptides. Therefore, heterologous expression of AMPs has been widely studied as an alternative, and fusion expression plays an important role in increasing production. The present review mainly focuses on the types and bioactivities of AMPs. In addition, the recent strategies to the most commonly used carrier proteins for fusion expression of AMPs and prospects for future research were also discussed.
antimicrobial peptides, genetic engineering, fusion expression
目前,細菌、真菌對抗生素產(chǎn)生的耐藥性正在以驚人的速度增加,如近些年出現(xiàn)的超級細菌,這引起了全世界對現(xiàn)有抗生素藥物療效的普遍擔憂[1],新型抗生素替代品的開發(fā)迫在眉睫。抗菌肽因其優(yōu)良的抗菌特性和安全性有望成為抗生素的理想替代品。
March 11, 2011; Accepted: June 7, 2011
Supported by:National Natural Science Foundation of China (No. 30972124).
Rijun Zhang. Tel: +86-10-62731208; E-mail: zhangrj621@yahoo.com.cn
國家自然科學(xué)基金 (No. 30972124) 資助。