韓殿龍 程志武 周曉東
(黑龍江省蘭西縣電業局,黑龍江 蘭西 151500)
微機保護經過近20年的應用、研究和發展,已經在電力系統中取得了巨大的成功,并積累了豐富的運行經驗,產生了顯著的經濟效益,大大提高了電力系統運行管理水平。近年來,隨著計算機技術的飛速發展以及計算機在電力系統繼電保護領域中的普遍應用,新的控制原理和方法被不斷應用于計算機繼電保護中,以期取得更好的效果,從而使微機繼電保護的研究向更高的層次發展,其未來趨勢向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
在計算機領域,發展速度最快的當屬計算機硬件,按照著名的摩爾定律,芯片上的集成度每隔18~24個月翻一番。其結果是不僅計算機硬件的性能成倍增加,價格也在迅速降低。微處理機的發展主要體現在單片化及相關功能的極大增強,片內硬件資源得到很大擴充,單片機與DSP芯片二者技術上的融合,運算能力的顯著提高以及嵌入式網絡通信芯片的出現及應用等方面。這些發展使硬件設計更加方便,高性價比使冗余設計成為可能,為實現靈活化、高可靠性和模塊化的通用軟硬件平臺創造了條件。硬件技術的不斷更新,使微機保護對技術升級的開放性有了迫切要求。網絡特別是現場總線的發展及其在實時控制系統中的成功應用充分說明,網絡是模塊化分布式系統中相互聯系和通信的理想方式。如基于網絡技術的集中式微機保護,大量的傳統導線將被光纖取代,傳統的繁瑣調試維護工作將轉變為檢查網絡通信是否正常,這是繼電保護發展的必然趨勢。微機保護設計網絡化,將為繼電保護的設計和發展帶來一種全新的理念和創新,它會大大簡化硬件設計、增強硬件的可靠性,使裝置真正具有了局部或整體升級的可能。
繼電保護的作用不只限于切除故障元件和限制事故影響范圍(這是首要任務),還要保證全系統的安全穩定運行。這就要求每個保護單元都能共享全系統的運行和故障信息的數據,各個保護單元與重合閘裝置在分析這些信息和數據的基礎上協調動作,實現微機保護裝置的網絡化。這樣,繼電保護裝置能夠得到的系統故障信息愈多,對故障性質、故障位置的判斷和故障距離的檢測愈準確,大大提高保護性能和可靠性。
進入20世紀90年代以來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,電力系統保護領域內的一些研究工作也轉向人工智能的研究。專家系統、人工神經網絡(ANN)和模糊控制理論逐步應用于電力系統繼電保護中,為繼電保護的發展注入了活力。
人工神經網絡(ANN)具有分布式存儲信息、并行處理、自組織、自學習等特點,其應用研究發展十分迅速,目前主要集中在人工智能、信息處理、自動控制和非線性優化等問題。近年來,電力系統繼電保護領域內出現了用人工神經網絡(ANN)來實現故障類型的判別、故障距離的測定、方向保護、主設備保護等。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。可以預見,人工智能技術在繼電保護領域必會得到應用,以解決用常規方法難以解決的問題。
自適應繼電保護的概念始于20世紀80年代,它可定義為能根據電力系統運行方式和故障狀態的變化而實時改變保護性能、特性或定值的新型繼電保護。自適應繼電保護的基本思想是使保護能盡可能地適應電力系統的各種變化,進一步改善保護的性能。這種新型保護原理的出現引起了人們的極大關注和興趣,是微機保護具有生命力和不斷發展的重要內容。自適應繼電保護具有改善系統的響應、增強可靠性和提高經濟效益等優點,在輸電線路的距離保護、變壓器保護、發電機保護、自動重合閘等領域內有著廣泛的應用前景。針對電力系統頻率變化的影響、單相接地短路時過渡電阻的影響、電力系統振蕩的影響以及故障發展問題,采用自適應控制技術,從而提高保護的性能。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。
現代計算機技術、通信技術和網絡技術為改變變電站目前監視、控制、保護和計量裝置及系統分割的狀態提供了優化組合和系統集成的技術基礎。高壓、超高壓變電站正面臨著一場技術創新。實現繼電保護和綜合自動化的緊密結合,它表現在集成與資源共享、遠方控制與信息共享。以遠方終端單元(RTU)、微機保護裝置為核心,將變電所的控制、信號、測量、計費等回路納入計算機系統,取代傳統的控制保護屏,能夠降低變電所的占地面積和設備投資,提高二次系統的可靠性。綜合自動化技術相對于常規變電所二次系統,主要有以下特點:
綜合自動化系統的各個子系統全部微機化,其內涵中還包括系統的功能軟件化和信號數字化的內容,完全摒棄了常規變電所中各種機電式、機械式、模擬式設備,大大提高了二次系統的可靠性和電氣性能。操作、監視完全微機化,且方便地通過人機聯系系統(MMI)對變電所實施監視和控制。
計算機局域網絡技術和光纖通信技術在綜合自動化系統中得到普遍的應用。因此,系統具有較高的抗電磁干擾的能力,能夠實現高速數據傳輸,滿足實時性要求,組態更靈活,易于擴展,可靠性大大提高,而且大大簡化了常規變電所繁雜量大的各種電纜,方便施工。
智能化的表現是多方面的,除了常規自動化功能以外,如自動報警、報表生成、電壓無功調節、小電流接地選線、故障錄波、事故判別與處理等方面,還具有強大的在線自診斷功能,并實時地將其送往調度(控制)中心,即以主動模式代替了常規變電所的被動模式,這一點是與常規二次系統最顯著的區別之一。
競爭的電力市場將促進新的自動化技術的開發和應用,在經濟效益的驅動下,變電站將向集成自動化方向發展。根據變電站自動化集成的程度,可將未來的自動化系統分為協調型自動化和集成型自動化。協調型自動化仍然保留間隔內各自獨立的控制、保護等裝置,各自采集數據并執行相應的輸出功能,通過統一的通信網絡與站級相連,在站級建立一個統一的計算機系統,進行各個功能的協調。而集成型自動化既在間隔級,又在站級對各個功能進行優化組合,是現代控制技術、計算機技術和通信技術在變電站自動化系統的綜合應用。所謂集成型自動化系統是將間隔的控制、保護、故障錄波、事件記錄和運行支持系統的數據處理等功能集成在一個統一的多功能數字裝置內,間隔內部和間隔間以及間隔同站級間的通信用少量的光纖總線實現,取消傳統的硬線連接。總體來說,綜合自動化系統打破了傳統二次系統各專業界限和設備劃分原則,改變了常規保護裝置不能與調度(控制)中心通信的缺陷,給變電所自動化賦予了更新的含義和內容,代表了變電所自動化技術發展的一種潮流。隨著科學技術的發展,功能更全、智能化水平更高、系統更完善的超高壓變電所綜合自動化系統,必將在我國電網建設中不斷涌現,把電網的安全、穩定和經濟運行提高到一個新的水平。
[1]楊奇遜,微型機繼電保護基礎,北京:水利電力出版社,1988.
[2]張宇輝,電力系統微型計算機繼電保護,北京:中國電力出版社,2000.
[3]葛耀中,自適應繼電保護及其前景展望,電力系統自動化,1997,21(9):42~46.