999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

L2(q)的一個物征性質

2010-06-29 06:14:30趙俊英韓章家
成都信息工程大學學報 2010年1期
關鍵詞:數學

趙俊英, 韓章家

(1.天津商業大學理學院,天津300134;2.成都信息工程學院數學學院,四川成都610225)

1 Introduction

All groups considered in this paper are finite groups.The reader may refer to[1]for the notations of simple groups.

In group theory it is an usual way to get the information on the structure of a group G by studying it's subgroups.It was proved in[2]that if G is one of PSL(2,2n),Sz(22m+1),An(n≤10),K3-groups,Mathieu groups and Janko groups,then G is uniquely determined by the set of orders of it's maximal abelian subgroups.In[3],it is proved that alternative groups whose prime graph has three connected components can be uniquely determined by the set of orders of its maximal abelian subgroups.In this paper we will show that the group L2(q),q≡3,5(mod 8)can be determined up to isomorphism by the set of orders of it's maximal abelian subgroups.

Notations:If G is a finite group then Γ(G)denotes the prime graph of G;t(Γ(G))denotes the number of prime graph components of G;πi(1≤i≤t(Γ(G)))denote the set of vertices of prime graph components of G.If G isof even order,then π1always denotes the even prime graph component of G.M(G)denotes the set of ordersof maximal abelian subgroups of G.

Assume that π1,π2,…,πtare all prime graph components of G.Then|G|=m1m2…mt,where π(mi)=πi,i=1,2,…,t.Positive numbers m1,m2,…,mtare called the order components of G[4].The order components of finite simple groups with non-connected prime graphs are listed in Tables 1-4 given by Chen[5].

The following lemma follows from the definition of order component,Theorem A and Lemma 3 in[6].

Lemma1 Let G be a finite group with disconnected prime graph.Then one of the following statements holds:

(i)G is a Frobenius group or a 2-Frobenius group;

Lemma2 Let G be a Frobenius or a 2-Frobenius group,then t(Γ(G))=2[7].

The following result is important for the proof in our theorem.

Lemma3 Let M(G)=M(L2(q))and q≡3,5(mod 8),where q=tm,then

(i)G has a maximal abelian subgroup of order tmand the order of any maximal abelian 2-subgroup is four;

(ii)If 2? q-1,then G has no abelian subgroup of order q-1,and G has no abelian subgroup of order tr,where(t,r)=1.

Proof.The lemma follows from Theorem 3.6.25 in[8]and Lemma 2.

Lemma4 Let t(Γ(G))≥2 andIf N is a π1-group and a1,a2,…,arare order components of G,then every a1,a2,…,aris a divisor of|H|-1[5].

2 Main result

Now we can show that the group L2(q),q≡3,5(mod 8)is characterized by it's sets of orders of maximal abelian subgroups.

Theorem1 Let G be a finite group.If M(G)=M(M),where M=L2(q),q≡3,5(mod 8),then G?M.

Proof.Since t(Γ(M))=3,it follows by Lemma 1 and Lemma 2 that G has a normal seriessatisfying t(Γ(K/H))≥3 and some odd order components of K/H are equal to the odd order components of G.

If t(Γ(K/H))=6,then K/H ?J4by[6]andis equal to one of 23,29,31,37 or 43.It is impossible.

If t(Γ(K/H))=6,then K/H ?E8(q′)by[6],where q′≡0,1,4(mod 5).

We get a system of equations:

It can be easily shown that this system of equations has no solution,so K/H ?E8(q′).where q′0,1,4(mod 5).By the same way we can easily have that K/H ?E8(q′),q≡2,3(mod 5).Hence,if t(Γ(K/H))=4,then K/H is isomorphic to one of the following groups:2B2(22m+1),A2(4),2E6(2),M22,J1,ON,Ly,F′24and M.

If K/H ?2B2(22m+1),then We get a system of equations:

It iseasy to check that there are no solutions for all above equations.Hence,K/H?2B2(22m+1).Similarly,we have that K/H?A2(4),and2E6(2).If K/H is isomorphic to any sporadic simple group,then by way of calculating we have that the only possibility is K/H?M22.In this case,q=11 and Lemma 3 implies that the order of any Sylow 2-subgroup is 8 at most,which is a contradiction.Thisproves that t(Γ(K/H))≠4.If t(Γ(K/H))=3,then by[6],K/H is isomorphic to one of the following groups:

Ap(p and p-2 prime),A1(q′),G2(q′)(3|q′),2G2(32m+1),2Dp(3)(p=2n+1,n ≥2),2Dp+1(2)(p=2n-1,n ≥2),F4(q′)(2|q′),E7(2),E7(3),A2(2),2A5(2),2F4(22m+1)(m ≥1),M11,M23,M24,J3,HS,Suz,Co2,F23,B and Th.

Obviously,K/H can not isomorphic to of the groups E7(2),E7(3),A2(2),2A5(2),J3,HS,Suz,F23,B,Th,M23and M24.If K/H ?G2(q′)(3|q′),then,we have:

Thus q′=3,q=13.In this case,the orders of some maximal 2-subgroups are greater than 4,which contradicts Lemma 3.By the same reason we have K/H ?2G2(q′).

If K/H ?2Dp(3)(p=2n+1,n≥2),then the following equations hold:

It iseasy to check that all these equationshave no solutions,hence K/H?2Dp(3)(p=2n+1,n≥2).By using the same argument,we know that K/H can not be isomorphic to F4(q′)(2|q′),2F4(q′)(q′=22m+1,m ≥1)and2Dp+1(2),p=2n-1,n≥2.If K/H?Ap,then we can get p=q=5.The theorem follows by[11].Hence the only possibility is K/H=A1(q′),which forces that q=q′and then K/H=A1(q).We now claim that H=1.Otherwise the center Z(T)of a Sylow t-subgroup T of H is normal in G.Consequently,if 4|(q+1),we haveby Lemma 4,this implies that G has an abelian subgroup of order greater than q,which contradicts Lemma 3.This proves our claim,hence K?L2(q).Since CG(K)=1,we have(q)).Note that the outer automorphisms of L2(q)are field automorphisms or diagonal automorphisms of order two and every field automorphism ? centralizes the prime field,so the order of ? is a power of two.If G ≠L2(q),then G has a cyclic subgroup of order 2kt(k≠0),which contradicts Lemma 3.IfG has nontrivial diagonal automorphisms,then there is an element of order q-1 in G,which contradicts Lemma 3 too.Hence we obtain that G?L2(q).The proof is complete.

[1]D Gorenstein.Finite Groups[M].New York:Harper-Row,1968.

[2]Wang Linhong.A characterization of some classes of finite simple groups[D].Chongqi:Southwest China Normal University,2005.

[3]G Y Chen.Characterization of Alternating Groups by the Set of Orders of Maximal Subgroups[J].Siberian Mathematical Journal,2006,47(3).

[4]G Y Chen.On Thompson's Conjecture[J].J.Algebra,1996,185:184-193.

[5]G Y Chen.A new characterization of spordic simple groups[J].Algebra Colloq,1996,3(1):49-58.

[6]J S Williams.Prime Graph Components of Finite Groups[J].J.Algebra,1981,69:487-513.

[7]G Y Chen.On Frobenius and 2-Frobenuis group[J].J.Southwest China Normal Univ,1995,20(5):485-487.

[8]M Suzuki.Group Theory[M].Berlin:Springer-Verlag,1980.

[9]G Y Chen,S H Guo.2Dn(3)(9≤2m+1 not a prime)can be characterized by itsorder component[J].J.Appl.Math.Comput,2005,19(1-2):353-362.

[10]A S Kondratév.Prime graph componentsof finite simple groups[J].Math.USSRSbornik,1990,67(1):235-247.

[11]Li xianhua,Bi Jianxing.On the finite group with the same or-ders of solvable subgroups as the simple group Ln(q)[J].Comm.Algeba,2005,33(5):1337-1343.

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 激情综合网激情综合| 91小视频在线| 久久国产免费观看| 欧美啪啪网| 国产91无毒不卡在线观看| 国产原创自拍不卡第一页| 欧美亚洲综合免费精品高清在线观看| 国产成人精彩在线视频50| 91人妻日韩人妻无码专区精品| 国产呦视频免费视频在线观看| 怡春院欧美一区二区三区免费| 成人福利在线视频| 国产主播在线一区| 青青网在线国产| 午夜视频在线观看免费网站| 88国产经典欧美一区二区三区| 美女扒开下面流白浆在线试听| 亚洲男人天堂2018| 亚洲毛片网站| 欧美日本在线观看| 99re经典视频在线| 亚洲精品你懂的| 91精品国产91欠久久久久| 亚洲天堂久久久| 欧美精品1区| 国产精品无码制服丝袜| 亚洲91精品视频| 亚洲一区二区三区中文字幕5566| 在线国产毛片| 国产在线日本| 狠狠色丁香婷婷综合| 欧美成人一级| 国产又黄又硬又粗| 久久久久九九精品影院| 成人在线观看不卡| 亚洲午夜福利在线| 超碰91免费人妻| 蜜芽一区二区国产精品| 欧洲高清无码在线| 在线免费观看a视频| 99国产在线视频| 亚洲欧洲日韩国产综合在线二区| 麻豆精品久久久久久久99蜜桃| 制服丝袜一区二区三区在线| 亚洲天堂在线视频| 国产在线第二页| 久久国产精品影院| 亚洲水蜜桃久久综合网站| 欧美色丁香| 亚洲午夜国产精品无卡| 欧美精品啪啪| 欧美成人怡春院在线激情| 精品伊人久久久香线蕉| 天天摸天天操免费播放小视频| 亚洲精品免费网站| 综合成人国产| 91在线激情在线观看| 第一区免费在线观看| 久久精品国产亚洲AV忘忧草18| 国产午夜一级毛片| 日本人妻一区二区三区不卡影院| 波多野结衣中文字幕一区| 欧美午夜小视频| 91精品国产一区| 亚洲国产综合自在线另类| 青青草原偷拍视频| 亚洲无线一二三四区男男| 国产精品亚洲欧美日韩久久| 91视频免费观看网站| 亚洲自偷自拍另类小说| 国产96在线 | 亚洲国产成人超福利久久精品| 青青国产成人免费精品视频| 免费黄色国产视频| 精品国产女同疯狂摩擦2| 国产精品网址你懂的| 日韩欧美国产三级| 亚洲视频二| 久久成人免费| 熟妇丰满人妻| 亚洲天堂日韩av电影| 人妻丰满熟妇αv无码|