999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

微藻在海水魚類苗種培育過程中的作用

2010-04-10 07:42:52于道德寧璇璇鄭永允官曙光任貴如王娟高翔劉夢俠李紹彬關健劉洪軍
海洋通報 2010年2期
關鍵詞:營養

于道德,寧璇璇,鄭永允,官曙光,任貴如,王娟,高翔,劉夢俠,李紹彬,關健,劉洪軍

(1. 山東省海水養殖研究所,山東 青島 266071;2. 國家海洋局煙臺海洋環境監測中心站,山東 煙臺 264006;3. 濱州市海洋與漁業局,山東 濱州 256600)

微藻在海水魚類苗種培育過程中的作用

于道德1,寧璇璇2,鄭永允1,官曙光1,任貴如3,王娟1,高翔1,劉夢俠1,李紹彬1,關健1,劉洪軍1

(1. 山東省海水養殖研究所,山東 青島 266071;2. 國家海洋局煙臺海洋環境監測中心站,山東 煙臺 264006;3. 濱州市海洋與漁業局,山東 濱州 256600)

主要從營養、促攝食以及益生作用三方面來綜述微藻在海水魚類苗種培養過程中的作用。在海水魚類苗種培育過程中,微藻(microalgae)已得到廣泛應用。由于綠藻的應用常使養殖水體呈現綠色,被形象地稱為綠水養殖(green water culture)模式。微藻的作用首先是作為營養源直接供給仔魚營養,或通過輪蟲(Brachionus plicatilis)等生物餌料的富集或載體作用間接為仔魚傳遞營養物質;微藻還可以通過提供微量營養元素在仔魚攝食行為的建立、調節以及消化生理的刺激等方面發揮作用。除營養作用外,添加微藻還具有改善水質、增加水體混濁度和光對比度的作用,從而提高食餌的背景反差,增加海水仔魚的攝食率。此外,微藻也可以調節養殖水體以及仔魚腸道的微生態系統,維持水體及仔魚腸道的菌群平衡,通過發揮益生作用減少病原菌的暴發。

微藻;營養;攝食;益生作用;微生態系統

早在1970年,Jones就證實了小球藻 (Chlorella spp.) 能提高魚苗的存活率、生長率和品質[1],之后綠水養殖模式被廣泛地應用于各種海水魚類的苗種培育過程[2]。但使用的微藻種類較少[3,4],主要包括小球藻[5]、扁藻 (Tetraselmis spp. )[6]、微綠球藻 (Nannochloropsis spp. )[7,8]、球等鞭金藻 (Isochrysis galbana)[9]等。在海水魚類苗種繁育過程中,也存在多種微藻混合使用的現象,如球等鞭金藻和扁藻在大菱鲆育苗過程中得到了廣泛應用[10],而在銀鯧 (Pampus argenteus) 苗種培養過程中則經常聯合使用小球藻、等鞭金藻和微綠球藻[11]。

微藻能夠通過調節水體中光線的吸收和散射方式,增大食餌的背景反差,從而對仔魚初次攝食行為的建立具有關鍵作用。另外,微藻本身所含的營養成分或分泌的微量營養元素,如游離氨基酸類、核酸類、糖類等,不僅可作為仔魚攝食的高效誘導物,而且能刺激特定消化酶的分泌及活性增強[12]。最近研究發現,某些微藻分泌的活性物質不僅能夠發揮抗菌活性[13,14]、調節有益菌群的生長、抑制機會病原菌在養殖水體中的爆發,而且在維持養殖水體和活餌料以及仔魚腸道的微生態系統平衡方面發揮著重要的益生作用[14]。本文從微藻在海水魚類苗種培育過程中的營養、促攝食以及益生作用三個方面分別展開論述。

1 微藻的營養組成及影響因素

微藻的營養價值主要取決于其外觀形態(如形狀和大小,對于活餌料來說影響其適口性)、自身營養成分的種類、含量和比例以及胞外分泌物等特性[4]。總的來說,微藻的營養組分主要包括糖類、蛋白質、脂肪和維生素[15]等。雖然不同微藻的營養組成差異較大,如綠藻類含糖量較高,而硅藻則具有較高的脂含量[3,16],但蛋白質在不同微藻中的含量都較高,糖類也很少成為影響其營養價值的成分。微藻的營養價值主要取決于特定種類的脂類,如高度不飽和脂肪酸 (high unsaturated fatty acids, HUFAs),以及維生素等[3],其最易成為仔魚發育的營養限制因子。另外,微藻的胞外分泌物(如促生長物質)對于仔魚的生長也具有重要作用[4]。

除遺傳因素和種類差別外,營養因素、培養條件(充氣情況、溫度、鹽度、光照強度及周期等)以及收獲時期(指數生長期或靜息期)等外界環境因子均可顯著影響藻類的營養組成[3,17,18]。如假微型海鏈藻(Thalassiosira pseudonana) 在12L∶12D的條件下培養,其EPA含量比連續光照條件下培養高出25%[19];在充氣培養的條件下,硅藻類含有更高含量的蛋白質[3]。

微藻所含的脂類,尤其是HUFA,對于多數魚類的早期發育具有非常重要的作用[20,21],如DHA與魚類的視覺和中樞神經系統的正常發育密切相關[22]。在魚類的早期發育過程中,由于消化功能尚不完善不可能從頭合成脂類,在內源營養(卵黃物質)耗盡后,仔魚的營養供應完全依賴于食物來源[23]。尤其是海水魚類,由于缺乏特定的酶類,即使在變態后對于HUFA的合成能力也很有限[24]。而微藻作為HUFA的主要來源,無論通過直接或間接的方式,在傳遞此類營養素的過程中都起到非常關鍵的作用,尤其體現在活餌料的強化過程中[25]。

2 微藻的營養作用

微藻的直接營養作用:大量實驗表明,魚類在仔魚階段能夠依靠鰓部主動濾食微藻[26],并作為食物進行消化吸收[5,27-31],例如,初孵化的大菱鲆仔魚就能夠對球等鞭金藻 (Isochrysis galbana) 主動吸收[9]。通過放射標記研究發現,大西洋庸鰈對扁藻 (Tetraselmis sp.) 的攝食存在規律性變化,尤其是在開口前,即攝食浮游動物(輪蟲及鹵蟲)前達到峰值,可濾食占仔魚生物量1.3% ~ 4.7%的微藻,并同化1% ~ 5%的生物量[32]。雖然對微藻的攝食量及同化率遠低于對浮游動物等較大型餌料,而且不同魚類對于藻類的攝食量和同化率也存在差異,但魚類早期發育階段主動濾食微藻的行為對于仔魚的生長和發育,尤其是消化系統的完善,都具有非常重要的營養作用。

微藻的間接營養作用:就是通過活餌料(輪蟲和鹵蟲等)的載體作用,將營養物質傳遞給仔魚,而且微藻本身也可作為載體生物來富集核黃素 (Riboflavin) 等營養成分[33]。更為重要的是,微藻可維持水體內活餌料營養組分的穩定,尤其是蛋白質和脂類(DHA和 EPA)的含量及比例。例如,輪蟲在食物限制或饑餓的條件下將迅速失去其營養價值,但通過強化培養能夠迅速改變其自身的營養組分[34]。從營養學角度來看,食物營養物質的組成與攝食者對營養含量的要求越接近,其營養價值越高。采用酵母和微綠球藻共同強化的輪蟲投喂仔魚,其生長和存活率要好于單獨使用微藻的效果,說明微綠球藻所缺乏的某些必需營養素可由酵母彌補[35]。輪蟲攝食不同種類、品系的微藻,甚至是不同培養條件下的同一微藻,也明顯地影響著輪蟲的生長、繁殖及其營養價值[36]。

因此,根據不同魚類早期階段對營養組分的需求量及其比例(尤其是 HUFA),搭配以不同種類的藻類,無論是通過仔魚的直接攝食還是通過活餌料的載體作用,都將對仔魚的早期生長、發育和品質(包括色素沉積、體型等)等方面產生更好的效果。

3 微藻對仔魚攝食的影響

在魚類早期發育階段,大部分器官和組織尚處于未分化或未成熟階段,因此,更重要的是保證其生長發育過程的順利進行,這除了需要合適的外界環境,自身的攝食能力起到了最為關鍵的作用。微藻對魚類仔稚魚攝食行為及攝食率的影響,不僅與微藻種類相關,而且與苗種的差別及早期發育階段密切相關[37]。

由于大部分魚類在仔稚魚階段主要依賴于視覺進行攝食,沒有光照就不能形成視覺反應[38]。仔魚的攝食強度與光強度之間通常呈S型相關:隨著光照從完全黑暗逐漸增強,直到抵達攝食臨界光強度后,攝食強度才開始增加,然后在達到一定光強后,攝食強度不再增加[39]。而微藻能夠影響育苗水體中光線的吸收和散射方式,調節水體透明度,增大食餌的背景反差,從而可提高仔魚攝食能力[2,40]。

除視覺刺激外,化學刺激對魚類的攝食也具有一定的促進作用,尤其是對于仔魚初次攝食行為的建立至關重要[41],而且化學刺激與視覺刺激間存在協同效應[42]。化學刺激物的本質就是餌料本身含有的促攝食成分[43],包括游離氨基酸類[44]、甜菜堿、核苷酸類[45]、糖類等。研究表明,微藻本身富含多種促攝食物質,這些物質不僅可提高仔魚對活餌料的攝食率,而且對于仔魚食性轉換,尤其是對微囊飼料的攝食轉化都具有很好的促進作用[46]。

微藻含有的其他活性成分,如聚酰胺、精胺和氨基酸等,也可通過不同的方式調節仔魚的消化生理,如促進仔魚消化酶分泌量的增加[12,47],并可提高消化酶的活性[46]。其中,聚酰胺通過刺激縮膽素(cholecystokinin,CCK)的產生來調節胰腺消化酶的釋放,而精胺可提高腸上皮膜酶(氨基肽酶及堿性磷酸酶)的活性,進而促進仔魚腸道上皮的成熟[48]。

如上所述,微藻能夠從視覺、嗅覺以及消化生理等多方面來調節仔魚的攝食行為,從而有助于仔魚順利通過內外營養轉換、后期活餌料的轉換或配合餌料的轉換。

4 微藻的益生 (probiotics) 作用

雖然抗生素的應用在水產生物疾病控制方面發揮了重要作用,但是近年來耐藥性細菌的泛濫已給水產行業造成了巨大的經濟損失。鑒于抗生素導致細菌產生耐藥性的威脅以及食品安全等問題,尋求抗生素替代物已經成為水產生物病害控制的當務之急。其中,益生菌目前已成為替代抗生素的主要手段之一,在水產養殖上得到了廣泛的應用[49-51]。

從作用機制上來看,微藻與益生菌都是通過調節水體的微生態平衡來發揮益生作用。因此,有學者也將微藻歸為益生菌的范疇[52]。研究發現,仔魚腸道的致病菌以及來源于輪蟲的有害菌群是導致魚類早期高死亡率的主要誘因[53]。微藻可通過調節水體、仔魚表皮及腸道的微生態群落而發揮益生作用[16,54,55],還可與益生菌協同發揮作用[56],從而提高仔魚的成活率。例如,微綠球藻 (Nannochloropsis sp.) 培養水體的細菌類群主要包括 α-變形菌 (Proteobacteria) 和嗜纖維菌屬-黃桿菌屬類群 (Cytophaga–Flavobacterium, CF)的細菌,這種多菌群平衡的生態系統對穩定養殖水質具有重要意義[57]。而在無微綠球藻的情況下,γ-變形菌則成為仔魚養殖水體中的優勢菌群 (70%)[58],這其中包括溶藻弧菌 (Vibrio alginolyticus)[59]、美人魚弧菌 (Vibrio damsela)[60]等多種水產動物致病菌。

與營養作用類似,微藻的益生作用也包括直接和間接兩種方式。微藻不僅可以直接調節水體的菌群平衡和仔魚腸道的微生態群落,同時也可以調節輪蟲和鹵蟲等生物餌料腸道的微生態群落。例如,在輪蟲培養過程中易產生的弧菌類病原菌[61],在沒有微藻的水體中會造成弧菌的大量繁殖,疾病暴發;如果采用微藻與輪蟲共培養(直接進入養殖水體或短期強化),則可改變輪蟲腸道菌群的結構[62],從而可減少因生物餌料引入的病原菌。

從微藻中分離的活性物質是其發揮抗菌或益生作用的根本所在。雖然大部分成分還沒有鑒定清楚,但至少包括脂肪酸、有機酸、酚類、萜類、多糖和多肽等[63]。與抗生素所不同的是,微藻所含的抗菌成分多為混合物質,如20世紀50年代,Pratt等從小球藻中分離得到的小球藻素 (chlorella),即為脂肪酸的混合物,能夠抑制幾種革蘭氏陽性菌和革蘭氏陰性菌的活性[64]。類似的報道還有從中肋骨條藻 (Skeletonema costatum) 中獲得的活性物質,能夠抑制多種弧菌的增殖[14],從紫球藻 (Porphyridium cruentum) 分離的硫酸酯多糖具有抗病毒活性[65]等。此外,微藻自身合成和分泌的活性物質還能夠促進優勢菌群生長,如硅藻分泌的多糖物質 (dimethyl sulphoniopropionate, DMSP) 能夠促進CF類群[66]和α-變形菌[67]的生長和繁殖,使其成為水體中的優勢種類,從而抑制病原菌的繁殖。

5 結語與展望

綜上所述,微藻對魚類仔魚早期的生長發育等多方面都具有非常重要的作用,而且這些作用具有相互協同性。目前已有幾百種商品化供應的微藻,但在水產養殖業中應用的種類尚不足 20種,在魚類中廣泛使用的則更少。因此,迫切需要開發優質微藻并探討其在魚類早期發育中的確切作用,從而更好地服務于海水魚類養殖業,促進水產養殖的健康發展。

[1] Jones A C. Chlorella for rearing of marine fish larvae [J]. FAO Fish Culture Bulletin, 1970, 2 (4): 3.

[2] Naas K, Naess T, Harboe T. Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water [J]. Aquaculture, 1992, 105:143-156.

[3] Brown M R, Jeffrey S W, Volkman J K, et al. Nutritional properties of microalgae for mariculture [J]. Aquaculture, 1997, 151: 315-331.

[4] Brown M R. In Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola L. E. Cruz-Suárez, D.Ricque-Marie, M. Tapia-Salazar, M. G. Gaxiola-Cortés, N. Simoes, Eds. (Cancún, Quintana Roo, México, 2002).

[5] Moffatt N M. Survival and growth of Northern anchovy larvae on low zooplankton densities as affected by the presence of a Chlorella bloom [J].Rapports et Proces-Verbaux des Reunions (Conseil Permanent International pour l'Exploration de la Mer), 1981, 178: 475-480.

[6] Gulbrandsen J, Lein I, Holmefjord I. Effects of light administration and algae on first feeding of Atlantic halibut larvae, Hippoglossus hippoglossus (L.)[J]. Aquaculture Research, 1996, 27 (2): 101-106.

[7] Hernández-Cruz C M, Salhi M, Fernández-Palacios H, et al. Improvements in the culture of Sparus aurata L. larvae in relation to the use of antibiotics,phytoplankton and rearing system [J]. Aquaculture, 1994, 124 (1-4): 269-274.

[8] Lee C S. Marine finfish hatchery technology in the USA – status and future [J]. Hydrobiologia, 1997, 358 (1): 45-54.

[9] Tytler P, Ireland J, Murray L. A study of the assimilation of fluorescent pigments of microalgae Isochrysis galbana by the early larval stages of turbot and herring [J]. Journal of Fish Biology, 1997, 50 (5): 999-1009.

[10] Reitan K I, Rainuzzo J R, ?ie G, et al. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae [J]. Aquaculture,1993, 118 (3-4): 257-275.

[11] Al-Abdul-Elah K M, Almatar S, Abu-Rezq T, et al. Development of hatchery technology for the silver pomfret Pampus argenteus (Euphrasen): effect of microalgal species on larval survival [J]. Aquaculture Research, 2001, 32 (10): 849-860.

[12] Cahu C L, Zambonino Infante J L, Peres A, et al. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes [J].Aquaculture, 1998, 161 (1-4): 479-489.

[13] Austin B, Baudet E, Stobie M. Inhibition of bacterial fish pathogens by Tetraselmis suecica [J]. Journal of Fish Diseases, 1992, 15 (1): 55-61.

[14] Naviner M, Berge J P, Durand P, et al. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens [J]. Aquaculture,1999, 174 (1-2): 15-24.

[15] Brown M R, Mular M, Miller I, et al. The vitamin content of microalgae used in aquaculture [J]. Journal of Applied Phycology, 1999, 11: 247-255.

[16] Reitan K I, Rainuzzo J R, ?ie G, et al. A review of the nutritional effects of algae in marine fish larvae. [J] Aquaculture, 1997, 155 (1-4): 207-221.

[17] Renaud S M, Thinh L V, Parry D L. The gross composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture [J]. Aquaculture, 1999, 170: 147-159.

[18] Harrison P, Thompson P, Calderwood G. Effects of nutrient and light limitation on the biochemical composition of phytoplankton [J]. Journal of Applied Phycology, 1990, 2 (1): 45-56.

[19] Brown M R, Dunstan G A, Norwood S J, et al. Effects of harvest stage and light on the chemical composition of the diatom Thalassiosi pseudonana [J].Journal of Phycology, 1996, 32 (1): 64-73.

[20] Sargent J R, McEvoy L A, Bell J G. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds [J]. Aquaculture,1997, 155: 117-127.

[21] Sargent J R, Tocher D R, Bell J G. In Fish Nutrition, 3rd edition J. E. Halver, R. W. Hardy, Eds. (Academic Press, San Diego, 2002, 181-257.

[22] Bell M V. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.) [J]. Lipids, 1995,30: 443-449.

[23] Bell J G, McEvoy L A, Estevez A, et al. Optimising lipid nutrition in first-feeding flatfish larvae [J]. Aquaculture, 2003, 227 (1-4): 211-220.

[24] Sargent J R. Lipid nutrition of marine fish during early development: current status and future directions [J]. Aquaculture, 1999, 179: 217-229.

[25] Han K, Geurden I, Sorgeloos P. Enrichment strategies for Artemia using emulsions providing different levels of n-3 highly unsaturated fatty acids [J].Aquaculture, 2000, 183: 335-347.

[26] Reitan K I, Natvik C M, Vadstein O. Drinking rate, uptake of bacteria and microalgae in turbot larvae [J]. Journal of Fish Biology, 1998, 53 (6): 1 145-1 154.

[27] Last J M. The food of larval turbot Scophthalmus maximus L. from the west central North Sea [J]. ICES Journal of Marine Science, 1979, 38 (3):308-313.

[28] Stoecker D K, Govoni J J. Food selection by young larval gulf menhaden (Brevoortia patronus) [J]. Marine Biology, 1984, 80 (3): 299-306.

[29] Lein I, Holmefjord I. Age at first feeding of Atlantic halibut larvae [J]. Aquaculture, 1992, 105: 157-164.

[30] Van der Meeren T. Algae as first food for cod larvae, Gadus morhua L.: filter feeding or ingestion by accident [J]. Journal of Fish Biology, 1991, 39 (2):225-237.

[31] Vásquez-Yeomans L, Carrillo-Barrios-Gómez E, Sosa-Cordero E. The effect of the nanoflagellateTetraselmis suecica on the growth and survival of grunion,Leuresthes tenuis, larvae [J]. Environmental Biology of Fishes, 1990, 29 (3): 193-200.

[32] Reitan K I, Bolla S, Olsen Y. A study of the mechanism of algal uptake in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus) [J]. Journal of Fish Biology, 1994, 44 (2): 303-310.

[33] Souto M, Saavedra M, Pous?o-Ferreirab P, et al. Riboflavin enrichment throughout the food chain from the marine microalga Tetraselmis suecica to the rotifer Brachionus plicatilis and to White Sea Bream (Diplodus sargus) and Gilthead Sea bream (Sparus aurata) larvae [J]. Aquaculture, 2008, 283 (1-4):128-133.

[34] Makridis P, Olsen Y. Protein depletion of the rotifer Brachionus plicatilis during starvation [J]. Aquaculture, 1999, 174 (3-4): 343-353.

[35] Tamaru C S, Murashige R, Lee C-S, et al. Rotifers fed various diets of baker's yeast and/or Nannochloropsis oculata and their effect on the growth and survival of striped mullet (Mugil cephalus) and milkfish (Chanos chanos) larvae [J]. Aquaculture, 1993, 110 (3-4): 361-372.

[36] Sayegh F A Q, Radi N, Montagnes D J S. Do strain differences in microalgae alter their relative quality as a food for the rotifer Brachionus plicatilis [J].Aquaculture, 2007, 273 (4): 665-678.

[37] Rocha R J, Ribeiro L, Costa R, et al. Does the presence of microalgae influence fish larvae prey capture [J]. Aquaculture Research, 2008, 39 (4):362-369.

[38] Kawamura G, Ishida K. Changes in sense organ morphology and behavior with growth in flounder, Paralichthys olivaceus [J]. Bulletin of the Japanese Society of Scientific Fishery, 1985, 51: 155-165.

[39] Blaxter J H S. In Fish Physiology W. S. Hoar, D. J. Randall, Eds. (Academic, New York, 1988), vol. XI A, 44-47.

[40] Naas K, Huse I, Iglesias J. Illumination in first feeding tanks for marine fish larvae. [J] Aquacultural Engineering, 1996, 15: 291-300.

[41] Knutsen J A. Feeding behaviour of North Sea turbot (Scophthalmus maximus) and Dover sole (Solea solea) larvae elicited by chemical stimuli [J].Marine Biology, 1992, 113 (4): 543-548.

[42] Koven W, Kolkovski S, Hadas E, et al. Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review [J]. Aquaculture,2001, 194 (1-2): 107-121.

[43] Kasumyan A O, D?ving K B. Taste preferences in fishes [J]. Fish and Fisheries, 2003, 4 (4): 289-347.

[44] Mearns K J. Sensitivity of brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) fry to amino acids at the start of exogenous feeding [J].Aquaculture, 1986, 55 (3): 191-200.

[45] Li P, Gatlin Iii D M. Nucleotide nutrition in fish: Current knowledge and future applications [J]. Aquaculture, 2006, 251 (2-4): 141-152.

[46] Lazo J P, Dinis M T, Holt G J, et al. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus) [J]. Aquaculture, 2000, 188 (3-4): 339-351.

[47] Hjelmeland K, Pedersen B H, Nilssen E M. Trypsin content in intestines of herring larvae, Clupea harengus, ingesting inert polystyrene spheres or live crustacea prey [J]. Marine Biology, 1988, 98 (3): 331-335.

[48] Péres A, Cahu C L, Zambonino Infante J L. Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae [J].Fish Physiology and Biochemistry, 1997, 16 (6): 479-485.

[49] Kesarcodi-Watson A, Kaspar H, Lategan M J, et al. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes[J]. Aquaculture, 2008, 274 (1): 1-14.

[50] Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic Bacteria as Biological Control Agents in Aquaculture [J]. Microbiology and Molecular Biology Reviews, 2000, 64 (4): 655-671.

[51] Wang Y-B, Li J-R, Lin J. Probiotics in aquaculture: Challenges and outlook [J]. Aquaculture, 2008, 281 (1-4): 1-4.

[52] Das S, Ward L, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture [J]. Applied Microbiology and Biotechnology, 2008, 81(3): 419-429.

[53] Planas M, Cunha I. Larviculture of marine fish: problems and perspectives [J]. Aquaculture, 1999, 177: 171-190.

[54] Nicolas J L, Robic E, Ansquer D. Bacterial flora associated with a trophic chain consisting of microalgae, rotifers and turbot larvae: Influence of bacteria on larval survival [J]. Aquaculture, 1989, 83 (3-4): 237-248.

[55] Skjermo J, Vadstein O, paper presented at the Proceedings of the First International Conference on Fish Farming Technology, Trondheim, Norway 1993.

[56] Skjermo J, Salvesen I, ?ie G, et al. Microbially matured water: a technique for selection of a non-opportunistic bacterial flora in water that may improve performance of marine larvae [J]. Aquaculture International, 1997, 5 (1): 13-28.

[57] Nakase G, Eguchi M. Analysis of bacterial communities in Nannochloropsis sp. cultures used for larval fish production [J]. Fisheries Science, 2007, 73(3): 543-549.

[58] Nakase G. Association between bacterial community structures and mortality of fish larvae in intensive rearing systems [J]. Fisheries Science, 2007, 73(4): 784-791.

[59] Balebona M C. Pathogenicity of Vibrio alginolyticus for cultured gilt-head sea bream (Sparus aurata L.) [J]. Applied Microbiology and Biotechnology,1998, 64 (11): 4269-4275.

[60] Pedersen K, Dalsgaard I, Larsen J L. Vibrio damsela associated with diseased fish in Denmark [J]. Applied Microbiology and Biotechnology, 1997, 63(9): 3711-3715.

[61] Verdonck L. Vibrios associated with routine productions of Brachionus plicatilis [J]. Aquaculture, 1997, 149: 203-214.

[62] Olsen A I. Effects of short term feeding of microalgae on the bacterial flora associated with juvenile Artemia franciscana [J]. Aquaculture, 2000, 190(1-2): 11-25.

[63] Borowitzka M A. Microalgae as sources of pharmaceuticals and other biologically active compounds [J]. Journal of Applied Phycology, 1995, 7 (1):3-15.

[64] Pratt R. Studies on Chlorella Vulgaris: XI. Relation between surface tension and accumulation of Chlorellin [J]. American Journal of Botany, 1948, 35:634-637.

[65] Minkova K, Michailov Y, Toncheva-Panova T, et al. Antiviral activity of Porphyridium cruentum polysaccharide [J]. Pharmazie, 1996, 51 (3): 194.

[66] Nicolas J L, Corre S, Cochard J C. Bacterial population association with phytoplankton cultured in a bivalve hatchery [J]. Microbial Ecology, 2004, 48(3): 400-413.

[67] Zubkov M V. Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea [J]. Environmental Microbiology, 2001, 3: 304-311.

The functions of microalgae in marine fish larviculture

YU Dao-de1, NING Xuan-xuan2, ZHEN Yong-yun1, GUAN Shu-guang1, REN Gui-ru3, WANG Juan1,GAO Xiang1, LIU Meng-xia1, LI Shao-bin1, GUAN Jian1, LIU Hong-jun1

(1. Mariculture Institute of Shandong Province, Shangdong Qingdao 266071, China;2. Yantai Oceanic Environmental Monitoring Central Station of State Oceanic Administration, Yantai 264006, China;3. Marine and Fishery Bureau of Binzhou, Binzhou 256600, China)

Microalgae has been widely used in marine fish larvicluture for many years. Generally, the cultural water is green color for the predominant usage of chlorophytes, as a result, the technique is called green water culture.Microalgae is believed to improve the nutritional conditions of the fish larval, either directly by active feeding or indirectly through improving the trophic value of live feed, such as rotifers and Artemia spp. Besides its nutritional value, microalgae seem to be beneficial in the feeding behavior and modulating the digestive physiology of fish larvae through: 1. increase of turbidity, light scattering and attenuation, and visual contrast enhancement; 2. chemical and digestive stimulants resulting in more digestive enzymes and activity. More recently, with the emergence of the concept of “probiotics”, microalgae acted as “probiotics-alga” during the finfish larval culture: including its antibacterial properties, and a modulating function in the bacterial flora balance of culture water as well as the skin and gut of the larval fish and live feed.

microalgae; nutrition; feeding; probiotics; microecology system

S962; S963.21+3

A

1001-6932(2010)02-0235-06

2009-04-02;

2009-07-20

海洋公益性行業科研專項經費項目(200805069);山東省良種工程(工廠化適養品種選育-優質抗病速生魚類良種選育)

于道德(1978-),男,山東青島人,博士,主要從事海洋生物學研究。電子郵箱:wensentte@163.com

劉洪軍,研究員,理學博士,電子郵箱:Hongjunl@126.com

猜你喜歡
營養
可嚼燕麥,營養打折
中老年保健(2022年5期)2022-11-25 14:16:14
夏季給豬吃點“苦”營養又解暑
今日農業(2021年11期)2021-08-13 08:53:34
是否缺營養 身體會表達
今日農業(2021年4期)2021-06-09 06:59:58
用營養防病 增質又增產
今日農業(2020年24期)2020-03-17 08:58:18
這么喝牛奶營養又健康
營養Q&A
幸福(2018年33期)2018-12-05 05:22:46
蔬菜與營養
蔬菜與營養
更多的奶酪,更多的營養?!
種子營養豐富
主站蜘蛛池模板: 久久综合干| 久久一色本道亚洲| 国产成人a毛片在线| 国产午夜小视频| 伊人久久大香线蕉aⅴ色| 亚洲成年人片| 久久精品人人做人人爽| av尤物免费在线观看| 亚洲免费三区| 五月天天天色| 污视频日本| 国产美女精品人人做人人爽| 老司机午夜精品视频你懂的| 国内熟女少妇一线天| 久久久受www免费人成| 亚洲AV一二三区无码AV蜜桃| 天天色天天综合网| 久久亚洲国产一区二区| 国产在线小视频| 免费人成视频在线观看网站| 精品一區二區久久久久久久網站| 激情无码字幕综合| 99久久免费精品特色大片| 亚洲第一极品精品无码| 久久中文无码精品| 狠狠v日韩v欧美v| 中字无码精油按摩中出视频| 一级毛片免费不卡在线| 国产免费自拍视频| 老司机精品一区在线视频| 国内精品九九久久久精品| 中文字幕亚洲第一| 中文字幕欧美日韩高清| 国产区成人精品视频| 亚洲成aⅴ人片在线影院八| 真实国产乱子伦高清| 老司国产精品视频91| 无码日韩人妻精品久久蜜桃| 国产区在线观看视频| 视频一本大道香蕉久在线播放 | 美女被躁出白浆视频播放| 精品久久久久无码| 国产精品久久久久鬼色| 97青青青国产在线播放| 亚洲欧美成人综合| 国产亚洲精品无码专| 99视频全部免费| 国产欧美网站| 四虎永久免费地址在线网站| 日韩在线播放欧美字幕| а∨天堂一区中文字幕| 中文字幕无码中文字幕有码在线| 久久美女精品国产精品亚洲| 全部毛片免费看| 4虎影视国产在线观看精品| 国产成人你懂的在线观看| 欧美成a人片在线观看| 这里只有精品在线播放| 青青青国产精品国产精品美女| 福利在线不卡一区| 亚洲第一黄片大全| 欧美成人精品一级在线观看| 色丁丁毛片在线观看| 亚洲天堂网在线播放| 日韩福利在线视频| 欧美人人干| 国产在线小视频| 欧美亚洲激情| 国产成人资源| 欧美啪啪视频免码| 欧美69视频在线| 自拍欧美亚洲| 九色视频在线免费观看| 日本免费高清一区| 免费无码AV片在线观看国产| 国产男人天堂| 国产美女视频黄a视频全免费网站| 不卡网亚洲无码| 曰韩免费无码AV一区二区| 国产精品lululu在线观看| 国产成人艳妇AA视频在线| 无码专区在线观看|