999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Diagraph from power mapping on matrix rings over finite fields

2017-04-27 03:51:47ZhaoJinxingNanJizhu
關(guān)鍵詞:數(shù)學(xué)

Zhao Jinxing, Nan Jizhu

(1.School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China)

(2.School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China)

Diagraph from power mapping on matrix rings over finite fields

Zhao Jinxing1,2, Nan Jizhu1

(1.School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China)

(2.School of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China)

For a finite ring or a finite group H written multiplicative,let G(H,k) be the digraph whose vertex set is H and there is directed edge from a∈H to b∈H if b=ak.In this paper,we study the k-th power mapping iteration graph from the matrix rings over finite fields.We obtain the distribution of indegrees and number of cycles of this digraph.

iteration digraph,finite field,tree,cycle length

1 Introduction

Let X be a non-empty set and f be a mapping from X into itself.Then we call G(X,f) the iteration digraph fromf of X,where the set of vertices of G(X,f)is X and there is a directed edge from a vertex a∈G(X,f)to a vertex b∈G(X,f)if f(a)=b.If R is a ring or a group written multiplicative and fmaps x to xk,then denote the digraph by G(R,k).

Many interesting examples of iteration graphs comes from the k-th power mapping of finite abelian groups or the ring of integers modulo n[1?5].The distribution of the indegrees and cycles of these digraphs are obtained.These results were soon generalized to the case for finite commutative rings[6?10].

This paper is motivated by[11],who investigate the structure of digraph form the generalized quaternion 2-group.This is the first paper concerned about the power digraph on a non-abelian group.In this paper,we study the k-th power mapping iteration digraphs of matrix rings over finite fields.Our main tool is linear algebra and group theory.

This paper is organized as follows.In Section 2,we present some basic properties of G(R,k)including indegees,cycles and structure of components.We point out that G(R,k) is a disjoint union of two induced sudigraph.In Section 3 and Section 4,we study the two induced subdigraphs independently.

2 Preliminaries and notations

Let Fqbe a finite field with q elements and R=M2(Fq)be the 2 by 2 matrix ring over Fqin the remaining part of this paper.Let U(R),Z(R),N(R)denote the set of units,zero-divisors and nilpotent matrices of R,respectively.We use fA(x)and mA(x)to denote the characteristic polynomial and minimal polynomial of A,respectively.The trace of A and determinant of A is tr(A)and detA.

A component of a digraph is a directed subgraph induced by a maximal connected subgraph of the associated undirected graph.A t-cycle of G(X,f)is a directed cycle of length t.A fixed point is a cycle of length 1.That is,f(x)=x.It is clear that if X is a finite set,then each component contains a unique cycle.The indegree of a vertex x∈X,denoted by(or indeg(x)),is the number of directed edges pointing to x.Thus,indeg(x)=|f?1(x)|.The height function on a vertex x is h(x)=mini≥0{fi(x)is a cycle vertex}.If C is a component of G(X,f),then we define h(C)=supx∈Ch(x).

There are two particular subdigraphs of G(R,k).Let G1(R,k)be the digraph induced subdigraph of G(R,k)on the set of units and G2(R,k)be the digraph induced subdigraph of G(R,k)on the set of zero-divisors.It is clear that G1(R,k)and G2(R,k)are disjoint and there are no edges between them.

Lemma 2.1[12]We have

(1)|U(R)|=(q2?q)(q2?1)=q4?q3?q2+q,

(2)|Z(R)|=q3+q2?q,

(3)|N(R)|=q2.

In the case that H is a finite abelian group,the structure of G(H,k)is highly symmetric. Let Cndenote the cyclic group of order n.Recall that if gcd(a,n)=1,the order of a modulo n is the minimal positive integer such that ak≡1(mod n).We need the following result.

Theorem 2.1Suppose that HCn1×Cn2×···×Cnr,where ni|ni+1for i= 1,2,...,r?1.Let k,k′be two positive integers and ni=uivi,where uiis the largest divisorof nirelatively prime to k.

(1)Any vertex of G(H,k)has indegree 0

(2)The number of cycle vertex of G(H,k)

(3)The set of cycle length appeared in G(H,k)is{orddk:d|ur}.

3 Structure of G2(R,k)

In this section we determine the structure of the induced subgraph of G(R,k)by the matrices of rank less than 2.

Lemma 3.1Let Zα={A∈Z(R):tr(A)=α}for α∈Fq.Then

ProofClearly,Z0is the set of nilpotent matrices.By Lemma 2.1,we have

is bijective.It follows that|Zα|=|Zβ|for anyHence,

Lemma 3.2We define

Then

(1)? is a digraph homomorphism;

(2)?|{cA:c∈Fq}is an isomorphism of digraph for any

ProofSince A2=tr(A)A for A∈Z(R),one has B=Ak=tr(A)k?1A.

Thus,B2=A2k=tr(A)2k?1A=tr(A)kAk=tr(A)kB and B∈Ztr(A)k.

So,?|{cA:c∈Fq}is bijective and hence an isomorphism.

The proof is complete.

Theorem 3.1We have

ProofLet YA=for any A∈Z(R).

Let Ai∈Zαisuch thatIf Ak=αkA=B for A∈Zα,then B∈YA.

It follows that there are no directed edge from the setto the set{cA2:c∈Thus,the digraph induced byis a union of components of G2(R,k).

The following is an immediate consequence of Theorem 3.1 and Theorem 2.1.

Corollary 3.1Let k1,k2be two positive integers and q?1=uv such that u is the largest divisor of q?1 relatively prime to k1.Then

if and only if gcd(q?1,k1)=gcd(q?1,k2)and orddk1=orddk2for any divisor d or u.

4 Structure of G1(R,k)

We recall some basic properties of polynomial over finite fields.

Lemma 4.1[13]Let g(x)∈Fq[x]and g(x)=be the irreducible factorization over Fqand degpi(x)=di.Then

From now on,let V0denote the subspace of R consisting of scalar matrices.For any A∈U(R),let Fq[A]=

It is clear that dimFq[A]=2 if A is not a scalar matrix and dim(Fq[A]∩Fq[B])≥1.So Fq[A]=Fq[B]or Fq[A]∩Fq[B]=V0for any A and B.

The following lemma is simple but useful in our proof.

Lemma 4.2Suppose that Fq[A]Fq[B]for A,B∈R.If C∈Fq[A]V0and Ck∈Fq[B], then Ck∈V0.

ProofWe may assume that C=A since Fq[C]=Fq[A].Suppose to the contrary that AkV0.Then Ak=α1B+α2E=β1A+β2E for some α1β10.Hence B∈Fq[A],A∈Fq[B]and Fq[B]=Fq[A].It is a contradiction.

Lemma 4.3Let U be the unit group of Fq[A].Then

(2)If m(x)=(x?α)2,then

(3)If m(x)=(x?α1)(x?α2)and α1α2,then

(4)If m(x)is irreducible with degree 2 over Fq,then

ProofIf mA(x)is irreducible of degree d,thenThis proves statement(1)and(4).

If mA(x)=(x?α)2,then(x?α+1)q=(x?α)q+1,so x?α+1∈U with order q. Since gcd(q,q?1)=1,it follows thatThis proves(2).

If m(x)=(x?α1)(x?α2)and α1α2,then by Lemma 4.3 Fq[A]This proves(3).

Remark 4.1By Lemma 4.2 and 4.3,we have the following union

where dimFq[Ai]=2 and Fq[Ai]∩Fq[Aj]=V0for distinct i,j.Let Uibe the unit group of Fq[Ai].After ordering we may assume that

Now we count the number in the decomposition(2).

Lemma 4.4Let Uibe the unit group of Aiin equation(2),m1=and m3=Then m1=q+1,m2=and

ProofLet Zibe the set of zero-divisor of Fq[Ai].Then Ziis nilpotent if and only if

By Lemma 2.1 the number of nilpotent elements in R is m1(q?1)+1=q2.So m1=q+1.

By Lemma 2.1 again,the number of zero-divisor of R is q2+m2(2q?2)=q3+q2?q.So

Finally,|R|=(m1+m2+m3)(q2?q)+q=q4.So m3=

Now we can determine the distribution of indegrees and length of cycles in G1(R,k).

Theorem 4.1Suppose that A∈U(R)and

(4)If A∈V0,then

ProofIf AV0and Bk=A,then B∈Fq[A]by Lemma 4.2.Since both B and A are invertible,one has d=gcd(q(q?1),k),by Lemma 2.1.

This proves statement(1)and the proof of(2)and(3)are similar.

Now suppose that A∈V0and R=be the union in(2)and Uibe the unit group of Fq[Ai].By Lemma 4.1,we have the following disjoint union

By Theorem 2.1,

Combining with m1=q+1,,we obtain(4).

A digraph G is called semiregular if there exists a positive integer d such that the indegree of any vertex of G is d or 0.

Corollary 4.1G1(R,k)is semiregular if and only if gcd(q3?q,k)=1.

ProofIf gcd(q3?q,k)=1,then by Theorem 4.1 and a simple computation we see that any vertex in G1(R,k)has indegree 0 or 1.

Conversely,suppose that G1(R,k)is semiregular.By(1)and(2)of Theorem 4.1,we have

Since gcd(q?1,q)=1,one has

Thus,gcd(q3?q,k)=1.

Theorem 4.2Let q2?1=u1v1,q=u2v2where uiis the largest divisor of q2?1,q (resp,)relative prime to k.Then the set of cycle length appeared in G1(R,k)is

and the number of fixed point in G1(R,k)is

ProofLet A1,A2,...,Atbe a t-cycle contained in G1(R,k).Clearly,all Aiare scalar matrices if and only if one Aiis a scalar matrix.

Let cibe the number of fixed points in UiV0.So ciis equal to the number of fixed points of G(U,k)minus the number of fixed points in G(Cq?1,k).By Theorem 2.1,we have

Thus,the number of fixed points in G1(R,k)is equal to c.

Corollary 4.2Let

be the number of fixed points in G1(R,kj).

Then the number of t-cycle in G1(R,k)is ct?

ProofIt follows immediately from that x is contained in a t-cycle of G1(R,k)if and only if x is a fixed point in G1(R,kt).

Reference

[1]Deng G X,Yuan P Z.Isomorphic digraphs from powers modulo p[J].Czechoslovak Math.J.,2011,61:771-779.

[2]Lucheta C,Miller E,Reiter C.Digraphs from powers modulo p[J].Fibonacci Quart.,1996,34:226-239.

[3]Rogers T D.The graph of the square mapping on the prime field[J].Discrete Math.,1996,148:317-324.

[6]Deng G X.On the structure of G(H,k)[J].Algebra Colloq.,2014,21(2):317-330.

[7]Meemark Y,Wiroonsri N.The quadratic digraph on polynomial rings over finite fields[J].Finite Fields Appl.,2010,16:334-346.

[8]Meemark Y,Wiroonsri N.The digraph of the kth power mapping of the quotient ring of polynomials over finite fields[J].Finite Fields Appl.,2012,18:179-191.

[9]Wei Y J,Nan J Z,Tang G H.Structure of cubic mapping graph for the ring of Gaussian integers modulo n[J].Czechoslovak Math.J.,2012,62:527-539.

[10]Wei Y J,Nan J Z,Tang G H.The square mapping graphs of finite commutative rings[J].Algebra Colloq., 2012,19:569-580.

[11]Ahmad U.The classification of finite groups by using iteration digraphs[J].Czechoslovak Math J., 2016,66(4):1103-1117.

[12]Morrison K E.Integer sequences and matrices over finite fields[J].J.Integer Seq.,2006,9:06.2.1.

[13]Lidl R,Niederreiter H.Introduction to finite Fields and Their Applications[M].England:Cambridge University Press.1994.

有限域上矩陣環(huán)的冪映射圖

趙金星1,2,南基洙1

(1.大連理工大學(xué)數(shù)學(xué)科學(xué)學(xué)院,遼寧,大連 116024)

(2.內(nèi)蒙古大學(xué)數(shù)學(xué)科學(xué)學(xué)院,內(nèi)蒙古,呼和浩特 010021)

對于一個環(huán)或者是乘法群H和一個正整數(shù)k,我們可以定義一個有向圖G(H,k),稱為H上的k次冪映射圖.它的頂點(diǎn)集合就是H,并且從a到b有一條有向邊當(dāng)且僅當(dāng)b=ak.交換環(huán)或者交換群上的k次冪映射圖一般具有較好的對稱性,這方面已經(jīng)有相當(dāng)多的結(jié)果.本文研究有限域上二階矩陣環(huán)的k次冪映射圖,利用線性代數(shù)和群論的方法,克服了非交換性帶來的困難,得到了這類圖的頂點(diǎn)入度的分布和圈長的分布.

迭代圖;有限域;樹;圈的長度

O157.5

2016-12-29.

國家自然科學(xué)基金(11371343).

趙金星(1979-),碩士生,講師,研究方向:代數(shù)學(xué)及其應(yīng)用.

A

1008-5513(2017)02-0152-08

10.3969/j.issn.1008-5513.2017.02.006

2010 MSC:05C05,05C20,05C25,05C38

猜你喜歡
數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
中等數(shù)學(xué)
我們愛數(shù)學(xué)
我為什么怕數(shù)學(xué)
新民周刊(2016年15期)2016-04-19 18:12:04
數(shù)學(xué)到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數(shù)學(xué)就難過
數(shù)學(xué)也瘋狂
主站蜘蛛池模板: 最新国产在线| 国产美女人喷水在线观看| 九九久久99精品| av无码久久精品| 色婷婷成人| 久久综合伊人 六十路| 丁香六月激情综合| 99伊人精品| 黄色网在线| 一级福利视频| 黄色一级视频欧美| 日本不卡免费高清视频| 欧美精品xx| 国内黄色精品| 国产欧美中文字幕| 天堂成人在线| 亚洲欧美一区二区三区麻豆| 国产色婷婷| 国产精品99r8在线观看| 欧美精品黑人粗大| 亚洲妓女综合网995久久| 九色91在线视频| 国产性爱网站| 免费观看男人免费桶女人视频| 欧美成人看片一区二区三区| 青青草国产免费国产| 久久久久国色AV免费观看性色| 亚洲精品国产首次亮相| 亚洲国产天堂久久综合226114| 任我操在线视频| 欧美精品在线观看视频| 欧美全免费aaaaaa特黄在线| 国产18在线播放| 黄色三级网站免费| 色哟哟精品无码网站在线播放视频| 婷婷五月在线| 国产成人福利在线| 欧美激情综合| 成人欧美日韩| 亚洲三级电影在线播放| 97国产成人无码精品久久久| 日本高清免费不卡视频| 97免费在线观看视频| 亚洲天堂网在线播放| 国产情精品嫩草影院88av| 亚洲乱码在线播放| 尤物成AV人片在线观看| 亚洲区视频在线观看| 国产精品久久久久鬼色| 无码高潮喷水在线观看| 久久亚洲美女精品国产精品| 免费看美女自慰的网站| 国产免费网址| 秋霞国产在线| www.精品国产| 国产午夜不卡| 网友自拍视频精品区| 中文字幕无码电影| 久久semm亚洲国产| 高清欧美性猛交XXXX黑人猛交| 国产日韩欧美精品区性色| 亚洲AV人人澡人人双人| 手机精品福利在线观看| 成年人国产视频| 在线观看亚洲天堂| 日韩高清欧美| 国产精品福利导航| 婷婷六月综合网| 亚洲不卡影院| 色综合天天视频在线观看| 午夜视频免费试看| 午夜日韩久久影院| 国产大全韩国亚洲一区二区三区| 亚洲欧美极品| 亚洲男人的天堂久久香蕉| 国产日产欧美精品| 99热国产在线精品99| 人人澡人人爽欧美一区| 国产美女人喷水在线观看| 中文字幕 91| 国产另类视频| 日本成人一区|