王少軍 王玉強 陳 晨 范 楊
【摘 要】 我國電力系統繼電保護技術的發展經歷了四個階段。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。其發展將出現原理突破和應用革命,由數字時代跨入信息化時代。隨著科學技術的發展,功能更全、智能化水平更高、系統更完善的超高壓變電所綜合自動化系統,必將在我國電網建設中不斷涌現。
【關鍵詞】 繼電保護;技術發展;趨勢
一、繼電保護發展現狀
繼電保護技術是隨著電力系統的發展而發展的,它與電力系統對運行可靠性要求的不斷提高密切相關。建國后,我國繼電保護學科、繼電保護設計、繼電器制造工業和繼電保護技術隊伍從無到有,在大約10年的時間里走過了先進國家半個世紀走過的道路。50年代,我國工程技術人員創造性地吸收、消化、掌握了國外先進的繼電保護設備性能和運行技術,建成了一支具有深厚繼電保護理論造詣和豐富運行經驗的繼電保護技術隊伍,對全國繼電保護技術隊伍的建立和成長起了指導作用。阿城繼電器廠引進消化了當時國外先進的繼電器制造技術,建立了我國自己的繼電器制造業。因而在60年代中我國已建成了繼電保護研究、設計、制造、運行和教學的完整體系。這是機電式繼電保護繁榮的時代,為我國繼電保護技術的發展奠定了堅實基礎。
國內微機保護的研究開始于70年代末期,起步較晚,但發展很快。1984年我國第一套微機距離保護樣機在試運行后通過鑒定并批量生產,以后每年都有新產品問世;1990年第二代微機線路保護裝置正式投入運行。目前,高壓線路、低壓網絡、各種主電氣設備都有相應的微機保護裝置在系統中運行,特別是線路保護已形成系列產品,并得到廣泛應用。我國在2000年220kV及以上系統的微機保護率為43.99%,線路微機保護占86%,到2003年底,220kV以上系統的微機保護已占到70.29%,線路的微機化率達到97.6%。實際運行中,微機保護的正確動作率要明顯高于其他保護,一般比平均正常動作率高0.2~0.3個百分點。國產微機保護經過多年的實際運行,依靠先進的原理和技術及良好的工藝已全面超越進口保護。從80年代220KV及以上電壓等級的電力系統全部采用進口保護,到現在220KV系統繼電保護基本國產化,反映了繼電保護技術在我國的長足發展和國產繼電保護設備的明顯優勢。
微機繼電保護技術的成熟與發展是近三十年來繼電保護領域最顯著的進展。經過長期的研究和實踐,現在人們已普遍認可了微機保護在電網中無可替代的優勢。微機保護具有自檢功能,有強大的邏輯處理能力、數值計算能力和記憶能力,并且具備很強的數字通信能力,這一切都是電磁繼電器、晶體管繼電器所難以匹敵的。計算機技術的進步,更高性能、更高精度的
數字外圍器件的采用,一直是微機繼電保護不斷發展的強大動力。
二、繼電保護技術的發展趨勢
繼電保護技術的發展趨勢是向計算機化,網絡化,智能化,保護、控制、測量和數據通信一體化發展。
1、 智能化
近年來,人工智能技術如神經網絡、遺傳算法、進化規劃、模糊邏輯等在電力系統各個領域都得到了應用,在繼電保護領域應用的研究也已開始。神經網絡是一種非線性映射的方法,很多難以列出方程式或難以求解的復雜的非線性問題,應用神經網絡方法則可迎刃而解。例如在輸電線兩側系統電勢角度擺開情況下發生經過渡電阻的短路就是一非線性問題,距離保護很難正確作出故障位置的判別,從而造成誤動或拒動;如果用神經網絡方法,經過大量故障樣本的訓練,只要樣本集中充分考慮了各種情況,則在發生任何故障時都可正確判別。其它如遺傳算法、進化規劃等也都有其獨特的求解復雜問題的能力。將這些人工智能方法適當結合可使求解速度更快。進入20世紀90年代以來,電力系統保護領域內的一些研究工作也轉向人工智能的研究。專家系統、人工神經網絡(ANN)和模糊控制理論逐步應用于電力系統繼電保護中,為繼電保護的發展注入了活力。
2、 自適應控制技術在繼電保護中的應用
自適應繼電保護的概念始于20世紀80年代,它可定義為能根據電力系統運行方式和故障狀態的變化而實時改變保護性能、特性或定值的新型繼電保護。自適應繼電保護的基本思想是使保護能盡可能地適應電力系統的各種變化,進一步改善保護的性能。這種新型保護原理的出現引起了人們的極大關注和興趣,是微機保護具有生命力和不斷發展的重要內容。自適應繼電保護具有改善系統的響應、增強可靠性和提高經濟效益等優點,在輸電線路的距離保護、變壓器保護、發電機保護、自動重合閘等領域內有著廣泛的應用前景。針對電力系統頻率變化的影響、單相接地短路時過渡電阻的影響、電力系統振蕩的影響以及故障發生問題,采用自適應控制技術,從而提高保護的性能。對自適應保護原理的研究已經過很長的時間,也取得了一定的成果,但要真正實現保護對系統運行方式和故障狀態的自適應,必須獲得更多的系統運行和故障信息,只有實現保護的計算機網絡化,才能做到這一點。
3、變電所綜合自動化技術、現代計算機技術、通信技術和網絡技術為改變變電站目前監視、控制、保護和計量裝置及系統分割的狀態提供了優化組合和系統集成的技術基礎
高壓、超高壓變電站正面臨著一場技術創新。實現繼電保護和綜合自動化的緊密結合,它表現在集成與資源共享、遠方控制與信息共享。以遠方終端單元(RTU)、微機保護裝置為核心,將變電所的控制、信號、測量、計費等回路納入計算機系統,取代傳統的控制保護屏,能夠降低變電所的占地面積和設備投資,提高二次系統的可靠性。目前,為了測量、保護和控制的需要,室外變電站的所有設備,如變壓器、線路等的二次電壓、電流都必須用控制電纜引到主控室。所敷設的大量控制電纜不但要大量投資,而且使二次回路非常復雜。但是如果將上述的保護、控制、測量、數據通信一體化的計算機裝置,就地安裝在室外變電站的被保護設備旁,將被保護設備的電壓、電流量在此裝置內轉換成數字量后,通過計算機網絡送到主控室,則可免除大量的控制電纜。如果用光纖作為網絡的傳輸介質,還可免除電磁干擾?,F在光電流互感器(OTA)和光電壓互感器(OTV)已在研究試驗階段,將來必然在電力系統中得到應用。在采用OTA和OTV的情況下,保護裝置應放在距OTA和OTV最近的地方,亦即應放在被保護設備附近。OTA和OTV的光信號輸入到此一體化裝置中并轉換成電信號后,一方面用作保護的計算判斷;另一方面作為測量量,通過網絡送到主控室。從主控室通過網絡可將對被保護設備的操作控制命令送到此一體化裝置,由此一體化裝置執行斷路器的操作。1992年天津大學提出了保護、控制、測量、通信一體化問題,并研制了以TMS320C25數字信號處理器(DSP)為基礎的一個保護、控制、測量、數據通信一體化裝置。
三、結論
我國電力系統繼電保護技術的發展經歷了四個階段。隨著電力系統的高速發展和計算機技術、通信技術的進步,繼電保護技術面臨著進一步發展的趨勢。其發展將出現原理突破和應用革命,由數字時代跨入信息化時代,發展到一個新的水平??傮w來說,綜合自動化系統打破了傳統二次系統各專業界限和設備劃分原則,改變了常規保護裝置不能與調度(控制)中心通信的缺陷,給變電所自動化賦予了更新的含義和內容,代表了變電所自動化技術發展的一種潮流。隨著科學技術的發展,功能更全、智能化水平更高、系統更完善的超高壓變電所綜合自動化系統,必將在我國電網建設中不斷涌現,把電網的安全、穩定和經濟運行提高到一個新的水平。
【參考文獻】
[1] 張國峰,梁文麗,李玉龍;電力系統繼電保護技術的未來發展[J];中國科技信息;2005.