【摘要】現(xiàn)代教育觀點(diǎn)認(rèn)為,數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),即思維活動的教學(xué)。
【關(guān)鍵詞】培養(yǎng);學(xué)生;數(shù)學(xué)思維能力
【中圖分類號】G633.6【文獻(xiàn)標(biāo)識碼】A【文章編號】1005-1074(2009)05-0205-01
如何在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的思維能力,養(yǎng)成良好思維品質(zhì)是教學(xué)改革的一個重要課題。在數(shù)學(xué)教學(xué)中,培養(yǎng)學(xué)生的思維能力應(yīng)著重從以下幾個方面去做。
1培養(yǎng)學(xué)生的數(shù)學(xué)興趣,開啟學(xué)生的思維
要指導(dǎo)學(xué)生運(yùn)用已學(xué)的數(shù)學(xué)知識和方法解釋自己所熟悉的實(shí)際問題,新教材中安排的“想一想”、“讀一讀”不僅能擴(kuò)大知識面,還能提高學(xué)生的學(xué)習(xí)興趣。如列方程解應(yīng)用題是學(xué)生普遍感到困難的教學(xué)內(nèi)容之一,主要原因在于掌握不好用代數(shù)方法分析問題的思路,習(xí)慣用小學(xué)的算術(shù)解法,找不出等量關(guān)系,列不出方程。因此,在教列代數(shù)式時就要有意識地為列方程的教學(xué)作一些準(zhǔn)備工作,啟發(fā)學(xué)生從錯綜復(fù)雜的數(shù)量關(guān)系中去尋找已知與未知之間的內(nèi)在聯(lián)系。通過畫草圖列表,配以一定數(shù)量的例題和習(xí)題,使同學(xué)們能逐步尋找出等量關(guān)系,列出方程,并在此基礎(chǔ)進(jìn)行提高,指出同一題目由于思路不一樣,可列出不同的方程。這樣大部分同學(xué)都能較順利地列出方程,碰到難題也會分析解決。同時還要鼓勵學(xué)生獨(dú)立思維,初中生受經(jīng)驗(yàn)思維的影響,思維容易雷同,缺乏探索精神,因而要多鼓勵學(xué)生敢于發(fā)表不同的見解訓(xùn)練學(xué)生的思維。
2要教會學(xué)生思維的方法
學(xué)生善于思維,必須重視基礎(chǔ)知識和基本技能的學(xué)習(xí),沒有扎實(shí)的雙基,思維能力是得不到提高的。數(shù)學(xué)概念、定理是推理論證和運(yùn)算的基礎(chǔ),準(zhǔn)確地理解概念、定理是學(xué)好數(shù)學(xué)的前提。在教學(xué)過程中要提高學(xué)生觀察分析、由表及里、由此及彼的認(rèn)識能力。在例題課中要把解(證)題思路的發(fā)現(xiàn)過程作為重要的教學(xué)環(huán)節(jié)。不僅要學(xué)生知道該怎樣做,還要讓學(xué)生知道為什么要這樣做,是什么促使你這樣做和想。這個發(fā)現(xiàn)過程可由教師引導(dǎo)學(xué)生完成,或由教師講出自己的尋找過程。在數(shù)學(xué)練習(xí)中,要認(rèn)真審題,細(xì)致觀察,對解題起關(guān)鍵作用的隱含條件要有挖掘的能力。學(xué)會從條件到結(jié)論或從結(jié)論到條件的正逆兩種分析方法。對一個數(shù)學(xué)題,首先要能判斷它是屬于哪個范圍的題目,涉及到哪些概念、定理或計算公式。在解(證)題過程中盡量運(yùn)用各種數(shù)學(xué)語言、數(shù)學(xué)符號。初中數(shù)學(xué)研究對象大致可分為兩類,一類是研究數(shù)量關(guān)系的,另一類是研究空間形式的,即“代數(shù)”、“幾何”。要使同學(xué)們熟練地掌握一些重要的數(shù)學(xué)方法,主要有配方法、換之法、待定系數(shù)法、綜合法、分析法及反證法等。
3培養(yǎng)良好的思維品質(zhì)
在學(xué)生初步學(xué)會如何思維和掌握一定的思維方法后,應(yīng)加強(qiáng)思維能力的訓(xùn)練及思維品質(zhì)的培養(yǎng)。要根據(jù)解題目標(biāo),確定解題方向,注意培養(yǎng)思維的條理性與敏捷性。要注意培養(yǎng)思維的嚴(yán)密性和靈活性,學(xué)生在思維過程中,要能迅速發(fā)現(xiàn)問題和解決問題。每個公式、法則、定理都有它的來龍去脈,都有使它成立的前提條件,都有它特定的使用范圍,要做到言必有據(jù)??蛇x擇一些習(xí)題讓學(xué)生先做,再針對學(xué)生思維中的漏洞進(jìn)行教學(xué)分析。例:九年級上冊第四章“一元二次方程”一個題目:K是什么數(shù)時,方程KX2-(2K+1)X+K=0有兩個不相等的實(shí)數(shù)根?很多同學(xué)只注意由△=[-(2K+1)]2-4K#8226;K=4K2+4K+1-4K2=4K+1>0,推得K>-14。而如果把K>-14作為本題答案那就錯了,因?yàn)楫?dāng)K=0時,原方程不是二次方程,所以在K>-14還得把K=0這個值排除。正確的答案應(yīng)是-14<K<0或K>0時,原方程有兩個不相等的實(shí)數(shù)根。在復(fù)習(xí)時要精選一些有代表性、鞏固性和靈活性的習(xí)題,從各種不同角度,尋求不同的解(證)法,進(jìn)行“一題多解”的訓(xùn)練,還可改變條件進(jìn)行“一題多變”和“多題一解”的訓(xùn)練,這是綜合運(yùn)用數(shù)學(xué)知識和方法提高解題能力的重要措施。培養(yǎng)學(xué)生思維能力的方法是多種多樣的,要使學(xué)生思維活躍,最根本的一條,就是要調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,教師要善于啟發(fā)、引導(dǎo)、點(diǎn)撥、解疑,使學(xué)生變學(xué)為思。
4抓住關(guān)鍵,有針對性地進(jìn)行思維訓(xùn)練
4.1找準(zhǔn)數(shù)學(xué)思維能力培養(yǎng)的突破口數(shù)學(xué)思維的敏捷性主要反映了正確前提下的速度問題。因此,數(shù)學(xué)教學(xué)一方面可以考慮訓(xùn)練學(xué)生的運(yùn)算速度,另一方面要盡量使學(xué)生掌握數(shù)學(xué)概念、原理的本質(zhì),提高所掌握的數(shù)學(xué)知識的抽象程度。因?yàn)樗莆盏闹R越本質(zhì)、抽象程度越高,其適應(yīng)的范圍就越廣泛,檢索的速度也就越快。另外,運(yùn)算速度不僅僅是對數(shù)學(xué)知識理解程度的差異,而且還有運(yùn)算習(xí)慣以及思維概括能力的差異。在數(shù)學(xué)教學(xué)中,應(yīng)當(dāng)時刻向?qū)W生提出速度方面的要求,使學(xué)生掌握速算的要領(lǐng)。要注意培養(yǎng)學(xué)生思維的靈活性,應(yīng)當(dāng)增強(qiáng)數(shù)學(xué)教學(xué)的變化性,為學(xué)生提供思維的廣泛聯(lián)想空間,使學(xué)生在面臨問題時能夠從多種角度進(jìn)行考慮,并迅速地建立起自己的思路,真正做到“舉一反三”,使學(xué)生融會貫通地學(xué)習(xí)知識,養(yǎng)成獨(dú)立思考的習(xí)慣。
4.2要有的放矢地進(jìn)行思維訓(xùn)練要教會學(xué)生分析問題的基本方法,這樣有利于培養(yǎng)學(xué)生的正確思維方式。學(xué)生善于思維,必須重視基礎(chǔ)知識和基本技能的學(xué)習(xí),沒有扎實(shí)的雙基,思維能力是得不到提高的。數(shù)學(xué)概念、定理是推理論證和運(yùn)算的基礎(chǔ)。在教學(xué)過程中要提高學(xué)生觀察分析、由表及里、由此及彼的認(rèn)識能力。在例題課中要把解(證)題思路的發(fā)現(xiàn)過程作為重要的教學(xué)環(huán)節(jié),不僅要學(xué)生知道該怎樣做,還要讓學(xué)生知道為什么要這樣做,是什么促使你這樣做,這樣想的。在數(shù)學(xué)練習(xí)中,要認(rèn)真審題,細(xì)致觀察,對解題起關(guān)鍵作用的隱含條件要有挖掘的能力,會運(yùn)用綜合法和分析法,并在解(證)題過程中盡量要學(xué)會用數(shù)學(xué)語言、數(shù)學(xué)符號進(jìn)行表達(dá)。此外,還應(yīng)加強(qiáng)分析、綜合、類比等方法的訓(xùn)練,提高學(xué)生的邏輯思維能力。加強(qiáng)逆向應(yīng)用公式和逆向思考的訓(xùn)練,提高逆向思維能力。通過解題錯、漏的剖析,提高辨識思維能力。通過一題多解(證)的訓(xùn)練,提高發(fā)散思維能力等。
4.3善于調(diào)動學(xué)生內(nèi)在的思維能力教師要精心設(shè)計,使每節(jié)課形象、生動,并有意創(chuàng)造動人情境,設(shè)置誘人懸念,激發(fā)學(xué)生思維的火花和求知的欲望,還要經(jīng)常指導(dǎo)學(xué)生運(yùn)用已學(xué)的數(shù)學(xué)知識和方法解釋自己所熟悉的實(shí)際問題。要分散難點(diǎn),讓學(xué)生樂于思維。對于較難的問題或教學(xué)內(nèi)容,教師應(yīng)根據(jù)學(xué)生的實(shí)際情況,適當(dāng)分解,減緩坡度,分散難點(diǎn),創(chuàng)造條件讓學(xué)生樂于思維。要鼓勵學(xué)生從不同的角度去觀察問題,分析問題,養(yǎng)成良好的思維習(xí)慣和品質(zhì)。鼓勵學(xué)生敢于發(fā)表不同的見解,多贊揚(yáng)、肯定,促進(jìn)學(xué)生思維的廣闊性發(fā)展。
良好的思維品質(zhì)不是一朝一夕就能形成的,但只要根據(jù)學(xué)生實(shí)際情況,通過各種手段,堅持不懈,持之以恒,就必定會有所成效。