摘要:雄激素促進骨骼肌蛋白質合成是通過雄激素受體作用的,高原訓練時高原低氧抑制蛋白質合成,導致肌肉質量下降。綜述了雄激素受體的結構,作用機理,在骨骼肌中的作用機制,低氧和運動對雄激素受體的作用,明確低氧和運動條件下雄激素受體在骨骼肌蛋白質合成中的可能作用機理。
關鍵詞:雄激素受體;低氧;運動;骨骼肌蛋白質;綜述
中圖分類號:G804.7文獻標識碼:A文章編號:1006-7116(2008)12-0101-07
Effects of androgen receptor on the synthesis of skeletal muscle protein under
the conditions of hypoxemia and movement
YE Ming1,HE Dao-yuan2,ZENG Fan-xing3
(1.Department of Exercise Physiology,Capital Institute of Physical Education,Beijing 100088,China;
2.Department of Physical Education,China Three Gorges University,Yichang 443002,China;
3.Department of Exercise Physiology,Beijing Sports University,Beijing 100084,China)
Abstract: The synthesis of skeletal muscle protein boosted by androgen is carried out via the functions of androgen receptor. During training in an altiplano area, hypoxemia restrains protein synthesis, causing the deterioration of muscle quality. The authors gave an overview of the structure and functioning principle of androgen receptor, functioning mechanism of androgen receptor in skeletal muscle, and effects of hypoxemia and movement on androgen receptor, and specified the mechanism of the possible functioning of androgen receptor in the synthesis of skeletal muscle protein under the conditions of hypoxemia and movement.
Key words: androgen receptor;hypoxemia;movement;skeletal muscle protein;overview
1雄激素受體的結構
1.1雄激素受體的基因組成
雄激素受體(Androgen receptor AR)為單拷貝基因,位于X染色體長臂q11.2~q12,含有8個外顯子,轉錄形成讀碼框約2 757個堿基的mRNA,可編碼910~920個氨基酸,較公認的是編碼含918個氨基酸的蛋白質。主要分為4個功能區域:外顯子1編碼N端的轉錄激活區域(N-transcriptional activation domain NTD),外顯子2和外顯子3編碼DNA結合區域(DNA binding domain DBD)的兩個鋅指結構,外顯子4編碼鉸鏈區,其中包含部分的AR核定位信號和配基結合區域(Ligand binding domain LBD)的前兩個α-螺旋,外顯子5~8編碼LBD的其余部分[1]。
1.2雄激素受體的蛋白質結構
AR屬于核蛋白,AR長度的變化是因為在氨基末端的多聚谷氨酰胺和多聚甘氨酸長度的多態變化造成的。其理論相對分子量是98 kDa,但在SDS-PAGE中表現為相對分子量為110~112 kDa,通過SDS-PAGE證明分子量是110 kDa的AR蛋白很快會被磷酸化[2],用Western blot 觀察到另一分子量為112kDa的AR蛋白質條帶的存在[3]。在一些組織中也觀察到分子量大約是87kDa的AR翻譯產物[4],生理作用尚不清楚。
2雄激素受體的作用機理
2.1基因組作用機理
雄激素受體屬于核受體超家族,是一種配體依賴的轉錄調節因子。未活化的AR主要存在于細胞漿中,并通過配基結合區域與熱休克蛋白(Heat shock proteins hsps)等伴侶蛋白分子結合,這種結合能使受體處于能與配基結合的最佳狀態但無轉錄活性;當AR與雄激素結合后,AR與hsps解離并發生構象改變,繼而發生進一步磷酸化,同二聚體化,通過核定位信號的介導移位到核內;在核中AR與DNA上特定的雄激素反應元件(Androgen responsive element ARE)相結合,ARE的特點是由6個核苷酸半位點共有序列5’-TGTTCT-3’間隔3個任意核苷酸,位于AR靶基因的啟動子或增強子區域,在AR的輔助因子作用下,與轉錄中介因子(Transcriptional intermediary factors TIFs)及基礎轉錄因子等相互作用,最終通過調控多種基因的表達來介導雄激素的作用。目前,雄激素受體調控真核基因表達的研究主要集中在轉錄起始階段,而對翻譯階段的研究較少。
雄激素是影響AR表達及功能的最主要因素,雄激素可以作用于雄激素受體的不同環節,包括調節受體數量、活性及代謝等等,且這種調節作用具有組織和細胞特異性,具體包括以下幾方面:
雄激素能調節ARmRNA和AR蛋白表達水平,但是雄激素對AR表達的作用是復雜的,原因可能主要與細胞類型和作用時間有關。
研究證明雄激素正向調節AR的表達,有研究證明大鼠或小鼠去勢后前列腺ARmRNA和AR蛋白表達減少,用DHT治療后AR表達可恢復到正常水平[5]。Kerr等[6]的研究證明去勢誘導大鼠海馬ARmRNA降低,Michel等[7]觀察到大鼠去勢后,股四頭肌AR水平隨著時間延長顯著降低。Brandsteffer等[8]在腎、腦、附睪等器官中也發現雄激素下降下調ARmRNA的表達。而外源性補充睪酮可提高ARmRNA和蛋白表達[9],用DHT處理人造骨細胞系后上調ARmRNA表達,明顯提高AR的數量[10]。
然而也有研究者觀察到去勢后大鼠前列腺ARmRNA反而提高了,給去勢動物補充睪酮可降低AR表達到正常水平[11]。去勢后機體內低雄激素水平不僅可降低內源性雄激素與AR結合,在24h內可誘導大鼠ARmRNA表達增加,而且完全可被外源性注射DHT所逆轉[12]。諸多體外試驗結果:雄激素處理LNCaP細胞或者人體乳腺癌細胞持續48h或更長時間可導致ARmRNA水平明顯降低[13-14],建議雄激素下調AR表達可能限制雄激素在這些細胞類型中的反應。
也有研究報道雄激素上調或下調AR表達取決于雄激素的作用水平:在血小板和巨核細胞系中,1-10 nmol/L的低濃度睪酮可以上調AR表達,而濃度達100 nmol/L的睪酮則下調AR水平[10]。
有關雄激素影響AR代謝及功能的報道較少。雄激素存在時,AR降解速度明顯減慢,是無雄激素存在時降解速度的1/6,雄激素促進AR向核內移位,在雄激素作用下,可以提高AR水平,同時活化狀態的AR也增加,約為無雄激素作用下AR活化水平的2~4倍[15]。雄激素存在促進胞漿內AR向核內移位,提高核內AR水平[16]。用放射性同位素標記的正磷酸鹽作為代謝標記,證明AR是一種磷酸化蛋白質,并且在雄激素R1881作用下,提高AR的磷酸化水平[17];同樣有研究證明小鼠大腦皮層AR的磷酸化水平經雄激素處理后升高了[18]。
2.2非基因組作用機制
大量雄激素非依賴性前列腺癌、剝奪雄激素治療后效果不明顯或復發的病人前列腺癌組織中,AR和雄激素作用的靶基因仍高表達,提示缺乏雄激素或雄激素水平較低時,AR信號途徑仍發揮功能,AR除了受雄激素調控,可能還存在其它的調控機理[19-20]。
近年來研究發現睪酮不僅是通過細胞內受體的經典途徑發揮作用,而且它還可以通過細胞膜上的受體經非基因組途徑起作用[21]。在卵母細胞、骨骼肌細胞、成骨細胞都報道了AR的非基因組途徑,與基因組途徑相比,非基因組作用的特點是快速的,持續時間從幾秒至一小時,與細胞膜相關的信號途徑相互作用[22]。非基因組效應的結構基礎是AR與細胞質中不同信號轉導途徑的蛋白相互作用[23],與配基誘導的配基結合域的構象變化或氨基末端的間接變化密切相關,然而這些結構基礎相互作用的細節部分仍不清楚。雄激素的非基因組作用在功能上涉及了激酶信號轉導途徑的快速激活或細胞內鈣離子水平發生改變。
有研究證明一些生長因子可能直接在AR的雄激素結合區域改變AR的磷酸化狀態或通過改變AR共調因子的磷酸化來調節AR信號轉導途徑[24],表皮生長因子(EGF)家族、轉化生長因子β(TGFβ)、白介素6(IL-6)、角質化生長因子(KGF)、富含脯氨酸的酪氨酸激酶2(Pyk2)都可通過不同的信號轉導途徑調節AR的轉錄活性,或提高AR對低水平雄激素的敏感性[25-27]。現已證實不同信號轉導途徑中的蛋白激酶,包括MAPK、PKB/Akt、PKA、PKC可通過磷酸化AR或AR共活化因子(TIF2、SRC1)的絲氨酸或蘇氨酸殘基來調節AR的轉錄活性[25-28]。
較多的研究顯示MAPK不僅能直接磷酸化AR,而且還可以磷酸化SRC家族的共活化因子SRC-1、TIF2、SRC-3,通過SRC-1、SRC-3等共活化因子的磷酸化刺激CBP/p300的募集,募集磷酸化的SRC/CBP共活化因子復合物來提高AR的轉錄活性[32-34]。
EGF受體家族的酪氨酸激酶erbB2/Her2過度表達可以刺激AR磷酸化,有研究報道指出Her2可通過PI3K和MAPK兩條途徑來提高AR的轉錄激活,Her2通過PI3K途徑的Akt與AR直接結合,在氨基末端的絲氨酸213和LBD的絲氨酸791兩個位點磷酸化AR,減少AR與共活化因子ARA70之間的相互作用,導致AR轉錄活性下降,抑制PI3K可以提高AR共活化因子的活性從而提高AR的轉錄活性[28,31]。Fujimoto等[32]的研究則顯示Her2對AR轉錄活性的作用是部分通過MAPK途徑,過度表達的Her2刺激AR與共活化因子ARA70、ARA55相互作用,提高AR的轉錄活性。
許多其它的酪氨酸激酶,包括Src、FAK和Etk/BMX,在IL-6和bombesin刺激下,參與激活并調節AR的轉錄活性[33]。
近年來也有研究提示IGF-1和IGF-IR可能通過提高AR共調因子的表達或活化來調節AR活性:血液中高水平的IGF-1直接刺激并提高AR活性[34],還有研究顯示IDE是調節AR轉錄活性的輔助刺激因子,IGF-1通過調節IDE結合AR的能力來調節AR的轉錄活性[35]。Lin等[28]的研究第一次報道IGF-1信號途徑直接影響AR功能的機理在于改變AR磷酸化,并證明在LNCaP細胞中IGF-1對AR活性的作用是雙相性的:低傳代數抑制AR的轉錄活性而高傳代數提高AR的轉錄活性,并且描述IGF-1在絲氨酸210和790兩個位點磷酸化AR。Gioeli等[36]的研究說明即使缺乏雄激素,IGF-1仍可誘導AR的轉錄激活,機理是AR磷酸化的改變或者是AR共調因子的重新募集,或者是兩者的共同作用仍需進一步確定。在原發性和轉移性腫瘤中IGF-IR均可通過PI3K途徑介導并激活AR的轉錄活性[37]。
一些生長因子除了作用于共調因子,還通過其它非核受體轉錄因子來調節AR轉錄活性,例如:TGFβ刺激Smad轉錄因子磷酸化和核轉運[38],IL-6可能調節STAT蛋白的轉錄[39]。Smad和STAT轉錄因子的成員能與AR相互作用調節AR轉錄活性。
也有研究顯示AR非基因組機制也要求雄激素的存在[40]。即使在去勢男性的雄激素非依賴性前列腺癌組織中,仍能觀察到納摩爾水平的雄激素[41]。剝奪雄激素治療時,仍有少量雄激素存在于復發的前列腺組織,這種低水平雄激素的存在可以解釋AR在核內定位和通過某些信號轉導途徑促進AR轉錄活性[42]。
2.3在骨骼肌中的作用機制
與其它組織、尤其是生殖組織相比,骨骼肌中AR表達水平比較低,骨骼肌中AR主要分布在肌源性衛星細胞、成纖維細胞及肌管中,而肌源性衛星細胞可能是雄激素直接作用的靶細胞。
不同的肌肉對雄激素反應不同,實驗結果顯示:肛提肌中AR蛋白含量明顯高于趾長伸肌,這些結果都顯示了對雄激素敏感的肛提肌中比其它相對的對雄激素不敏感的骨骼肌中包含更多的AR蛋白[43],原因在于:在肛提肌和趾長伸肌中,在肌纖維細胞、成纖維細胞、上皮細胞等不同細胞類型中都可以觀察到AR表達,但在肛提肌肌纖維中觀察到AR-IR的百分比10倍于趾長伸肌,而兩種肌肉成纖維細胞中AR-IR的比例是相等的,建議在不同肌肉中AR蛋白表達的不同主要是因為在肌纖維中AR蛋白表達量不同導致的[44]。Douglas A.還在研究中發現:60-90天齡的SD雄性大鼠肛提肌和趾長伸肌中ARmRNA水平是相同的,但肛提肌中AR蛋白含量明顯高于趾長伸肌,兩種肌肉中AR蛋白含量不同可能是AR蛋白翻譯效率和轉換不同導致的[44]。
AR表達增加導致骨骼肌肥大。臨床研究顯示用氧甲氫龍治療5天后明顯提高ARmRNA表達和肌肉蛋白質合成[45],T可能通過增加AR表達而提高肌肉蛋白質合成,誘導骨骼肌細胞肥大,T-AR信號途徑增加肌肉蛋白質合成、肌肉重量、瘦體重和肌肉力量[46]。Lee DK.等用轉染AR的骨骼肌肌原細胞C2C12細胞說明T-AR信號途徑提高了myogenin表達,促進骨骼肌肌原細胞分化,但不增加初級生肌調節因子MyoD的水平[47]。
睪酮促進骨骼肌蛋白質合成的可能機理是睪酮通過AR激活IGF-1。Urban etal.的研究顯示對性腺機能減退的老年男性補充外源性睪酮可提高肌肉蛋白質合成和力量,同時伴有肌肉中IGF-1mRNA含量升高[48]。睪酮是因為增加循環中IGF-1的含量提高了肌肉的生長[49],睪酮通過AR調節,使IGF-1mRNA含量升高,可能是提高肌肉蛋白質合成必需的[50]。雄激素減少的青年肌肉中IGF-1mRNA含量減少,導致肌肉萎縮[51]。AR、IGF-1mRNA增加與肌肉增加明顯相關[52]。睪酮治療后使閹羊肌肉局部IGF-1增多,而IGF-1增加與肌肉重量增加明顯相關[53]。
雄激素不僅通過AR促進IGF-1轉錄激活,還會促進IGF-IR的轉錄激活。在前列腺上皮細胞,雄激素可能是通過激活細胞質中的Src-Raf-Ras-Map激酶途徑,激活ERK1/2 ,通過AR提高IGF-IR啟動子的轉錄活性[40],促進IGF-IR升高。另外,雄激素還可能刺激KFL6增加,KFL6通過與IGF-IR啟動子結合提高IGF-IR表達[54]。盡管對這些機理還存在爭議,但是這些研究都顯示雄激素信號是通過AR提高了IGF-IR的蛋白表達,同時伴有IGF-IR磷酸化的提高,IGF-IR的變化提高了IGF的細胞增殖反應。但這種機理是否存在于骨骼肌細胞還有待進一步探討。
3低氧和運動對雄激素受體的作用
3.1低氧對雄激素受體的作用
未見低氧對人或動物體內雄激素受體影響的報道,有研究報道了模擬腫瘤低氧對前列腺癌細胞培養基中AR含量和功能的作用[55]:在LNCaP細胞和外源性植入AR的DU145細胞中,低氧明顯提高AR與ARE的結合能力及AR靶基因-PSA的表達。低氧處理可以促進AR轉位到核內和AR募集到PSA的啟動子上。低氧可提高AR對極低含量雄激素刺激的敏感性,而且低氧對AR的刺激作用是依賴于雄激素的。總之,以上實驗結果提示:缺氧、復氧的變化刺激AR轉錄激活及對雄激素的敏感性。但Ghafar等[56]的研究卻報道了在進行24 h持續低氧暴露后或24 h低氧處理后復氧,LNCaP細胞中AR蛋白水平和PSA都明顯下降了,說明24 h持續低氧暴露降低了AR含量和AR活性。
也有一些研究揭示了低氧提高AR功能的分子機理,很多證據顯示了低氧激活活性氧(reactive oxygen species ROS),ROS經由PTK蛋白酪氨酸激酶刺激PI3K/PTEN和MAPK途徑[57],而MAPK信號途徑可明顯激活AR的轉錄激活活性[58]。William Conrad等[59]利用PC12細胞探討低氧對MAPK信號轉導途徑的作用:5%低氧暴露明顯刺激p38 、p38 的激活和磷酸化,而低氧對JNK激酶的活性沒有作用;長時間低氧誘導了ERK1/2的激活和磷酸化。
3.2運動對雄激素受體的作用
運動負荷促進肌肉形態和功能改變的機理在于:運動促進血清合成激素的升高,血清激素通過調節受體的表達來促進肌肉局部的生長反應。現已證實運動訓練造成的骨骼肌肥大和肥大效應的維持與運動導致的骨骼肌AR水平升高密切相關。
動物和人體實驗均表明運動導致骨骼肌形態和功能發生改變時,往往伴有骨骼肌AR水平的變化。而且不同訓練方式對不同類型骨骼肌及其AR水平的影響是不同的。大鼠在力量訓練后Ⅱ型肌中AR含量明顯升高了[60],Marcas報道了人體在一次急性離心或向心運動負荷后,ARmRNA含量明顯升高了,同時顯示了大強度力量訓練后AR含量是上升的[61]。Michael等[7]報道了耐力和阻力訓練可導致趾長伸肌和比目魚肌中AR水平的不同變化,分析原因認為不同運動過程中對不同肌肉的募集程度不同,由于運動中血流不同,不同肌肉中獲得的雄激素數量不同,所以運動對大鼠骨骼肌形態和AR水平的影響取決于骨骼肌的肌纖維類型。盡管運動對骨骼肌及其AR的影響是顯著的,但這種影響的規律和內在機制尚需進一步探討。
運動不僅通過改變AR含量,還通過改變AR活性來調節骨骼肌發生適應性改變。近年來研究證明運動可以通過MAPK途徑影響AR的活性。與運動相關聯的生長因子、細胞因子、缺氧、胞內鈣離子的變化和機械應力等都可以刺激MAPK信號級聯。許多學者的研究從MAPK信號轉導途徑探討了骨骼肌對運動的適應機制:運動可激活ERKs、JNKs和p38MAPK途徑。運動后骨骼肌中p38MAPK和JNK出現一次性升高,尤其是p38MAPKγ的活性明顯升高[62];動物實驗和人體實驗都表明一過性耐力和力量訓練后,骨骼肌細胞p38MAPK分子被激活[63];也有研究表明8周的耐力訓練使骨骼肌發生了適應性改變的同時,骨骼肌中p38活性明顯增高[64]。
參考文獻:
[1] Sack J S,Kish K F,Wang C,et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(9):4904-4909.
[2] Jenster G,Ruiter PE, Korput H A,et al. Changes in the abundance of androgen receptor isotypes: effects of ligand treatment, glutamine-stretch variation, and mutation of putative phosphorylation sites[J]. Biochemistry,1994,33(47):14064-14072.
[3] Brinkmann A O,Trapman J. Genetic analysis of androgen receptors in development and disease[J]. Advances in pharmacology (San Diego,Calif.),2000,47:317-41.
[4] Wilson C M,McPhaul M J. A and B forms of the androgen receptor are expressed in a variety of human tissues[J]. Molecular and Cellular Endocrinology,1996,120(1):51-57.
[5] Takeda H,Chodak G,Mutchnik S,et al. Immunohistochemical localization of androgen receptors with mono- and polyclonal antibodies to androgen receptor[J]. The Journal of Endocrinology,1990,126(1):17-25.
[6] Kerr J E,Allore R J,Beck S G,et al. Distribution and hormonal regulation of androgen receptor (AR) and AR messenger ribonucleic acid in the rat hippocampus[J]. Endocrinology,1995,136(8):3213-3221.
[7] Michel G,Baulieu E E. Androgen receptor in rat skeletal muscle: characterization and physiological variations[J]. Endocrinology,1980,107(6):2088-2098.
[8] Brandstetter A M,Pfaffl M W,Hocquette J F,et al. Effects of muscle type, castration, age, and compensatory growth rate on androgen receptor mRNA expression in bovine skeletal muscle[J]. Journal of Animal Science,2000,78(3):629-637.
[9] Singh R,Artaza J N,Taylor W E,et al. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway[J]. Endocrinology,2003,144(11):5081-5088.
[10] Khetawat G,Faraday N,Nealen M L,et al. Human megakaryocytes and platelets contain the estrogen receptor beta and androgen receptor (AR): testosterone regulates AR expression[J]. Blood,2000,95(7):2289-2296.
[11] Quarmby V E,Yarbrough W G,Lubahn D B,et al. Autologous down-regulation of androgen receptor messenger ribonucleic acid[J]. Molecular Endocrinology (Baltimore,Md.),1990,4(1):22-28.
[12] Chang C S,Kokontis J,Liao S T. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors[J]. Proceedings of the National Academy of Sciences of the United States of America,1988,85(19):7211-7215.
[13] Zhou Z X,Lane M V,Kemppainen J A,et al. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability[J]. Molecular Endocrinology (Baltimore, Md.),1995,9(2):208-218.
[14] Krongrad A,Wilson C M,Wilson J D,et al. Androgen increases androgen receptor protein while decreasing receptor mRNA in LNCaP cells[J]. Molecular and Cellular Endocrinology,1991,76(1-3):79-88.
[15] Hiort O,Huang Q, Sinnecker GH, et al. Single strand conformation polymorphism analysis of androgen receptor gene mutations in patients with androgen insensitivity syndromes:application for diagnosis, genetic counseling, and therapy[J]. The Journal of Clinical Endocrinology and Metabolism,1993,77(1):262-266.
[16] Kuiper G G,Ruiter P E,Trapman J,et al. Localization and hormonal stimulation of phosphorylation sites in the LNCaP-cell androgen receptor[J]. The Biochemical Journal,1993,291(Pt1):95-101.
[17] Blanchere M,Berthaut I,Portois M C,et al. Hormonal regulation of the androgen receptor expression in human prostatic cells in culture[J]. The Journal of Steroid Biochemistry and Molecular Biology,1998,66(5-6):319-326.
[18] Thakur M K,Asaithambi A,Mukherjee S. Synthesis and phosphorylation of androgen receptor of the mouse brain cortex and their regulation by sex steroids during aging[J]. Molecular and Cellular Biochemistry,2000,203(1-2):95-101.
[19] Debes J D,Tindall D J. Mechanisms of androgen-refractory prostate cancer[J]. The New England Journal of Medicine,2004,351(15):1488-1490.
[20] Denmeade S R,Isaacs J T. A history of prostate cancer treatment[J]. Nature Reviews Cancer,2002,2(5):389-396.
[21] Heinlein C A,Chang C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions[J]. Molecular Endocrinology (Baltimore,Md.),2002,16(10):2181-2187.
[22] Norman A W,Mizwicki M T,Norman D P. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model[J]. Nature Reviews. Drug Discovery,2004,3(1):27-41.
[23] Migliaccio A,Castoria G,Di Domenico M,et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation[J]. The EMBO Journal,2000,19(20):5406-5417.
[24] Sadar M D,Gleave M E. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells[J]. Cancer Research,2000,60(20):5825-5831.
[25] Gregory C W,Fei X,Ponguta L A,et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer[J]. The Journal of Biological Chemistry,2004,279(8):7119-7130.
[26] Ueda T,Bruchovsky N,Sadar M D. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways[J]. The Journal of Biological Chemistry,2002,277(9):7076-7085.
[27] Culig Z,Hobisch A,Cronauer M V,et al. Activation of the androgen receptor by polypeptide growth factors and cellular regulators[J]. World Journal of Urology,1995,13(5):285-289.
[28] Lin H K,Yeh S,Kang H Y,et al. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(13):7200-7205.
[29] Rowan B G,Garrison N,Weigel N L,et al. 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein[J]. Molecular and Cellular Biology,2000,20(23):8720-8730.
[30] William N,Taylor M D. Anabolic steroids and the athlete[M]. Second edition ed ed. U.S.A,2002.
[31] Craft N,Shostak Y,Carey M,et al. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase[J]. Nature Medicine,1999,5(3):280-285.
[32] Fujimoto N,Yeh S,Kang H Y,et al. Cloning and characterization of androgen receptor coactivator,ARA55,in human prostate[J]. The Journal of Biological Chemistry,1999,274(12):8316-8321.
[33] Lin H K,Hu Y C,Lee D K,et al. Regulation of androgen receptor signaling by PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor through distinct mechanisms in prostate cancer cells[J]. Molecular Endocrinology (Baltimore,Md.),2004,18(10):2409-2423.
[34] Culig Z,Hobisch A,Cronauer M V,et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor[J]. Cancer Research,1994,54(20):5474-5478.
[35] Kupfer S R,Wilson E M,French F S. Androgen and glucocorticoid receptors interact with insulin degrading enzyme[J]. The Journal of Biological Chemistry,1994,269(32):20622-20628.
[36] Gioeli D,Black B E,Gordon V,et al. Stress kinase signaling regulates androgen receptor phosphorylation,transcription,and localization[J]. Molecular Endocrinology (Baltimore,Md.),2006,20(3):503-515.
[37] Plymate S R,Tennant M K,Culp S H,et al. Androgen receptor (AR) expression in AR-negative prostate cancer cells results in differential effects of DHT and IGF-I on proliferation and AR activity between localized and metastatic tumors[J]. The Prostate,2004,61(3):276-290.
[38] Massague J,Wotton D. Transcriptional control by the TGF-beta/Smad signaling system[J]. The EMBO Journal,2000,19(8):1745-1754.
[39] Smith P C,Hobisch A,Lin D L,et al. Interleukin-6 and prostate cancer progression[J]. Cytokine Growth Factor Reviews,2001,12(1):33-40.
[40] Pandini G,Mineo R,Frasca F,et al. Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells[J].Cancer Research,2005,65(5):1849-1857.
[41] Titus M A,Gregory C W,Ford O H,et al. Steroid 5alpha-reductase isozymes I and II in recurrent prostate cancer[J]. Clinical Cancer Research,2005,11(12):4365-4371.
[42] Mohler J L,Gregory C W,Ford O H,et al. The androgen axis in recurrent prostate cancer[J]. Clinical Cancer Research,2004,10(2):440-448.
[43] Monks D A,O'Bryant E L,Jordan C L. Androgen receptor immunoreactivity in skeletal muscle:enrichment at the neuromuscular junction[J]. The Journal of Comparative Neurology,2004,473(1):59-72.
[44] Monks D A,Kopachik W,Breedlove S M,et al. Anabolic responsiveness of skeletal muscles correlates with androgen receptor protein but not mRNA[J]. Canadian Journal of Physiology and Pharmacology,2006,84(2):273-277.
[45] Sheffield-Moore M,Urban R J,Wolf S E,et al. Short-term oxandrolone administration stimulates net muscle protein synthesis in young men[J]. The Journal of Clinical Endocrinology and Metabolism,1999,84(8):2705-2711.
[46] Sheffield-Moore M. Androgens and the control of skeletal muscle protein synthesis[J]. Annals of Medicine,2000,32(3):181-186.
[47] Lee D K. Androgen receptor enhances myogenin expression and accelerates differentiation[J]. Biochemical and Biophysical Research Communications,2002,294(2):408-413.
[48] Urban R J,Bodenburg Y H,Gilkison C,et al. Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis[J]. The American Journal of Physiology,1995,269(5 Pt 1):E820-826.
[49] Arnold A M,Peralta J M,Thonney M L. Ontogeny of growth hormone,insulin-like growth factor-I,estradiol and cortisol in the growing lamb:effect of testosterone[J]. The Journal of Endocrinology,1996,150(3):391-399.
[50] Rooyackers O E,Nair K S. Hormonal regulation of human muscle protein metabolism[J]. Annual Review of Nutrition,1997,17:457-485.
[51] Mauras N,Hayes V,Welch S,et al. Testosterone deficiency in young men:marked alterations in whole body protein kinetics,strength,and adiposity[J]. The Journal of Clinical Endocrinology and Metabolism,1998,83(6):1886-1892.
[52] Mateescu R G,Thonney M L. Gene expression in sexually dimorphic muscles in sheep[J]. Journal of Animal Science,2002,80(7):1879-1887.
[53] Mateescu R G,Thonney M L. Effect of testosterone on insulin-like growth factor-I,androgen receptor,and myostatin gene expression in splenius and semitendinosus muscles in sheep[J]. Journal of Animal Science,2005,83(4):803-809.
[54] Rubinstein M,Idelman G,Plymate S R,et al. Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein:potential interactions between KLF6 and p53[J]. Endocrinology,2004,145(8):3769-3777.
[55] Park S Y,Kim Y J,Gao A C,et al. Hypoxia increases androgen receptor activity in prostate cancer cells[J]. Cancer research,2006,66(10):5121-5129.
[56] Ghafar M A,Anastasiadis A G,Chen M W,et al. Acute hypoxia increases the aggressive characteristics and survival properties of prostate cancer cells[J]. The Prostate,2003,54(1):58-67.
[57] Kwon J,Lee S R,Yang K S,et al. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(47):16419-16424.
[58] Gioeli D,Ficarro S B,Kwiek J J,et al. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites[J]. The Journal of Biological Chemistry,2002,277(32):29304-19314.
[59] Conrad P W,Rust R T,Han J,et al. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells[J]. The Journal of Biological Chemistry,1999,274(33):23570-23576.
[60] Deschenes M R,Maresh C M,Armstrong L E,et al. Endurance and resistance exercise induce muscle fiber type specific responses in androgen binding capacity[J]. The Journal of Steroid Biochemistry and Molecular Biology,1994,50(3-4):175-179.
[61] Bamman M M,Shipp J R. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans[J]. American Journal of Physiology,Endocrinology and Metabolism,2001,280(3):E383-390.
[62] Boppart M D,Hirshman M F,Sakamoto K,et al. Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle[J]. American journal of physiology,Cell physiology,2001,280(2):C352-358.
[63] Nader G A,Esser K A.Intracellular signal specificity in skeletal muscle in response to different modes of exercise[J]. J Appl Physiol,2001,90(5):1936-1942.
[64] 朱紅軍. 耐力訓練對糖尿病大鼠骨骼肌p38信號激酶的調節作用[J].南京:南京醫科大學,2002.
[編輯:李壽榮]