在傳統(tǒng)的數(shù)學(xué)教學(xué)中,教師往往比較重視學(xué)生數(shù)學(xué)邏輯思維能力的培養(yǎng)而忽略了對學(xué)生數(shù)學(xué)直覺思維能力的培養(yǎng),其實,數(shù)學(xué)直覺思維也是一種很重要的思維形式。中學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)中把原來的“ 邏輯思維能力”改為“思維能力”,雖然只刪除了兩個字,內(nèi)涵卻變得豐富了,這說明我們不但要重視邏輯思維能力,而且也要重視非邏輯思維能力,特別是數(shù)學(xué)直覺思維能力。本文就數(shù)學(xué)直覺思維概念的界定以及直覺思維的主要特點進行探討,并結(jié)合教學(xué)實際對如何培養(yǎng)學(xué)生數(shù)學(xué)直覺思維能力談幾點粗淺的做法,供同仁們討論。
一、數(shù)學(xué)直覺思維概念的界定
簡單的說,數(shù)學(xué)直覺思維是具有意識的人腦對數(shù)學(xué)對象(結(jié)構(gòu)及其關(guān)系)的某種直接的領(lǐng)悟和洞察。
1.直覺與直觀、直感的區(qū)別
直觀與直感都是以真實的事物為對象,通過各種感覺器官直接獲得的感覺或感知。例如等腰三角形的兩個底角相等,兩個角相等的三角形是等腰三角形等概念、性質(zhì)的界定并沒有一個嚴(yán)格的證明,只是一種直觀形象的感知。而直覺的研究對象則是抽象的數(shù)學(xué)結(jié)構(gòu)及其關(guān)系。
2.直覺與邏輯的關(guān)系
從思維方式上來看,思維可以分為邏輯思維和直覺思維。長期以來人們刻意的把兩者分離開來,其實這是一種誤解,邏輯思維與直覺思維從來就不是割離的。有一種觀點認(rèn)為邏輯重于演繹,而直觀重于分析,從側(cè)重角度來看,此話不無道理,但側(cè)重并不等于完全,數(shù)學(xué)邏輯中是否會有直覺成分?數(shù)學(xué)直覺是否具有邏輯性?比如在日常生活中有許多說不清道不明的東西,人們對各種事件作出判斷與猜想離不開直覺,甚至可以說直覺無時無刻不在起作用。數(shù)學(xué)也是對客觀世界的反映,它是人們對生活現(xiàn)象與世界運行的秩序直覺的體現(xiàn),再以數(shù)學(xué)的形式將思考的理性過程格式化。數(shù)學(xué)最初的概念都是基于直覺,數(shù)學(xué)在一定程度上就是在問題解決中得到發(fā)展的,問題解決也離不開直覺,下面我們就以數(shù)學(xué)問題的證明為例,來考察直覺在證明過程中所起的作用。
一個數(shù)學(xué)證明可以分解為許多基本運算或許多“演繹推理元素”,一個成功的數(shù)學(xué)證明是這些基本運算或“演繹推理元素”的一個成功的組合,仿佛是一條從出發(fā)點到目的地的通道,一個個基本運算和“演繹推理元素”就是這條通道的一個個路段,邏輯可以幫助我們確信沿著這條路必定能順利的到達目的地,但是邏輯卻不能告訴我們,為什么這些路徑的選取與這樣的組合可以構(gòu)成一條通道。事實上,出發(fā)不久就會遇上叉路口,也就是遇上了正確選擇構(gòu)成通道的路段的問題。龐加萊認(rèn)為,即使能復(fù)寫出一個成功的數(shù)學(xué)證明,但不知道是什么東西造成了證明的一致性……這些元素安置的順序比元素本身更加重要。笛卡爾認(rèn)為在數(shù)學(xué)推理中的每一步,直覺力都是不可缺少的。就好似我們平時打籃球,要靠球感一樣,在快速運動中來不及去作邏輯判斷,動作只是下意識的,而下意識的動作正是在平時訓(xùn)練產(chǎn)生的一種直覺。
在教育過程中,老師由于把證明過程過分的嚴(yán)格化、程序化,學(xué)生只是見到一具僵硬的邏輯外殼,直覺的光環(huán)被掩蓋住了,而把成功往往歸功于邏輯的功勞,對自己的直覺反而不覺得。學(xué)生的內(nèi)在潛能沒有被激發(fā)出來,學(xué)習(xí)的興趣沒有被調(diào)動起來,得不到思維的真正樂趣。這種現(xiàn)象應(yīng)該引起數(shù)學(xué)教育者的重視與反思。
二、直覺思維的主要特點
直覺思維具有自由性、靈活性、自發(fā)性、偶然性、不可靠性等特點,從培養(yǎng)直覺思維的必要性來看,筆者以為直覺思維有以下三個主要特點:
1. 簡約性
直覺思維是對思維對象從整體上考察,調(diào)動自己的全部知識經(jīng)驗,通過豐富的想象作出的敏銳而迅速的假設(shè)、猜想或判斷,它省去了一步一步分析推理的中間環(huán)節(jié),而采取了“跳躍式”的形式。它是一瞬間的思維火花,是長期積累上的一種升華,是思維者的靈感和頓悟,是思維過程的高度簡化,但是它卻清晰的觸及到事物的“本質(zhì)”。
2. 創(chuàng)造性
直覺思維是基于研究對象整體上的把握,不專意于細節(jié)的推敲,是思維的大手筆。正是由于思維的無意識性,它的想象才是豐富的,發(fā)散的,使人的認(rèn)知結(jié)構(gòu)向外無限擴展,因而具有反常規(guī)律的獨創(chuàng)性。
阿基米德在浴室里找到了辨別王冠真假的方法;凱庫勒發(fā)現(xiàn)苯分了環(huán)狀結(jié)構(gòu)都是直覺思維的成功典范。
3. 自信力
學(xué)生對數(shù)學(xué)產(chǎn)生興趣的原因有兩種,一種是教師的人格魅力,其二是來自數(shù)學(xué)本身的魅力。不可否認(rèn)情感的重要作用,但筆者的觀點是,興趣更多來自數(shù)學(xué)本身。成功可以培養(yǎng)一個人的自信,直覺發(fā)現(xiàn)伴隨著很強的“自信心”。相比其它的物資獎勵和情感激勵,這種自信更穩(wěn)定、更持久。當(dāng)一個問題不用通過邏輯證明的形式而是通過自己的直覺獲得,那么成功帶給他的震撼是巨大的,內(nèi)心將會產(chǎn)生一種強大的學(xué)習(xí)鉆研動力,從而更加相信自己的能力。
三、直覺思維的培養(yǎng)
數(shù)學(xué)直覺是可以通過訓(xùn)練提高的。在教學(xué)中,培養(yǎng)學(xué)生的數(shù)學(xué)直覺思維能力是培養(yǎng)學(xué)生思維能力的一個重要方面,同時也能提高學(xué)生的數(shù)學(xué)素養(yǎng)。以下結(jié)合教學(xué)實際,談?wù)勗诮虒W(xué)中培養(yǎng)學(xué)生數(shù)學(xué)直覺思維能力的幾點做法。
1.鼓勵學(xué)生大膽猜想
數(shù)學(xué)猜想是依據(jù)某些數(shù)學(xué)知識和已知事實,對未知量及其關(guān)系作出的似真推理,是科學(xué)假說在數(shù)學(xué)中的體現(xiàn),在教學(xué)中,將一些命題的結(jié)論暫不揭示,讓學(xué)生通過觀察、聯(lián)想、類比、特殊化等方法,憑直覺進行數(shù)學(xué)猜想,然后加以驗證,是發(fā)展直覺思維能力的必要手段。
2.扎實的基礎(chǔ)是產(chǎn)生直覺的源泉
直覺不是靠“機遇”,直覺的獲得雖然具有偶然性,但決不是無緣無故的憑空臆想,而是以扎實的知識為基礎(chǔ)。若沒有深厚的功底,是不會進發(fā)出思維的火花的。阿提雅說:“一旦你真正感到弄懂一樣?xùn)|西,而且你通過大量例子以及通過與其它東西的聯(lián)系取得了處理那個問題的足夠多的經(jīng)驗,對此你就會產(chǎn)生一種關(guān)于正在發(fā)展的過程是怎么回事以及什么結(jié)論應(yīng)該是正確的直覺。”
3.重視解題教學(xué)
教學(xué)中選擇適當(dāng)?shù)念}目類型,有利于培養(yǎng)考察學(xué)生的直覺思維。
例如選擇題,由于只要求從四個選擇之中挑選出來,省略解題過程,容許合理的猜想,有利于直覺思維的發(fā)展。實施開放性問題教學(xué),也是培養(yǎng)直覺思維的有效方法。開放性問題的條件或結(jié)論不夠明確,可以從多個角度由果尋因,由因索果,提出猜想,由于答案的發(fā)散性,有利于直覺思維能力的培養(yǎng)。
4.設(shè)置直覺思維的意境和動機誘導(dǎo)
這就要求教師轉(zhuǎn)變教學(xué)觀念,把主動權(quán)還給學(xué)生。對于學(xué)生的大膽設(shè)想給予充分肯定,對其合理成分及時給予鼓勵、愛護,扶植學(xué)生的自發(fā)性直覺思維,以免挫傷學(xué)生直覺思維的積極性和學(xué)生直覺思維的悟性。教師應(yīng)及時因勢利導(dǎo),解除學(xué)生心中的疑惑,使學(xué)生對自己的直覺產(chǎn)生成功的喜悅感。
教師應(yīng)該把直覺思維冠冕堂皇的在課堂教學(xué)中明確的提出,制定相應(yīng)的活動策略,從整體上分析問題的特征,重視數(shù)學(xué)思維方法的教學(xué),諸如:換元、數(shù)形結(jié)合、歸納猜想、反證法等,對滲透直覺觀念與思維能力的發(fā)展大有稗益。
5.培養(yǎng)學(xué)生的審美意識,讓學(xué)生學(xué)會追求數(shù)學(xué)美
美的意識能喚起和支配數(shù)學(xué)直覺,數(shù)學(xué)事實間的最佳組合往往依靠“審美直覺”來作出的。數(shù)學(xué)美集中表現(xiàn)在數(shù)學(xué)本身的簡潔性、對稱性、相似性、和諧性、奇異性等。
美感和美的意識是數(shù)學(xué)直覺的本質(zhì),提高審美能力有利于培養(yǎng)數(shù)學(xué)事物間所有存在著的和諧關(guān)系及秩序的直覺意識。審美能力越強,則數(shù)學(xué)直覺能力也越強。