999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

鐵死亡和內質網應激在多囊卵巢綜合征中的作用機制及其潛在治療靶點

2025-09-15 00:00:00聶心雨劉凌燕
中國現代醫生 2025年24期

[摘要] 多囊卵巢綜合征(polycystic ovary syndrome,PCOS)是育齡期女性常見的內分泌代謝紊亂疾病。鐵死亡是一種鐵依賴的程序性細胞死亡方式,由脂質過氧化驅動。內質網應激則與代謝紊亂及細胞凋亡密切相關。研究表明鐵死亡和內質網應激通過調控氧化應激、胰島素抵抗及卵泡顆粒細胞功能障礙參與PCOS的發生發展。本文綜述PCOS中鐵死亡與內質網應激的分子機制及交互作用,重點探討靶向調控相關通路的治療潛力,為PCOS的精準治療提供理論依據。

[關鍵詞] 多囊卵巢綜合征;鐵死亡;內質網應激;靶點

[中圖分類號] R711.75" """"[文獻標識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.24.024

多囊卵巢綜合征(polycystic ovary syndrome,PCOS)以高雄激素血癥、胰島素抵抗、排卵障礙及卵巢多囊樣改變為特征,可導致無排卵性不孕[1]。現有PCOS治療以緩解癥狀為主,針對其核心病理機制的干預仍亟待突破。研究表明鐵死亡與內質網應激(endoplasmic reticulum stress,ERS)的交互作用是連接PCOS代謝紊亂與生殖損傷的關鍵樞紐[2]。鐵死亡介導顆粒細胞(granulose cell,GC)脂質過氧化,ERS可加劇卵巢纖維化與卵泡閉鎖[3];高雄激素血癥協同激活二者,形成“氧化損傷–蛋白質穩態失衡”惡性循環[4]。本文綜述PCOS中鐵死亡與ERS的調控網絡,為PCOS潛在治療靶點的發現提供理論依據。

1" PCOS與鐵死亡

1.1" 鐵死亡的分子機制

鐵死亡是一種程序性細胞死亡方式,由脂質過氧化驅動,主要受到鐵代謝和谷胱甘肽代謝等途徑的調節。核因子紅系2相關因子2(nuclear factor erythroid 2-related factor 2,Nrf2)等轉錄因子及Hippo信號通路也可間接影響鐵死亡[5]

細胞膜上含有多不飽和脂肪酸(polyunsaturated fatty acid,PUFA)的磷脂易發生過氧化形成脂質過氧化物并誘發鐵死亡。生理狀況下,細胞膜上的胱氨酸/谷氨酸轉運受體[系統Xc-,由溶質載體家族7成員11(solute carrier family 7 member 11,SLC7A11)和溶質載體家族3成員2兩個亞基組成]介導胱氨酸-谷氨酸交換合成谷胱甘肽(glutathione,GSH);谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4)利用GSH還原脂質過氧化物為無害的PUFA-OH。若該通路受阻,大量脂質過氧化物積累導致鐵死亡。酰基輔酶A合成酶長鏈家族成員4(acyl-CoA synthetase long-chain family member 4,ACSL4)可促進PUFA磷脂合成,脂氧合酶直接催化PUFA氧化,二者均可增加鐵死亡的敏感度。

鐵過載通過芬頓反應驅動脂質過氧化:轉鐵蛋白受體(transferrin receptor,TFRC)介導鐵攝取,鐵儲存于鐵蛋白,核受體共激活因子4(nuclear receptor coactivator 4,NCOA4)介導鐵蛋白自噬釋放Fe2+,過量Fe2+可催化過氧化氫生成以羥基自由基為主的活性氧(reactive oxygen,ROS),即芬頓反應。鈣黏蛋白E可通過激活Nrf2和Hippo信號通路抑制轉錄共激活因子Yes相關蛋白(Yes-associated protein,YAP)的活性,降低細胞對鐵死亡的敏感度。

1.2" PCOS中的鐵死亡機制

PCOS患者的內分泌失衡可促進鐵死亡。高雄激素血癥和鐵死亡之間存在惡性循環。高雄激素血癥下調卵巢GC中的GPX4水平,促進NCOA4誘導鐵蛋白重鏈1(ferritin heavy chain 1,FTH1)降解及Fe2+釋放,激活PCOS患者卵巢鐵死亡;而鐵死亡導致的細胞損傷則進一步增強高雄激素的病理效應,加劇PCOS進展[6]。胰島素抵抗與鐵死亡亦可相互促進[7-8]。高雄激素血癥和高胰島素血癥共同誘導PCOS患者卵巢中的游離PUFA水平異常,一方面通過脂代謝途徑介導鐵死亡[9];另一方面通過抑制葡萄糖氧化引起ROS累積,加劇胰島素抵抗。

1.3" 鐵死亡對PCOS的卵泡發育和生殖結局的影響

GC鐵死亡引起的功能障礙是PCOS的核心特征。Shi等[10]發現同型半胱氨酸處理后人卵巢顆粒樣腫瘤細胞系KGN中的ACSL4表達水平顯著高于對照組;PCOS患者GC中過表達的微RNA(microRNA,miRNA)-93-5p通過調節核因子κB信號通路下調GPX4、SLC7A11和Nrf2水平,促進GC鐵死亡和凋亡[11]。GC損傷可引起卵泡閉鎖,提示卵泡的早期閉鎖與鐵過載相關[12]

對比生殖結局良好患者,反復著床失敗患者子宮內膜樣本顯示,細胞GPX4缺失及其導致的脂質ROS過度積累提示鐵死亡的發生引起胚胎植入失敗及妊娠丟失[13]。PCOS類器官模型顯示,GPX4缺陷通過非Smad2/3信號通路誘導纖連蛋白表達水平升高,加速分泌期子宮內膜的纖維化[14]。PCOS孕鼠模型中,GPX4/GSH軸異常使脂質過氧化物的生成增加,導致子宮和胎盤氧化應激狀態加重和功能失調。其中胎盤內的鐵死亡可被自身代償和N-乙酰半胱氨酸(N-acetyl-cysteine,NAC)治療部分補救,子宮內鐵死亡更為典型且NAC治療對其線粒體損傷無效,提示鐵死亡途徑的觸發具有組織特異性[8,15]

1.4" 靶向鐵死亡的治療潛力

節律基因Per1在PCOS患者卵巢GC中異常高表達,通過抑制固醇調節元件結合因子2/花生四烯酸15-脂肪氧化酶軸調節GC的脂質代謝和鐵死亡[16]。TFRC的表達可增加鐵含量,介導ROS的生成,激活線粒體自噬,通過TFRC/煙酰胺腺嘌呤二核苷酸磷酸氧化酶1/PTEN誘導的激酶1/ACSL4通路誘導脂質過氧化和KGN細胞鐵死亡[17]。蒼術素可調節丙酮酸脫氫酶激酶4的表達,進一步介導Janus激酶/信號轉導及轉錄活化因子3信號通路抑制GC鐵死亡[18]。PCOS患者血清外泌體中miR-128-3p降低,通過靶向集落刺激因子1介導p38/c-Jun氨基端激酶/SLC7A11軸誘導GC鐵死亡,可作為PCOS的潛在診斷標志物[19]。部分藥物具有靶向鐵死亡治療PCOS的潛力。小檗堿通過調節circ_0097636/miR-186-5p/沉默調節蛋白3信號通路,改善二氫睪酮誘導的KGN細胞損傷和鐵死亡[20]

2" ERS與PCOS

2.1" ERS的分子基礎

內質網是蛋白質折疊的主要場所。未折疊蛋白質積累觸發ERS,通過蛋白激酶RNA樣內質網激酶(protein kinase RNA-like endoplasmic reticulum kinase,PERK)、肌醇需求酶1(inositol-requiring enzyme 1,IRE1)和激活轉錄因子(activating transcription factor,ATF)6激活未折疊蛋白反應的3個分支。激活的IRE1剪切X盒結合蛋白1(X-box binding protein 1,XBP1)的信使RNA,產生有活性的XBP1,上調分子伴侶葡萄糖調節蛋白78(glucose regulated protein 78,GRP78)等基因表達;PERK激活后磷酸化真核起始因子2α(eukaryotic initiation factor 2α,eIF2α),抑制其翻譯活性,減輕內質網的蛋白質折疊負荷,同時促進ATF4翻譯。ATF4在慢性ERS作用下上調促凋亡轉錄因子C/EBP同源蛋白(pro-apoptotic transcriptional factor C/EBP homologous protein,CHOP)。

2.2" ERS與PCOS病理

PCOS患者濾泡微環境中的高雄激素通過激活GC中的ERS觸發多重病理效應:通過CHOP-死亡受體5軸誘導竇卵泡GC凋亡,并導致竇卵泡閉鎖[21];通過PERK/ATF4信號通路誘導LINC00173表達,進而上調Harakiri蛋白抑制磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB,又稱為Akt)信號通路,介導KGN細胞凋亡[22];激活KGN細胞的炎癥反應,觸發細胞焦亡,導致PCOS濾泡發育不良。此外ERS還可介導轉化生長因子-β1表達水平上調,通過IRE1和PERK信號通路促進卵巢纖維化[23];經ATF4信號通路激活Notch2信號傳導,調節卵丘卵母細胞復合體的擴增[24];導致晚期糖基化終末產物受體表達水平升高和積累[25]

2.3" ERS的治療潛力

研究表明減輕ERS介導的細胞凋亡可緩解PCOS表型[26]。坤泰膠囊通過改善IRE1-XBP1和PERK-eIF2α-ATF4緩解睪酮誘導的ERS,減少GC凋亡,改善周期紊亂、多囊卵巢及代謝障礙[27];下調NOX4通過PERK/ATF4信號通路減輕ERS,保護卵巢[28];敲低溴結構域蛋白4通過滅活GRP78介導的ERS減少雙氫睪酮誘導的卵巢GC損傷[26]

3" 鐵死亡和ERS聯合機制

PCOS中的高雄激素血癥可同時激活鐵死亡與ERS,二者形成相互依賴的協同網絡。研究表明高雄激素血癥誘導鐵死亡依賴于ERS,應用ERS抑制劑可顯著逆轉高雄激素血癥處理KGN細胞中的氧化應激、鐵過載及鐵死亡相關基因和蛋白表達的改變,抑制鐵死亡發生[29]。這種交互作用通過多途徑共同加劇PCOS的病理進程。

3.1" 氧化應激惡性循環

鐵死亡導致脂質過氧化產物積累,激活ERS并促進ROS生成;而ERS通過抑制抗氧化轉錄因子Nrf2加劇氧化應激,形成自我放大的惡性循環[30]

3.2" 鈣離子穩態雙向調控

鐵死亡引起的細胞內鈣離子超載可抑制肌漿/內質網鈣ATP酶活性,破壞蛋白質折疊功能而加重ERS[31];同時,ERS誘導的CHOP可促進鐵死亡相關脂質過氧化和線粒體損傷,形成雙向調控網絡[21]

3.3" 炎癥級聯放大

ERS通過ATF4激活硫氧還蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)。作為氧化應激與炎癥的橋梁,TXNIP可顯著增強卵巢GC對鐵死亡的敏感度。在棕櫚酸誘導下,ATF4/TXNIP軸的激活可加劇高雄激素環境下的GC損傷和卵巢表型,而ERS抑制劑可有效阻斷此過程[32]。值得注意的是,卵巢癌細胞研究中發現ERS可同步誘導細胞凋亡和鐵死亡,其中蒽醌修飾通過上調GRP78、激活ATF4并下調GPX4的表達,為PCOS中鐵死亡與ERS互作的研究提供新視角[33]

4" PCOS治療策略:靶向鐵死亡和ERS

4.1" 多靶點藥物

一線藥物二甲雙胍通過腺苷酸活化蛋白激酶/哺乳動物雷帕霉素靶蛋白信號通路抑制鐵死亡,并下調PERK/CHOP信號通路減輕ERS,改善胰島素抵抗及排卵功能[34];抗氧化劑NAC顯示出減輕PCOS患者體內氧化應激、鐵死亡和ERS的潛力,可全面改善PCOS患者的生殖功能[35];芳香烴受體(aryl hydrocarbon receptor,AHR)拮抗劑通過阻斷ERS誘導的AHR/細胞色素P450家族1亞家族B成員1信號通路減少閉鎖卵泡[36];egl-9家族缺氧誘導因子1(egl-9 family hypoxia inducible factor 1 gene,EGLN1)抑制劑羅沙司他通過靶向EGLN1-缺氧誘導因子1亞基α-鐵死亡軸并逆轉中斷的發情周期和卵巢形態改善PCOS[37]

4.2" 天然化合物

天然化合物多靶點作用的高安全性對PCOS治療具有重要意義。姜黃素抑制ERS相關IRE1α-XBP1信號通路并激活PI3K/Akt信號通路,減少GC凋亡,緩解大鼠體質量[38-40]。黃芩素通過調節ACSL4、GPX4等鐵死亡相關蛋白及FTH1、環加氧酶2,減輕卵巢脂質過氧化和炎癥,改善妊娠胎盤發育[41]

4.3" 生活方式管理

PCOS患者的治療可結合生活方式長期管理,主要包括飲食干預和體育鍛煉。飲食干預方面,富含n-3 PUFA的飲食(如魚油、亞麻籽油)可調節ERS和鐵死亡,有效改善PCOS大鼠血液中激素水平、脂質代謝、胰島素敏感度和炎癥[42];其機制與激活Hippo信號通路、抑制YAP1和Nrf2之間的相互作用、增加卵巢GC對鐵死亡的敏感度、緩解卵泡停滯有關[43-44]。芝麻油通過PI3K/蛋白激酶A和絲裂原活化蛋白激酶/胞外信號調節激酶2信號通路改善ERS和類固醇合成,對PCOS發揮保護作用[36]。規律運動可降低ERS,減少鐵死亡風險,改善胰島素抵抗[45];同時誘導鳶尾素生成,抑制IRE1α-TXNIP/ ROS-核苷酸結合寡聚結構域樣受體蛋白3信號通路,提高GC和膜細胞的活力,抑制炎癥小體、纖維化和氧化應激,改善PCOS大鼠的濾泡功能[38-40]。此外,中醫電針療法可緩解PCOS樣癥狀[46]。而基于子宮內膜鐵死亡相關蛋白和免疫微環境的差異表達,有望建立預測輔助生殖結局的預后模型,指導個體化治療[47]。結合不同的治療策略,臨床工作者能更好地適應PCOS的異質性,為患者提供更全面的保護。

5" 小結與展望

高雄激素血癥驅動的鐵死亡與ERS雙重打擊共同破壞卵巢微環境穩態,影響PCOS激素代謝、卵泡發育異常和生殖結局。鐵死亡和ERS通路中的核心分子有望作為PCOS潛在的新型診斷標志物和治療靶點。未來研究需深入解析不同PCOS表型中兩者的特異性作用及互作網絡細節,以期針對不同PCOS亞型進行個體化聯合治療策略的優化。

利益沖突:所有作者均聲明不存在利益沖突。

[參考文獻]

[1]"" ESCOBAR-MORREALE H F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment[J]. Nat Rev Endocrinol, 2018, 14(5): 270–284.

[2]"" WANG M, ZHANG B Q, MA S, et al. Broadening horizons: The role of ferroptosis in polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2024, 15: 1390013.

[3]"" DING H, XIANG Y, ZHU Q, et al. Endoplasmic reticulum stress-mediated ferroptosis in granulosa cells contributes to follicular dysfunction of polycystic ovary syndrome driven by hyperandrogenism[J]. Reprod Biomed Online, 2024, 49(3): 104078.

[4]"" HUANG J, FAN H, LI C, et al. Dysregulation of ferroptosis-related genes in granulosa cells associates with impaired oocyte quality in polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2024, 15: 1346842.

[5]"" JIANG X, STOCKWELL B R, CONRAD M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266–282.

[6]"" LI X, LIN Y, CHENG X, et al. Ovarian ferroptosis induced by androgen is involved in pathogenesis of PCOS[J]. Hum Reprod Open, 2024, 2024(2): hoae013.

[7]"" LUQUE-RAMíREZ M, ALVAREZ-BLASCO F, BOTELLA- CARRETERO J I, et al. Increased body iron stores of obese women with polycystic ovary syndrome are a consequence of insulin resistance and hyperinsulinism and are not a result of reduced menstrual losses[J]. Diabetes Care, 2007, 30(9): 2309–2313.

[8]"" ZHANG Y, HU M, JIA W, et al. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats[J]. J Endocrinol, 2020, 246(3): 247–263.

[9]"" LI S, CHU Q, MA J, et al. Discovery of novel lipid profiles in PCOS: Do insulin and androgen oppositely regulate bioactive lipid production?[J]. J Clin Endocrinol Metab, 2017, 102(3): 810–821.

[10] SHI Q, LIU R, CHEN L. Ferroptosis inhibitor ferrostatin?1 alleviates homocysteine?induced ovarian granulosa cell injury by regulating TET activity and DNA methylation[J]. Mol Med Rep, 2022, 25(4): 130.

[11] TAN W, DAI F, YANG D, et al. MiR-93-5p promotes granulosa cell apoptosis and ferroptosis by the NF-κB signaling pathway in polycystic ovary syndrome[J]. Front Immunol, 2022, 13: 967151.

[12] ZHANG J, LIU Y, YAO W, et al. Initiation of follicular atresia: Gene networks during early atresia in pig ovaries[J]. Reproduction, 2018, 156(1): 23–33.

[13] YANG J, WANG L, MA J, et al. Endometrial proteomic profile of patients with repeated implantation failure[J]. Front Endocrinol (Lausanne), 2023, 14: 1144393.

[14] YE Z, CHENG M, LIAN W, et al. GPX4 deficiency-induced ferroptosis drives endometrial epithelial fibrosis in polycystic ovary syndrome[J]. Redox Biol, 2025, 83: 103615.

[15] HU M, ZHANG Y, MA S, et al. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome[J]. Mol Hum Reprod, 2021, 27(12): gaab067.

[16] CHEN Y, LIU Z, CHEN H, et al. Rhythm gene PER1 mediates ferroptosis and lipid metabolism through SREBF2/ALOX15 axis in polycystic ovary syndrome[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(5): 167182.

[17] ZHANG L, WANG F, LI D, et al. Transferrin receptor-mediated reactive oxygen species promotes ferroptosis of KGN cells via regulating NADPH oxidase 1/PTEN induced kinase 1/acyl-CoA synthetase long chain family member 4 signaling[J]. Bioengineered, 2021, 12(1): 4983–4994.

[18] ZHOU Q, OUYANG X, TANG H, et al. Atractylodin alleviates polycystic ovary syndrome by inhibiting granule cells ferroptosis through pyruvate dehydrogenase kinase 4-mediated JAK-STAT3 pathway[J]. Int Immuno- pharmacol, 2025, 146: 113817.

[19] LV Y, HAN S, SUN F, et al. Decreased miR-128-3p in serum exosomes from polycystic ovary syndrome induces ferroptosis in granulosa cells via the p38/JNK/SLC7A11 axis through targeting CSF1[J]. Cell Death Discov, 2025, 11(1): 64.

[20] WANG S, WANG Y, QIN Q, et al. Berberine protects against dihydrotestosterone-induced human ovarian gra- nulosa cell injury and ferroptosis by regulating the circ_ 0097636/miR-186-5p/SIRT3 pathway[J]. Appl Biochem Biotechnol, 2024, 196(8): 5265–5282.

[21] AZHARY J M K, HARADA M, TAKAHASHI N, et al. Endoplasmic reticulum stress activated by androgen enhances apoptosis of granulosa cells via induction of death receptor 5 in PCOS[J]. Endocrinology, 2019, 160(1): 119–132.

[22] ZHAO Y, WU X, MENG F, et al. ER stress-induced LINC00173 promotes the apoptosis of ovarian granulosa cells by regulating the HRK/PI3K/Akt pathway in polycystic ovary syndrome[J]. Sci Rep, 2024, 14(1): 24636.

[23] TAKAHASHI N, HARADA M, HIROTA Y, et al. Activation of endoplasmic reticulum stress in granulosa cells from patients with polycystic ovary syndrome contributes to ovarian fibrosis[J]. Sci Rep, 2017, 7(1): 10813–10824.

[24] KOIKE H, HARADA M, KUSAMOTO A, et al. Notch signaling induced by endoplasmic reticulum stress regulates cumulus-oocyte complex expansion in polycystic ovary syndrome[J]. Biomolecules, 2022, 12(8): 1037.

[25] AZHARY J, HARADA M, KUNITOMI C, et al. Androgens increase accumulation of advanced glycation end products in granulosa cells by activating ER stress in PCOS[J]. Endocrinology, 2020, 161(2): bqaa015.

[26] ZHANG Y, WANG J. BRD4 absence inactivates endoplasmic reticulum stress to retard dehydroepiandrosterone- triggered ovarian granular cell apoptosis in polycystic ovary syndrome via GRP78[J]. Tissue Cell, 2024, 91: 102531.

[27] XU Y, PAN C S, LI Q, et al. The ameliorating effects of Bushen Huatan granules and Kunling Wan on polycystic ovary syndrome induced by dehydroepiandrosterone in rats[J]. Front Physiol, 2021, 12: 525145.

[28] YU N, WU L, XING X. NOX4 deficiency improves the impaired viability, inhibited the apoptosis and suppressed autophagy of DHEA-treated ovarian granulosa cells through inhibiting endoplasmic reticulum stress via inactivating PERK/ATF4 pathway[J]. Tissue Cell, 2025, 92: 102640.

[29] DING H, XIANG Y, ZHU Q, et al. Endoplasmic reticulum stress-mediated ferroptosis in granulosa cells contributes to follicular dysfunction of polycystic ovary syndrome driven by hyperandrogenism[J]. Reprod Biomed Online, 2024, 49(3): 104078.

[30] LIU Z, NAN P, GONG Y, et al. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy[J]. Biomed Pharmacother, 2023, 164: 114897.

[31] ZHANG Z, ZHOU H, GU W, et al. CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes[J]. Nat Chem Biol, 2024, 20(6): 699–709.

[32] ZHANG X, LIU J, BAI C, et al. Palmitic acid enhances the sensitivity of ferroptosis via endoplasmic reticulum stress mediated the ATF4/TXNIP axis in polycystic ovary syndrome[J]. Phytomedicine, 2025, 142: 156777.

[33] 許淑妹, 楊盈盈, 趙英丹, 等. 蒽醌修飾物4X觸發內質網應激誘導卵巢癌細胞死亡模式研究[J]. 廣西醫科大學學報, 2023, 40(6): 922–929.

[34] PENG Q, CHEN X, LIANG X, et al. Metformin improves polycystic ovary syndrome in mice by inhibiting ovarian ferroptosis[J]. Front Endocrinol(Lausanne), 2023, 14: 1070264.

[35] FANG Y, DING H, LI T, et al. N-acetylcysteine supplementation improves endocrine-metabolism profiles and ovulation induction efficacy in polycystic ovary syndrome[J]. J Ovarian Res, 2024, 17(1): 205.

[36] KUNITOMI C, HARADA M, KUSAMOTO A, et al. Induction of aryl hydrocarbon receptor in granulosa cells by endoplasmic reticulum stress contributes to pathology of polycystic ovary syndrome[J]. Mol Hum Reprod, 2021, 27(3): gaab003.

[37] NI F, WANG F, SUN J, et al. Proteome-wide Mendelian randomization and functional studies uncover therapeutic targets for polycystic ovarian syndrome[J]. Am J Hum Genet, 2024, 111(12): 2799–2813.

[38] ZHANG Y, WANG L, WENG Y, et al. Curcumin inhibits hyperandrogen-induced IRE1α-XBP1 pathway activation by activating the PI3K/Akt signaling in ovarian granulosa cells of PCOS model rats[J]. Oxid Med Cell Longev, 2022, 2022: 2113293.

[39] ZHANG Y, WENG Y, WANG D, et al. Curcumin in combination with aerobic exercise improves follicular dysfunction via inhibition of the hyperandrogen-induced IRE1α/XBP1 endoplasmic reticulum stress pathway in PCOS-like rats[J]. Oxid Med Cell Longev, 2021, 2021: 7382900.

[40] WENG Y, ZHANG Y, WANG D, et al. Exercise-induced irisin improves follicular dysfunction by inhibiting IRE1α-TXNIP/ROS-NLRP3 pathway in PCOS[J]. """""J Ovarian Res, 2023, 16(1): 151.

[41] LI Y, PENG Y, YANG Y, et al. Baicalein improves the symptoms of polycystic ovary syndrome by mitigating oxidative stress and ferroptosis in the ovary and gravid placenta[J]. Phytomedicine, 2024, 128: 155423.

[42] KOMAL F, KHAN M K, IMRAN M, et al. Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model[J]. J Transl Med, 2020, 18(1): 349.

[43] ZHANG P, PAN Y, WU S, et al. N-3 PUFA promotes ferroptosis in PCOS GCs by inhibiting YAP1 through activation of the Hippo pathway[J]. Nutrients, 2023, 15(8): 1927.

[44] YANG L, CHEN J, MIAO H, et al. The landscape of alternative splicing in granulosa cells and a potential novel role of YAP1 in PCOS[J]. PLoS One, 2024, 19(12): e0315750.

[45] 梁曼娜, 朱琳. 運動改善多囊卵巢綜合征及其機制研究進展[J]. 湖北體育科技, 2023, 42(9): 827–833.

[46] PENG Y, GUO L, GU A, et al. Electroacupuncture alleviates polycystic ovary syndrome-like symptoms through improving insulin resistance, mitochondrial dysfunction, and endoplasmic reticulum stress via enhancing autophagy in rats[J]. Mol Med, 2020, 26(1): 73.

[47] ZHANG J, DING N, XIN W, et al. Quantitative proteomics reveals that a prognostic signature of the endometrium of the polycystic ovary syndrome women based on ferroptosis proteins[J]. Front Endocrinol (Lausanne), 2022, 13: 871945.

(收稿日期:2025–06–10)

(修回日期:2025–08–06)

基金項目:國家自然科學基金資助項目(81901554)

通信作者:劉凌燕,電子信箱:Lingyan@ccmu.edu.cn

主站蜘蛛池模板: 黄色在线网| 久久精品人妻中文视频| 精品国产免费人成在线观看| 国产呦视频免费视频在线观看 | 国产97视频在线| 亚洲国产中文欧美在线人成大黄瓜 | 婷婷激情亚洲| 日本免费精品| 伊人久久大香线蕉综合影视| 久久夜色撩人精品国产| 国产日本欧美在线观看| jizz国产在线| 亚洲啪啪网| a级毛片免费网站| 亚洲男人天堂久久| 亚洲精品中文字幕午夜| 亚洲人成网站18禁动漫无码| 青草视频网站在线观看| 91九色国产porny| 久久狠狠色噜噜狠狠狠狠97视色| 亚洲精品在线91| 米奇精品一区二区三区| 美女无遮挡被啪啪到高潮免费| 亚洲青涩在线| 国产成人1024精品| 久久国产精品波多野结衣| 国产精品手机在线播放| 久久国产精品电影| 伊人中文网| 91啪在线| 黄色片中文字幕| 在线a网站| 欧美日韩国产在线人| 91免费国产在线观看尤物| 欧美日韩国产在线人| 久久亚洲AⅤ无码精品午夜麻豆| 婷婷成人综合| 99r在线精品视频在线播放| 色综合天天视频在线观看| 青青青国产视频| 91视频精品| 亚洲三级a| 国产一在线观看| 2019国产在线| 伊人久久婷婷五月综合97色| 伊在人亚洲香蕉精品播放| 日韩美女福利视频| 亚洲无码熟妇人妻AV在线| 久久久精品无码一二三区| 亚洲Aⅴ无码专区在线观看q| 亚洲欧美日韩精品专区| 国产精品99久久久久久董美香| 国产精品大尺度尺度视频 | 成人中文字幕在线| 欧美一区二区精品久久久| 欧美成人在线免费| 亚洲第一中文字幕| 欧美精品高清| 久久久久青草线综合超碰| 免费看美女自慰的网站| 丁香婷婷激情网| 国产视频一区二区在线观看 | 亚洲欧洲天堂色AV| 日韩小视频在线播放| 精品夜恋影院亚洲欧洲| 久久国产毛片| 久久青草精品一区二区三区| 在线国产91| 人妻精品久久久无码区色视| 精品视频福利| 亚洲视频色图| 国产成熟女人性满足视频| 蝌蚪国产精品视频第一页| 在线日本国产成人免费的| 先锋资源久久| 久久人午夜亚洲精品无码区| 中国特黄美女一级视频| 影音先锋亚洲无码| 凹凸国产分类在线观看| av在线无码浏览| 毛片大全免费观看| 日本日韩欧美|