中圖分類號:P631 文獻標識碼:A DOI:10.13810/j. cnki. issn. 1000-7210.20240388
Abstract: With increasingly complex oil and gas exploration targets,seismic exploration faces chalenges such as low signal-to-noise ratio (SNR),low resolution,and dificultiesin velocity modeling and imaging of seismic data.Conventional seismic data processing and interpretation methods have certain limitations in accuracy or efficiency when applied to masive seismic data. The artificial intelligence (AI)-based seismic data processing and interpretation methods can effctively improve accuracy and eficiency. To this end,this paper provides an overview of supervised,semi-supervised,and unsupervised deep learning techniques,and summarizes the applications of deep learning in data processing such as first break picking,SNR improvement,data reconstruction, velocity spectrum interpretation,migration,and resolution enhancement. Meanwhile,it discusses the applications of deep learning in identifying geological bodies suchas faults,seismic facies,river channels,and salt domes,as wellas in wave impedance inversion,AVO inversion,fullwaveform inversion,lithology identification,reservoir parameter prediction,and fluid identification. The production of training sets,optimization of neural networks,training strategies,and large models arediscussed,with an outlook on thedevelopment trend of AI-based processng and interpretation methods for seismic data provided. It is pointed out that the generalization of networks should be continuously increased and large models suitable for seismic exploration should be studied.
eywords: seismic data processing,seismic data interpretation,artificial inteligence,deep learning 劉洋,孫宇航,張浩然,等.人工智能地震資料處理與解釋方法研究進展[J].石油地球物理勘探,2025,60(4): 1067-1087. LIU Yang,SUN Yuhang,ZHANG Haoran,et al. A review of artificial inteligence-based seismic data processing and interpretation methods[J]. Oil Geophysical Prospecting,2025,60(4) :1067-1087.
0 引言
隨著油氣勘探的不斷發展,其所面臨的目標日益復雜,即由簡單地表、簡單構造轉向復雜地表、復雜構造,由構造油氣藏轉向巖性、裂隙等隱蔽性油氣藏,由常規油氣轉向非常規油氣,由中深層轉向深層、超深層。地震勘探面臨著地震資料信噪比低、分辨率低、速度建模和成像困難等問題。隨著寬方位、高密度、多分量、井地聯采等地震采集技術的推廣應用,地震數據量迅速增加,提高海量地震數據的處理和解釋的精度、效率成為當前研究的重點。
常規地震資料處理與解釋技術大多基于模型,在面對復雜地質目標和海量數據時,在精度或效率方面存在一定的局限性。深度學習技術是近年來發展起來的一種重要的人工智能技術,目前已經應用于地震資料處理與解釋的多個環節,有效提高了精度和效率。本文首先概述深度學習技術,然后分別總結地震資料智能處理方法、地質體智能識別方法、智能反演和儲層預測方法,討論訓練集的制作等問題,最后進行方法總結與展望。
1深度學習技術概述
深度學習是機器學習的一個分支。它通過構建與訓練深度神經網絡(DeepNeuralNetworks,DNN)來模擬人腦神經網絡的工作方式,使計算機能夠自動學習與理解復雜的數據模式。該技術通過逐層抽象數據特征,自動學習數據的內在規律與表示層次,在處理復雜數據(如圖像、語音、文本等)方面表現出色。……