






摘要:非洲豬瘟(ASF)是非洲豬瘟病毒(ASFV)感染野豬或家豬引起的一種急性、高度接觸性的烈性動物傳染病。ASFV傳染性強、發(fā)病率高、急性感染死亡率可高達100%,是目前對全球養(yǎng)豬行業(yè)最具威脅性的疫病之一。由于減毒活疫苗在免疫保護效力方面的突出優(yōu)勢,被認為是短周期內最有希望的ASF疫苗??偨Y了ASF減毒活疫苗的研究進展,重點介紹基于病毒基因組復制必需基因缺失、多基因家族(MGF)基因缺失、介導紅細胞吸附基因缺失、其他ASFV功能基因缺失,以及多毒力基因聯(lián)合缺失等方向的ASF基因缺失候選疫苗研究成果,以期為ASF減毒活疫苗研究提供參考。
關鍵詞:非洲豬瘟;非洲豬瘟病毒;疫苗
中圖分類號:S858.28 文獻標識碼:A 文章編號:1002-204X(2025)01-0005-17
doi:10.3969/j.issn.1002-204x.2025.01.003
非洲豬瘟(Afican swine fever, ASF)是非洲豬瘟病毒(African swine fever virus, ASFV)感染野豬或家豬引起的一種急性、高度接觸性的烈性動物傳染病[1]。ASFV感染病程短,常見高熱和出血性病變,急性感染死亡率可高達100%,嚴重威脅著全球養(yǎng)豬業(yè)的健康發(fā)展[2]。世界動物衛(wèi)生組織(WOAH)將ASF列為法定報告的動物烈性傳染病,我國將其列為重點防控的一類動物傳染病。ASFV是非洲豬瘟病毒科(Asfarviridae),非洲豬瘟病毒屬(Asfarvirus)目前唯一的成員,也是目前唯一發(fā)現(xiàn)的DNA 蟲媒病毒[3]。ASFV 不同分離株基因組存在差異,長度約為170~194 kb,左右兩端是約37 nt堿基的互補配對的發(fā)卡環(huán)結構(Hairpinloop),與之相鄰的左右兩側分別是約40 kb 或20 kb 的可變結構域(Variable region),中間部分是較穩(wěn)定的基因恒定區(qū)(Stable region)[4],多基因家族(Multigene families,MGF)位于基因組兩側的可變區(qū)??勺儏^(qū)的基因拷貝數(shù)變化是造成病毒基因組長度差異的主要因素。ASFV基因組包含150~167個排列緊密的開放閱讀框(Openreading frames, ORFs),能夠編碼約68 種ASFV 結構蛋白以及100余種病毒非結構蛋白[5]。根據(jù)B646L 基因的C端核酸序列,可將非洲豬瘟分為24種基因型[6]。
非洲豬瘟自1921年在肯尼亞首次報道后,主要流行于撒哈拉以南非洲地區(qū)[7]。1957年傳入葡萄牙,隨后在西歐廣泛傳播[8]。野豬作為ASFV的攜帶者,為病毒的流行傳播提供了助力。而隨著經濟的發(fā)展,繁榮的國際貿易與人員交流也急劇增加了ASFV 跨境傳播的風險。2007 年,ASF 傳播至歐亞接壤的高加索地區(qū),疫情迅速在格魯吉亞、亞美尼亞、阿塞拜疆以及俄羅斯西伯利亞地區(qū)蔓延[9]。2012 年以后陸續(xù)傳入烏克蘭、白俄羅斯等國,2014 年ASF開始在東歐大部分國家呈現(xiàn)出擴大流行的趨勢[10]。2018 年8月我國暴發(fā)了第一起ASF 疫情,并逐步在境內蔓延[11]。隨后,包括韓國、越南在內的東亞、東南亞地區(qū),陸續(xù)暴發(fā)ASF疫情[12],給全球生豬養(yǎng)殖及相關產業(yè)造成了重大沖擊和巨大損失。ASF在非洲流行時期,以弱毒株為主,病豬常見溫和的亞急性型和慢性型感染癥狀。非洲大陸以外的ASFV 流行毒株主要是基因Ⅰ型和基因Ⅱ型[13]。自2007年以來影響格魯吉亞以及東歐的高毒力ASFV毒株屬于基因型Ⅱ[10]。2018 年我國暴發(fā)ASF疫情,經診斷鑒定為ASFV 基因型Ⅱ型強毒株[14],但在后續(xù)的流調中,陸續(xù)發(fā)現(xiàn)了自然致弱毒株[15]、基因型Ⅰ型毒株[16],以及基因型Ⅰ型和Ⅱ型的重組毒株[17],ASFV 復雜的流行形勢給我國的疫病防控和凈化帶來了巨大的挑戰(zhàn)。
科學家們致力于不同的嘗試以期創(chuàng)制出理想的ASF疫苗,為防控和消滅ASFV提供有力的支撐。但鑒于ASFV本身以及其與宿主相互作用網(wǎng)絡的復雜性,目前除越南批準的兩款減毒疫苗ASFV-G-ΔI177L 和ASFV-G-ΔMGF[18-19],尚無有效的商業(yè)化疫苗獲得批準。最早被研究的ASF 疫苗是滅活疫苗,盡管經歷了毒株選擇、滅活途徑、佐劑類型、免疫劑量及程序的一系列條件優(yōu)化,解決了疫苗的安全性,并在免疫后仔豬中成功檢測到了ASFV 特異性抗體,但滅活疫苗并不能為易感豬提供有效的免疫保護[20-22]。滅活疫苗缺乏刺激宿主產生完整細胞免疫反應的能力,此外,抗原負荷低、滅活和下游加工過程中關鍵抗原表位受到破壞,以及細胞傳代過程中,低代次與高代次的ASFV毒株對中和抗體的敏感性差異等原因,可能也是導致其效果不理想的重要原因[21]。亞單位疫苗和核酸疫苗一直被認為是開發(fā)高安全性ASF 疫苗的重要方向,然而,盡管多種具有免疫原性的ASFV蛋白已經被鑒定,目前報道的亞單位疫苗和基于單一ASFV 抗原靶點或多靶點的“雞尾酒”式DNA疫苗策略仍存在免疫保護能力不足的問題[23-26]。面臨相似困境的還有ASFV病毒載體疫苗的研究。目前,病毒載體疫苗主要是選擇痘病毒、腺病毒或者偽狂犬病病毒等載體表達ASFV 抗原基因,采用“雞尾酒”式混合免疫或者加強免疫策略,盡管與亞單位和核酸疫苗一樣,動物實驗結果證明其能夠誘導體液免疫反應和細胞免疫應答,但是仍不能提供完全的免疫保護,保護效率約為0%~50%[26-29]。后續(xù)研究可能還需要更全面地鑒定ASFV 關鍵的保護性抗原,開發(fā)更高效的新型免疫佐劑和遞送方式,以及嘗試更優(yōu)的免疫程序和免疫組合策略,以提高ASF疫苗的免疫效力。
通過自然減毒株篩選,人工傳代致弱或者基因缺失的方式降低毒株的毒力,削弱甚至消除其對宿主的致病性,同時保持其免疫原性的ASFV 減毒活病毒(Live attenuated virus, LAV)被證明具有作為疫苗策略的巨大潛力[30]。減毒活疫苗在免疫保護方面體現(xiàn)了非常大的優(yōu)勢,已有多項研究表明其可提供100%的同源保護和部分異源保護[31-34],被認為是短周期內最有希望的非洲豬瘟疫苗[35-36]。然而,西班牙和葡萄牙的現(xiàn)地試驗導致廣泛的慢性ASF 感染案例在前,其潛在的持續(xù)感染與毒力返強的風險等問題仍值得警惕。科研人員通過篩選和刪除AFSV 關鍵基因靶點,多基因聯(lián)合缺失等LAV候選疫苗創(chuàng)制策略,以期降低和解決ASF減毒活疫苗的潛在風險[30,37-38]。本文主要總結了ASF減毒活疫苗的研究進展,重點介紹基于病毒基因組復制必需基因缺失、多基因家族(MGF)基因缺失、介導紅細胞吸附基因缺失、其他ASFV 關鍵基因缺失,以及多毒力基因聯(lián)合缺失等方向的LAV 基因缺失候選疫苗研究成果,以期為ASF 減毒活疫苗研究提供參考。
1 自然減毒與傳代致弱疫苗
1.1 自然減毒疫苗
在慢性感染豬和軟蜱中分離的一些ASFV 自然減毒株被證明能夠對同源毒株,甚至是異源毒株的攻擊提供一定的免疫保護,如NH/P68和OUR T88/3[13,39]。這兩種自然減毒株的免疫保護率根據(jù)攻毒毒株、免疫劑量和免疫途徑的不同有所差異。ASFV 基因Ⅰ型自然減毒株NH/P68 能夠對Ⅰ型毒株L60 提供100%的免疫保護[40],GALLARDO C等[41]研究結果證明,雖然對免疫的動物產生了一些副作用,但NH/P68 也能抵抗Ⅱ型毒株ARM/07 的異源攻擊[40]。KING K等[42]使用OUR T88/3 株進行初次免疫接種,使用OUR T88/1株進行加強免疫,誘導的交叉保護性免疫能夠抵抗ASFV非同源Benin 97/1株和Uganda 1965 株的侵襲,保護率分別為60%~100%和100%。MULUMBA-MFUMUL K等[43]研究也證實“OUR T88/3 初免+OUR T88/1加強免疫”的組合能夠對ASFV 基因Ⅰ型的異源毒株DRC 085/10 產生良好的交叉保護作用。這些研究證明創(chuàng)制能夠誘導交叉保護減毒活疫苗的策略是可行的。但是天然減毒株對免疫動物的副作用也不容忽視,例如,NH/P68毒株接種會誘發(fā)25%~47%的慢性感染[40],OUR T88/3毒株免疫也會誘發(fā)豬出現(xiàn)發(fā)熱、關節(jié)腫脹等癥狀[43]。研究人員嘗試通過調整免疫劑量和免疫途徑解決這一問題。S魣NCHEZ-CORD譫N P J等[44]研究結果證明鼻內免疫OUR T88/3毒株相較于肌肉注射免疫在保證較高的免疫效率的同時,降低了免疫豬的臨床反應。2017 年,GALLARDO C等[45]分離了一株基因Ⅱ型減毒株Lv/17/WB/Rie1,感染后表現(xiàn)為間歇性弱病毒血癥和較輕的臨床癥狀,但能為同源強毒株提供100%的保護,表明Lv17/WB/Rie1 有潛力成為研制減毒活疫苗的候選毒株??傊?,盡管天然致弱毒株能夠誘導有效的獲得性免疫保護,但其存在的免疫副作用和安全性隱患制約著其在生產中的應用。ASFV自然減毒疫苗候選株見表1。
1.2 傳代致弱疫苗
ASFV主要感染的靶細胞是單核-巨噬細胞,在傳代細胞系中馴化需要一段適應期[47]。不同研究組陸續(xù)報道了非洲綠猴腎細胞(Vero/COS)、豬腎細胞(SPEV)、幼鼠腎細胞(BHK)、豬上皮細胞(PIPEC)、人胚胎腎上皮細胞(HEK293T)、豬巨噬細胞衍生細胞(IPKM)、猴腎成纖維細胞(CV-1)、胎豬肺巨噬細胞(ZMAC-4)等細胞系可以用于適應性培養(yǎng)ASFV[48-52]。隨著在細胞系中的不斷傳代,ASFV的毒力降低,但病毒的免疫原性也會降低,伴隨代次升高而產生的病毒外膜脂質差異,會導致抗體的中和活性不斷下降[53]。KRUG P W等[47]將ASFV-G 株在Vero 細胞中連續(xù)傳代培養(yǎng),發(fā)現(xiàn)病毒在Vero細胞中的復制能力增強,當傳至第110代時,毒力完全喪失。傳代致弱的ASFV-G/VP110株接種后不能對親本毒株ASFV-G產生免疫保護。全基因組測序發(fā)現(xiàn),ASFV-G/VP110 株基因組末端出現(xiàn)了大片段的基因缺失和突變。這些突變可能是病毒適應Vero細胞的原因,但它改變了ASFV-G 的抗原性,使其不能誘導保護性免疫反應。LACASTA A等[54]研究報道了積極的結果,他們將強毒E75 在CV1細胞系上連續(xù)傳代致弱的E75CV1 毒株免疫后,能對同源毒株E75提供免疫保護,但不能抵抗異源毒株BA71 的攻擊。在實驗室階段,大部分的傳代致弱毒株對免疫動物表現(xiàn)出了溫和的臨床癥狀,甚至沒有明顯的臨床癥狀。但是,在疫苗田間試驗階段,西班牙和葡萄牙都曾出現(xiàn)過使用傳代致弱毒株免疫動物產生了災難性后果的情況,引起接種疫苗的動物出現(xiàn)急性與慢性的ASF癥狀,出現(xiàn)肺炎、流產和死亡等副作用,而長期帶毒的動物更是成為了ASF 新疫情的傳染源,造成了巨大的經濟損失。細胞傳代減毒ASFV 疫苗候選株見表2。
總體來看,自然減毒與傳代致弱病毒活疫苗在免疫保護效率上表現(xiàn)的優(yōu)勢并不能掩蓋他們在生物安全性上存在的隱患。傳統(tǒng)的傳代致弱疫苗研制策略的隨機性嚴重限制了疫苗創(chuàng)制的效率,也延滯了減毒活疫苗的開發(fā)與應用。但是,ASFV細胞適應減毒株的基因組丟失趨向性,為研究人員探索ASFV基因組穩(wěn)定性[47]提供了研究工具,也為ASFV 免疫保護機制研究和基因缺失弱毒活疫苗創(chuàng)制提供了參考[55]。
2 基因缺失減毒疫苗
運用分子生物學的方法,敲除病毒的功能基因、毒力基因,或者誘導宿主免疫抑制的相關基因,能夠實現(xiàn)降低病毒毒力或增加機體對病毒的免疫應答,獲得基因工程減毒活疫苗候選株。隨著ASFV基因靶點研究的不斷豐富,以及基因組改造技術的不斷發(fā)展,基因工程改造相較于自然篩選和細胞傳代適應,可以實現(xiàn)更高效、更靶向性地獲得ASFV基因缺失減毒株。
2.1 參與病毒基因組復制和轉錄的基因缺失LAV候選疫苗
非洲豬瘟病毒編碼參與核苷酸代謝、DNA 修復、mRNA轉錄和修飾相關的多種酶,能夠更精確地控制病毒基因組復制和基因表達,以增強其感染和復制效率[59],這些病毒蛋白是開發(fā)LAV候選物的潛在靶點。A104R基因編碼一種組蛋白樣蛋白,定位于病毒DNA復制位點,以不依賴ATP的方式與單鏈和雙鏈DNA結合,參與病毒DNA復制和基因表達[60]。RAMIREZ-MEDINA E等[61]的研究證明,在ASFV-G中缺失A104R 能夠延緩病毒復制效率,但幾乎不影響病毒滴度。在毒力方面,A104R基因缺失部分減弱了ASFV-G毒力,但接種ASFV-G-ΔA104R未能為同源的親本毒株提供免疫保護。
巨噬細胞作為非分裂細胞,脫氧核苷三磷酸(dNTPs)池有限,因此,ASFV 在感染過程中編碼核苷酸代謝的多種酶,以增加病毒DNA 復制所需的dNTP。E165R 和C962R 基因分別編碼dUTPase 和NTPase[62-65]。Vero細胞適應性的BA71V株中刪除E165R基因不影響病毒在Vero 中的復制,但顯著降低其在PAM細胞中的復制[62]。但是,在ASFV-G中缺失E165R或C962R 基因并不影響其在PAM 細胞中的復制和病毒毒力[63,66]。K196R 基因編碼一種參與dNTP合成的胸苷激酶,該基因缺失雖然對病毒在分裂細胞中復制影響較小,但可以顯著抑制其在巨噬細胞中的復制[67-71]。MOORE D M等[71]在Malawi LiL-20/1毒株中缺失K196R部分減弱了病毒毒力,并對親本毒株提供了66.7%的免疫保護。而SANFORD B等[72]在細胞傳代毒株ASFV-G/VP30 中缺失K196R 獲得的ASFV-G/V-ΔTK 毒株不能誘導免疫豬產生免疫保護。
ASFV 基因組編碼6 個RNA 解旋酶超家族蛋白(pA859L、pB962L、pD1133L、pF1055L、pQ706L和pQP509L),在病毒RNA轉錄中發(fā)揮重要作用[4]。RAMIREZMEDINAE等[73]在ASFV高毒力分離株Georgia 2007/1中缺失A859L基因,雖然不影響病毒在PAM細胞中的復制,但也不能降低病毒毒力。隨后,RAMIREZ-MEDINAE等[74]研究證明,從Georgia 2010 毒株中缺失QP509L 基因也不能降低病毒毒力。LI D等[75]研究表明,在高毒力毒株CN/GS/2018中缺失QP509L 可以部分減毒,而同時缺失QP509L 和QP383R 基因可以完全減毒,遺憾的是,QP509L/QP383R 雙基因缺失突變體未能提供免疫保護。參與病毒基因組復制和轉錄的基因缺失LAV候選疫苗見表3。
總體上,針對參與病毒基因組復制或轉錄的基因缺失LAV候選疫苗的研究,所構建的ASFV突變株要么過度減毒致使無法在豬中誘導保護性免疫,要么根本沒有減毒。目前還沒有通過刪除與病毒基因組復制或轉錄相關的基因而產生的有希望的LAV候選株。
2.2 多基因家族的基因缺失LAV候選疫苗
ASFV 基因組兩側的可變區(qū)編碼多基因家族(MGF)基因,平均長度分為5 類(MGF100、MGF110、MGF300、MGF360 和MGF505)[4,77]。MGF 基因數(shù)量在不同ASFV 毒株間差異很大,ASFV 天然減毒株或細胞培養(yǎng)適應的減毒株通常比高毒力毒株具有更少的MGF 基因,證明MGF 基因可能與病毒毒力相關[78-79],也有研究表明MGF 基因在決定病毒細胞嗜性[80-81],抑制宿主天然免疫等方面發(fā)揮重要作用[80]。綜合這些研究結果,MGF基因是設計LAV 疫苗的重要靶點。研究人員嘗試通過單基因缺失以評估MGF 基因對ASFV毒力和誘導宿主免疫保護的貢獻。REIS A L等[82]通過刪除毒株Benin 97/1 的MGF360-18R(DP148R)基因獲得了BeninΔDP148R毒株,該基因缺失不影響病毒在巨噬細胞中的復制,但顯著降低毒力,引起輕微的臨床癥狀,同時誘導對同源強毒株Benin 97/1 的完全保護。TAM魣S V等[83]通過刪除MGF110-11L 基因獲得的減毒株Lv17/WB/Rie1/d110-11L 也能夠提供對Armenia/07 毒株的完全保護。GALLARDO C等[41]的研究證明在NH/P68 毒株中缺失MGF360-15R(A276R)不能對Arm07 毒株的攻擊提供免疫保護。此外,一些MGF基因的缺失對ASFV毒力影響并不顯著,沒有獲得預期的減毒活病毒株,例如MGF100-1R,MGF110 -1L、MGF110 -5L、MGF110 -6L、MGF110 -9L,MGF300-4L,MGF360-1L、MGF360-13L、MGF360-14L 和MGF360-16R 等[84-90]。
除了對MGF 基因開展了大量的單基因缺失外,科研人員還嘗試了同時從高毒力ASFV 中去除多個MGF基因的策略。MGF505-7R 基因通過多種機制抑制宿主I 型干擾素的誘導,該基因缺失對病毒的復制和毒力有不同的影響[91-92]。低劑量接種后,免疫的豬100%存活,而高劑量接種后,則有43%的免疫豬死于感染[91-92]。當從高毒力ASFV毒株CN/GS/2018 中同時缺失MGF505-7R和MGF360-9L基因,僅略微影響病毒復制,卻可以完全降低病毒在豬中的毒力[93],而由此產生的重組毒株ASFV-Δ9L7R能夠為親本毒力病毒的致命攻擊提供83.3%的保護。CHEN W Y等[34]從高毒力HLJ/18 中同時缺失6 個MGF 基因(MGF505-1R、MGF505-2R、MGF505-3R amp; MGF360-12L、MGF360-13L、MGF360-14L)構建的突變體HLJ/18-6GD 被完全減毒,并誘導完全保護免受親本毒株的致命攻擊。然而,HLJ/18-6GD 候選疫苗在豬體內經過6 次傳代后恢復了毒力。類似地,DEUTSCHMANN P等在Georgia2007 株中缺失上述6 個MGF 基因后獲得了免疫保護性良好的ASFV-G-ΔMGF 候選疫苗株,但卻在遺傳穩(wěn)定性評估實驗中發(fā)現(xiàn),從第三代開始,接種的豬表現(xiàn)出輕度至中度的臨床癥狀,并且出現(xiàn)了一些基因組突變的情況[94]。在另一組研究中,研究人員缺失了位于ASFV基因組的右側可變區(qū)6 個MGF 基因組成的基因簇L7L-L11L。L7L 和L8L 被認為是MGF100的成員,但該基因簇中其他基因的功能尚不清楚。當在ASFV 分離株SY18 中缺失L7L-L11L 基因簇,不影響病毒在原代豬巨噬細胞培養(yǎng)物中的復制,但顯著降低了病毒在豬體內的毒力,并能夠對親本毒株的致命性攻擊提供完全保護[95]。多基因家族的基因缺失LAV候選疫苗株見表4。
總之,許多研究已經研究和證明了MGF基因缺失對ASFV毒力和免疫保護效率的影響。同時開發(fā)出了多種MGF基因缺失ASFV候選疫苗,這些疫苗在豬身上完全減毒,也可以對相應的毒力親本ASFV毒株的攻擊提供完全保護。此外,研究人員通過與ASFV 其他功能性基因聯(lián)合缺失初步解決了減毒疫苗候選株毒力返強風險高的問題,將在多毒力基因聯(lián)合缺失LAV候選疫苗的部分介紹。
2.3 參與紅細胞吸附的基因缺失LAV候選疫苗
ASFV具有紅細胞吸附特征,即在感染的細胞表面吸附紅細胞的能力,其與病毒毒力密切相關[40,45,100]。EP402R 基因編碼的與T淋巴細胞表面黏附受體CD2同源的CD2v蛋白,和EP153R 基因編碼的C型動物凝集素樣蛋白pEP153R協(xié)同介導病毒感染后吸附紅細胞[101]。
EP402R 基因缺失對ASFV 在豬體內的復制影響很大,除ASFV-G外,其他ASFV毒株,如BA71、Kenya-IX-1033、Malawi Lil-20/1 和Congo-a 等缺失EP402R,可顯著降低接種豬血液中的病毒載量。其中,MalawiLil-20/1-ΔCD2v毒株接種較親本毒株低了4個滴度,而接種BA71-ΔCD2v、Kenya-IX-1033ΔCD2v和ΔCon-goCD2v的豬血液中未檢測到病毒基因組DNA[31,56,102-103]。在毒力方面,EP402R單基因缺失的ASFV毒株表現(xiàn)出廣泛的毒性表型。Malawi Lil-20/1、ASFV-G和HLJ/18分離株單獨缺失EP402R不顯著改變病毒的毒力[33-34,102]。而ASFV-Kenya-IX-1033分離株中缺失EP402R基因部分降低了病毒的毒力,不造成接種豬的死亡,但也出現(xiàn)發(fā)燒和食欲下降的臨床癥狀[104]。有趣的是,ASFV-Kenya-IX-1033-ΔCD2v 接種的9 只豬中僅只有1 只在接種后短暫檢測到病毒的基因組DNA,毒株的毒力似乎與病毒在豬體內的復制無關。在COS-1 細胞適應性的BA71株中缺失EP402R 基因,可以顯著降低病毒毒力[31]。在免疫保護性方面,所有接種BA71-ΔCD2v 疫苗的豬不僅對親本毒株BA71 和同為基因Ⅰ型的異源毒株E75 提供完全保護,同時也對基因Ⅱ型Georgia 2007/1 毒株的致死性攻擊提供了完全保護,并且沒有表現(xiàn)出任何顯著的臨床癥狀或病毒血癥[31]。接種了Kenya-IX-1033-ΔCD2v 毒株的豬盡管出現(xiàn)了持續(xù)的病毒血癥和慢性ASFV 感染癥狀,但有87.5%的免疫豬在親本毒株的致死攻毒中存活[104]。有意思的是,COS-1細胞適應性的Congo-a株中缺失EP402R基因獲得的ΔCongoCD2v毒株接種后,誘導的特異性抗體滴度與接種親本毒株Congo-a相似,但卻對Congo-V毒株的攻擊完全沒有提供免疫保護。最近,RATHAKRISHNANA等[105]的研究報道了在基因Ⅱ型Georgia07/1株的CD2v蛋白中引入單個或兩個氨基酸突變以減少或消除紅細胞吸附作用并減少病毒血癥的減毒疫苗設計。他們在GeorgiaΔK145RΔEP153R(GΔKE)或Geo-rgiaΔDP148RΔK145RΔEP153R(GΔDKE)基因缺失毒株的基礎上引入CD2v 的Q96R 單堿基突變或Q96R 和K108D 的雙堿基突變,構建了GΔKE_CmutQ96RGΔKE_CmutQ96R/K108D 和GΔDKE_CmutQ96R/K108D三個重組毒株。單個氨基酸突變的GKE_CmutQ96R株感染表現(xiàn)中等水平的復制,并對強毒力ASFV具有100%的保護作用。另外兩個雙氨基酸突變的毒株GΔKE_CmutQ96R/K108D 和GΔDKE_CmutQ96R/K108D,在體外不能誘導紅細胞吸附效應。而在免疫的豬中,表現(xiàn)出更輕的病毒血癥,且誘導強烈的早期ASFV特異性抗體和細胞反應,保護效率在83%~100%。
pEP153R蛋白被[9]認為是[10]病毒CD2v蛋白與豬紅細胞表面相應配體相互作用的穩(wěn)定劑。GALLARDO C等[41]在自然減毒株NH/P68中缺失EP153R 基因,實驗發(fā)現(xiàn)接種NH/P68ΔEP153R 的豬可以對L60 的致死性攻擊提供完全保護。LOPEZ E等[106]嘗試在BA71毒株中同時缺失EP402R和EP153R基因,構建了BA71ΔCD2EP153R雙基因缺失毒株,但免疫保護實驗結果并不理想,保護率只有60%。在BA71-ΔCD2v基礎上缺失EP153R 基因降低了疫苗的保護效力,也沒有提高其安全性。這些研究結果表明,只增加基因突變數(shù)量,即使是功能相關的基因,也不一定會提高疫苗的安全性,體內減毒和誘導保護之間的精細平衡值得進一步研究,并可能有助于未來更合理的疫苗設計。參與紅細胞吸附的基因缺失LAV候選疫苗見表5。
2.4 ASFV其他關鍵基因缺失LAV候選疫苗
I177L 基因。ASFV I177L 基因是一種在病毒復制周期后期表達的高度保守的蛋白。美國梅島動物疾病中心BORCA M V[107]團隊在高毒力毒株Georgia 2010中缺失I177L 基因構建的ASFV-G-ΔI177L 毒株較親本株復制能力下降100~1 000倍,且能夠在肌注接種(102 HAD50)和口鼻接種(106 HAD50)后抵御強毒攻擊。值得注意的是,在接種ASFV-G-ΔI177L 后的豬組織樣本中未檢測到病毒的基因組DNA。隨后,該團隊對ASFV-G-AI177L疫苗候選株的水平傳播能力和毒力返強能力等安全性做了更全面的評價。結果表明,實驗條件下,通過肌肉或口鼻途徑接種不同劑量ASFV-G-ΔI177L 的豬在28 天內沒有將病毒傳播給同居的哨兵豬[33,107-108];而在野外條件下,50%與ASFV-GΔI177L 免疫的豬混在一起的哨兵豬產生了ASFV特異性抗體,表明其可能存在傳播病毒的風險。在穩(wěn)定性實驗中,ASFV-G-ΔI177L 毒株在豬體內連續(xù)5次反向傳代后在遺傳上保持穩(wěn)定,但隨著在豬體的連續(xù)傳代,病毒在豬體內的復制水平逐漸增強[18]。2022年6 月,越南農業(yè)和農村發(fā)展部正式向NAVETCO 公司頒布對ASFV-GΔI177L 基因缺失活疫苗的商業(yè)ASF疫苗流通許可證,成為全球首個發(fā)布的商用ASF疫苗。隨后,NAVETCO 公司啟動了大規(guī)模臨床試驗,2022 年8 月,越南的平定省、富安省和廣義省陸續(xù)報道了免疫豬死亡事件,盡管經過調查,疫苗公司解釋豬死亡病例可能歸咎于接種豬存在疫病潛伏期感染,以及注射非適用豬群等原因。但這一事件仍然警示ASF減毒活疫苗商業(yè)化還需更全面的安全性評價體系。
NL、UK 和9GL 基因。ASFV早期研究發(fā)現(xiàn)了三個高度保守的病毒基因,即NL(DP71L)、UK(DP96R)和9GL(B119L)[109]。在E70 株中刪除NL 基因,能夠顯著降低病毒毒力,且能對親本毒株致死性攻擊提供完全保護[110]。然而,在另外兩個強毒株Malawi il-20/1 或Pretoriuskop/96/4中缺失該基因并沒有改變病毒毒力[110]。與此類似,UK 基因對病毒毒力的貢獻也是毒株依賴性的[109,111]。盡管從E70 或ASFV-G毒株中刪除UK 基因都不影響病毒在PAM 細胞中的復制,但在E70 株中缺失UK 基因可顯著降低其毒力,而ASFV-G 株中刪除UK 基因對毒力并沒有顯著影響[111]。LEWIS T等[112]從Malawi Lil-20/1株基因組中刪除9GL 基因,顯著抑制其在PAM細胞中的復制,并完全減弱了病毒,且能對親本株的致命攻擊提供完全保護。隨后,該基因也被嘗試在Pretoriuskop/96/4和Georgia 2007/1毒株的基因組中缺失。由此產生的Pr4Δ9GL和ASFV-G-Δ9GL 突變體也分別對其親本強毒株具有完全的保護作用[23,97,113]。有意思的是,同時從ASFV-G株中刪除9GL 和UK 基因,使病毒完全減毒,且接種ASFV-G-Δ9GL/ΔUK雙基因缺失疫苗,可完全抵御來自親本病毒的致命攻擊[113]。而當從ASFV-G-Δ9GL/ΔUK中繼續(xù)缺失NL基因時,產生的三重基因缺失株ASFV-G-Δ9GL/ΔNL/ΔUK似乎過度減毒,無法在接種豬中產生保護性免疫[111]。這些結果提示基因缺失并不是越多越好,需要探索毒株在減毒和免疫保護之間的平衡關系。
A137R、A238 和A224L 基因。ASFV 已經進化出多種干擾宿主天然免疫的機制以促進自身感染與復制。pA137R蛋白被報道可以通過自噬介導TBK1的溶酶體降解以抑制I型干擾素的產生[114]。GLADUE D P等[115]從Georgia 2010 中刪除A137R 基因發(fā)現(xiàn),該基因的刪除雖然只能微降低病毒在PAM 細胞中的復制,但可以完全降低病毒在豬體內的毒性,且誘導了對毒親本病毒致命攻擊的完全保護。然而,ASFV-GΔA137R 株會在接種的豬中建立持續(xù)感染,持續(xù)時間較長。A238L 和A224L 基因分別通過參與調控NF-κB信號傳導和細胞凋亡抑制的途徑促進病毒復制。GALLARDO C等[41]分別通過在NH/P68 毒株中缺失這些基因開發(fā)LAV。動物免疫保護實驗結果表明,兩個候選疫苗株對同源毒株L60 的致死性攻擊可以提供完全保護,但無法抵抗對ASFV基因Ⅱ型Arm07 毒株的攻擊。其他的ASFV 基因缺失LAV候選疫苗詳見表6。
2.5 多毒力基因聯(lián)合缺失LAV候選疫苗
研究人員通常將編碼CD2v蛋白的EP402R 基因與病毒其他毒力基因共缺失,以提高LAV候選疫苗的安全性。一般情況下,在毒力基因缺失株的基礎上刪除EP402R 基因不會顯著影響病毒在細胞中的復制,但會減輕感染動物的毒血癥[37]。XIE Z H等[122]在GZ201801 毒株中組合缺失EP153R、EP402R(CD2v)、MGF360-12L、MGF360-13L 和MGF360-14L 五個基因可以在PAM 細胞中有效復制,但在免疫的豬體內完全減毒,同時對親本毒株提供完全保護。如前所述,UK 基因缺失可以部分減弱病毒毒力,且具有毒株選擇性。當同時從ASFV 強毒株SY18 中去除EP402R 和UK 基因,得到的雙基因缺失株SY18-ΔCD2v-ΔUK完全減毒,肌肉注射接種后不會引起病毒血癥,且能對親本病毒的致命攻擊提供完全保護[123]。
CHEN W Y等[34]組合缺失6個MGF基因的突變株HLJ/18-6GD被完全減毒,并表現(xiàn)出良好的免疫保護優(yōu)勢,但存在毒力返強風險高的問題。在HLJ/18-6GD基礎上,同時缺失EP402R 基因產生的7個基因缺失ASFV候選株HLJ/18-7GD降低了這種風險,且動物實驗證明其在妊娠母豬是完全減毒的,不會造成妊娠母豬的患病或流產,也不會影響仔豬健康。使用HLJ/18-7GD病毒103 TCID50 或105 TCID50 單劑量肌內免疫仔豬,可為仔豬提供對親本強毒株致命攻擊的完全保護。臨床檢測結果顯示,103 TCID50 免疫組的4 頭豬都出現(xiàn)了發(fā)熱癥狀,而105 TCID50免疫組的4 頭豬只有1頭發(fā)熱,表明HLJ/18-7GD 毒株以劑量依賴的方式誘導免疫保護。HLJ/18-7GD 在豬體內幾乎不復制,即使以107.7 TCID50的劑量接種也不會引起仔豬的毒血癥。在接種后的第14 天,僅在淋巴結中偶爾檢測到病毒基因組DNA,而將這些淋巴結勻漿后接種并不會造成感染,證明HLJ/18-7GD候選疫苗安全有效。
在最近的報道中,YANG J J等[124]的研究通過在SY18毒株中同時缺失L60L 基因和EP402R 基因,獲得了SY18ΔL60LΔCD2v的重組毒株,沒有明顯的臨床癥狀或病毒血癥。免疫保護實驗結果顯示,高劑量(105 TCID50)接種SY18ΔL60LΔCD2v 可以為免疫的豬提供完全的免疫保護,而低劑量(102 TCID50)接種SY18ΔL60LΔCD2v僅能提供20%的免疫保護。對于減毒活疫苗,保證其免疫保護效果的前提下,保障疫苗安全性,控制毒力返強風險是重中之重,研究人員通過EP402R 基因與不同毒力基因的聯(lián)合缺失為此提供了廣泛可行的創(chuàng)制思路。此外,I177L、9Gl等基因也常在多毒力基因聯(lián)合缺失設計中被考慮,還有一些基于ASFV 功能相關或協(xié)同作用的基因共缺失的疫苗設計,詳見表7。
3 用于培養(yǎng)ASFV 的細胞系
ASFV主要靶向單核-巨噬譜系的細胞,包括巨噬細胞、中性粒細胞、酸性粒細胞和嗜堿性粒細胞等。豬原代巨噬細胞常被用于ASFV 的體外分離和病毒擴繁培養(yǎng)[132]。但是,鑒于原代細胞制備成本高昂,重復性不穩(wěn)定等問題,篩選理想的ASFV培養(yǎng)細胞系是ASF疫苗研究和商業(yè)化推廣亟待解決的問題,也是突破ASF疫苗創(chuàng)制瓶頸的關鍵問題之一。
現(xiàn)有研究表明,一些連續(xù)傳代或永生化的豬巨噬細胞系,如ZMAC-4、IPKM 等[50,133-134]和野豬肺巨噬細胞系WSL[103]可以支持ASFV體外增殖。此外,猴腎細胞系,如COS-1、Vero、人胚胎腎細胞HEK-293T 等細胞系也被報道可以用于培養(yǎng)ASFV。最近,中國農業(yè)科學院哈爾濱獸醫(yī)研究所建立了一株源自原代野豬胎腎細胞的傳代細胞系BK2258,該細胞系能支持ASFV 高效復制,且能夠觀察到顯著的細胞病變效應(CPE)[7]。值得注意的是,ASFV在細胞系中傳代培養(yǎng)通常伴隨著基因組可變區(qū)基因缺失的問題,并且病毒基因組中丟失的基因數(shù)量會隨著傳代次數(shù)的增加而增加[49,135-136]。另一方面,傳代細胞系中擴繁的ASFV 毒株可能會出現(xiàn)不同程度的毒力衰減,甚至在連續(xù)傳代后喪失誘導免疫的豬產生免疫保護的能力[137]。適應Vero 細胞的強毒株ASFV-G被命名為ASFV-VP,在評估其傳代衰減和保護潛力的實驗中發(fā)現(xiàn),傳代60 代和80 代會致使毒力部分減弱,而傳代110 代時,病毒被完全減毒,但ASFV-VP60、80 或110 都不能誘導對親本毒株的致死性攻擊產生保護作用[47]。類似地,BA71毒株在適應Vero細胞后也出現(xiàn)了完全減毒,但喪失免疫保護性的問題[31]。盡管目前多數(shù)基因缺失LAV 候選毒株都是先在原代豬巨噬細胞中培養(yǎng)獲得,但是,科研人員仍在不斷嘗試將一些有希望的LAV 候選株在細胞系中培養(yǎng)。BORCA M V團隊[107]將ASFV-G-ΔI177L減毒株在美國梅島豬上皮細胞(PIPEC)中連續(xù)傳代后獲得了細胞適應株ASFV-G-ΔI177L/ΔLVR。PIPEC 是將表達琢V茁6 整合素的永生化胎豬腎細胞(LFPKney)傳代60 次后,再經單克隆篩選獲得的細胞系。動物試驗結果證明,盡管ASFV-G-ΔI177L/ΔLVR株相較于親本ASFV-G-ΔI177L株出現(xiàn)了顯著的基因組缺失,但它在安全性、免疫原性和保護效力方面與親本毒株相當。
ASFV 適應性細胞系研究取得的進展將為ASF單周期病毒疫苗創(chuàng)制提供基礎。單周期病毒疫苗是保留病毒完整的免疫原性的同時存在復制缺陷的候選疫苗株,由表達相應缺失蛋白的輔助細胞系中培養(yǎng)的復制缺陷病毒制備,是一種安全性較高的新型疫苗。藍舌病病毒在S9 基因缺失后,造成核心蛋白VP6 的缺失,使病毒無法在宿主體內復制,但能夠誘導高水平的體液免疫并提供有效的免疫保護[138]。裂谷熱病毒(RVFV)的單周期病毒疫苗也能夠在不引發(fā)宿主全身感染的前提下,為其提供保護性免疫。盡管由于缺乏穩(wěn)定輔助細胞系和難以確定缺失復制相關基因的諸多難題,ASFV單周期病毒疫苗還在概念設計階段,未見詳細的研究報道,但對于能夠有效解決減毒活疫苗安全性問題,給ASF疫病防控和凈化帶來突破的疫苗設計策略,復制缺陷單周期病毒是一個值得嘗試的ASF疫苗創(chuàng)制方向。
4 總結與展望
ASF是目前危害世界養(yǎng)豬業(yè)最嚴重的疫病。鑒于ASFV 自身以及與宿主相互作用網(wǎng)絡的復雜性,雖然疫苗相關研究已歷經百年,但ASF 疫苗的創(chuàng)制仍有很多難題亟待攻克。安全性和有效性是疫苗推廣應用需要解決的首要問題,盡管ASF 疫苗研究近年來取得了較大的突破,但亞單位疫苗、DNA 疫苗和病毒活載體疫苗在保障安全性的前提下,仍存在免疫保護效力不足的問題。減毒活疫苗雖然表現(xiàn)出突出的免疫保護優(yōu)勢,但由于潛在的安全性問題,商業(yè)化應用仍有不小的挑戰(zhàn)。為了增加疫苗的安全性,一些減毒疫苗研究中也出現(xiàn)了過度減毒而造成的免疫保護效力下降甚至喪失的情況??梢姡《径玖Α⒒蚪M穩(wěn)定性、免疫原性等層面的多方平衡是減毒活疫苗創(chuàng)制的重要命題。值得注意的是,隨著ASFV 流行形勢的復雜化,以我國為例,目前主要呈現(xiàn)以基因Ⅰ型和Ⅱ型重組毒為主,Ⅰ型、Ⅱ型及弱毒株共存的流行特點。這使得交叉保護作用可能會成為創(chuàng)制ASF 理想疫苗的重要指標。多毒力基因聯(lián)合缺失或重組也許是一個可行的減毒活疫苗創(chuàng)制策略,但需要病毒入侵及復制機制、免疫逃逸機制、免疫保護機制等方面更深入透徹的理論研究作為支撐。研究人員也在不斷嘗試RNA疫苗、T/B細胞表位疫苗、單周期病毒疫苗等新型疫苗創(chuàng)制思路。此外,ASFV傳代細胞系及小動物感染模型的建立,新型佐劑與遞送方式的開發(fā)及優(yōu)化等輔助研究平臺的發(fā)展也將為ASF 疫苗的創(chuàng)制突破瓶頸提供重要助力。
參考文獻:
[1] PLOWRIGHT W, PARKER J, STAPLE R F. The
growth of a virulent strain of African swine fever virus
in domestic pigs[J]. Journal of Hygiene (London), 1968,
66(1): 117-134.
[2] DIXON L K, STAHL K, JORI F, et al. African swine
fever epidemiology and control[J]. Annual Review Animal
Biosciences, 2020, 8: 221-246.
[3] ALONSO C, BORCA M, DIXON L, et al. ICTV
virus taxonomy profile: Asfarviridae[J]. The Journal of
General Virology, 2018, 99(5): 613-614.
[4] DIXON L K, CHAPMAN D A G, NETHERTON C L,
et al. African swine fever virus replication and genomics[J].
Virus Research,2013, 173(1):3-14.
[5] JIA N, OU Y, PEJSAK Z, et al. Roles of African
swine fever virus structural proteins in viral infection[J].
Journal of Veterinary Research, 2017, 61(2): 135-143.
[6] ACHENBACH J E, GALLARDO C, NIETO-PELEGR
魱N E, et al. Identification of a new genotype of
African swine fever virus in domestic pigs from Ethiopia
[J]. Transboundary and Emerging Diseases, 2017, 64(5):
1393-1404.
[7] WANG W, ZHANG Z J, TESFAGABER W, et al.
Establishment of an indirect immunofluorescence assay
for the detection of African swine fever virus antibodies[
J]. Journal of Integrative Agriculture, 2024, 23 (1):
228-238.
[8] FERNANDO S, BOINAS A J, WILSON A J, et al.
The persistence of African swine fever virus in
field-infected ornithodoros erraticus during the ASF
endemic period in Portugal[J]. PLoS One, 2011, 6(5):
e20383.
[9] ROWLANDS R J. African swine fever virus isolate,
Georgia, 2007[J]. Emerging Infectious Diseases, 2008, 14
(12): 1870-1874.
[10] S魣NCHEZ-CORD魷N P J, MONTOYA M, REIS A
L, et al. African swine fever: A re-emerging viral disease
threatening the global pig industry[J]. The Veterinary
Journal,2018,233:41-48.
[11] ZHAO D M, LIU R Q, ZHANG X F, et al. Replication
and virulence in pigs of the first African swine
fever virus isolated in China[J]. Emerging Microbes amp;
Infections, 2019, 8(1): 438-447.
[12] ITO S, KAWAGUCHI N, BOSCH J, et al. What
can we learn from the five-year African swine fever
epidemic in Asia? [J]. Frontiers in Veterinary Science,
2023, 10: 273417.
[13] ARIAS M, DE LA TORRE A, DIXON L, et al. Approaches
and perspectives for development of African
swine fever virus vaccines [J]. Vaccines (Basel), 2017, 5(4):
E35.
[14] ZHOU X T, LI N, LUO Y Z, et al. Emergence of
African swine fever in China, 2018[J]. Transboundary
and Emerging Diseases, 2018, 65(6): 1482-1484.
[15] SUN E C, ZHANG Z J, WANG Z L, et al. Emergence
and prevalence of naturally occurring lower
virulent African swine fever viruses in domestic pigs
in China in 2020[J]. Science China. Life Sciences, 2021,
64(5): 752-765.
[16] SUN E C, HUANG L Y, ZHANG X F, et al.
Genotype I African swine fever viruses emerged in
domestic pigs in China and caused chronic infection
[J ]. Emerging Microbes amp; Infections, 2021, 10 (1) :
2183-2193.
[17] ZHAO D M, SUN E C, HUANG L Y, et al. Highly
lethal genotype I and Ⅱ recombinant African swine
fever viruses detected in pigs[J]. Nature Communications,
2023, 14(1):3096.
[18] TRAN X H, PHUONG L T T, HUY N Q, et al.
Evaluation of the safety profile of the ASFV vaccine
candidate ASFV-G-ΔI177L[J]. Viruses, 2022, 14(5): 896.
[19] DEUTSCHMANN P, CARRAU T, SEHL-EWERT
J, et al. Taking a promising vaccine candidate further:
efficacy of ASFV-G-ΔMGF after intramuscular vaccination
of domestic pigs and oral vaccination of wild
boar[J]. Pathogens, 2022, 11(9): 996.
[20] BRAKE D A. African swine fever modified live vaccine
candidates: Transitioning from discovery to product
development through harmonized standards and
guidelines[J]. Viruses, 2022, 14(12): 2619.
[21] PIKALO J, PORFIRI L, AKIMKIN V, et al. Vaccination
with a gamma irradiation-inactivated African
swine fever virus is safe but does not protect against a
challenge[J]. Frontiers in Immunology, 2022, 13: 832264.
[22] STONE S S, HESS W R. Antibody response to inactivated
preparations of African swine fever virus in
pigs[J]. American Journal of Veterinary Research, 1967,
28(123): 475-481.
[23] NEILAN J G, ZSAK L, LU Z, et al. Neutralizing
antibodies to African swine fever virus proteins p30,
p54, and p72 are not sufficient for antibody-mediated
protection[J]. Virology, 2004, 319(2): 337-342.
[24] LOKHANDWALA S, PETROVAN V, POPESCU L,
et al. Adenovirus-vectored African swine fever virus
antigen cocktails are immunogenic but not protective
against intranasal challenge with Georgia 2007/1 isolate
[J]. Veterinary Microbiology, 2019, 235: 10-20.
[25] LOKHANDWALA S, WAGHELA S D, BRAY J, et
al. Adenovirus-vectored novel African swine fever
virus antigens elicit robust immune responses in swine
[J]. PLoS One, 2017, 12(5): e0177007.
[26] ARGILAGUET J M, P魪REZ-MART魱N E, L魷PEZ
S, et al. BacMam immunization partially protects pigs
against sublethal challenge with African swine fever
virus[J]. Antiviral Research, 2013, 98(1): 61-65.
[27] JANCOVICH J K, CHAPMAN D, HANSEN D T, et
al. Immunization of pigs by DNA prime and recombinant
vaccinia virus boost to identify and rank African
swine fever virus immunogenic and protective proteins[
J]. Journal of Virology, 2018, 92(8): e02219-17.
[28] LOKHANDWALA S, WAGHELA S D, BRAY J, et al.
Induction of robust immune responses in swine by using
a cocktail of adenovirus-vectored African swine fever
virus antigens[J]. Clinical and Vaccine Immunology, 2016,
23(11): 888-900.
[29] NETHERTON C L, GOATLEY L C, REIS A L,
et al. Identification and immunogenicity of African
swine fever virus antigens[J]. Frontiers in Immunology,
2019, 10: 1318.
[30] LIU L, WANG X W, MAO R Q, et al. Research
progress on live attenuated vaccine against African
swine fever virus [J]. Microbial Pathogenesis, 2021, 158:
105024.
[31] MONTEAGUDO P L, LACASTA A, L魷PEZ E, et al.
BA71ΔCD2: A new recombinant live attenuated African
swine fever virus with cross-protective capabilities [J].
Journal of Virology, 2017, 91(21): e01058.
[32] ZHANG Y Y, KE J N, ZHANG J Y, et al. African
swine fever virus bearing an I226R gene deletion
elicits robust immunity in pigs to African swine fever
[J]. Journal of Virology, 2021, 95(23): e0119921.
[33] BORCA M V, RAMIREZ-MEDINA E, SILVA E, et
al. Development of a highly effective African swine
fever virus vaccine by deletion of the I177L gene results
in sterile immunity against the current epidemic Eurasia
strain[J]. Journal of Virology, 2020, 94(7): e02017.
[34] CHEN W Y, ZHAO D M, HE X J, et al. A seven-
gene-deleted African swine fever virus is safe and
effective as a live attenuated vaccine in pigs[J]. Science
China. Life Sciences, 2020, 63(5): 623-634.
[35] URBANO A C, FERREIRA F. African swine fever
control and prevention: an update on vaccine development[
J]. Emerging Microbes amp; Infections, 2022, 11(1):
2021-2033.
[36] FAN J Q, YU H S, MIAO F M, et al. Attenuated African
swine fever viruses and the live vaccine candidates: a
comprehensive review[J]. Microbiology Spectrum, 2024,
12(11): e0319923.
[37] VU H L X, MCVEY D S. Recent progress on
gene-deleted live-attenuated African swine fever virus
vaccines[J]. NPJ Vaccines, 2024, 9(1): 60.
[38] CHU X F, GE S Q, ZUO Y Y, et al. Thoughts on
the research of African swine fever live-attenuated
vaccines[J]. Vaccine, 2024, 42(25): 126052.
[39] GIL S, SEPULVEDA N, ALBINA E, et al. The low-virulent
African swine fever virus (ASFV/NH/P68) induces
enhanced expression and production of relevant regulatory
cytokines (IFNalpha, TNFalpha and IL12p40) on
porcine macrophages in comparison to the highly virulent
ASFV/L60 [J]. Archives of Virology, 2008, 153(10):
1845-1854.
[40] LEIT魨O A, CARTAXEIRO C, COELHO R, et al.
The non-haemadsorbing African swine fever virus isolate
ASFV/NH/P68 provides a model for defining the
protective anti-virus immune response[J]. The Journal of
General Virology, 2001,82(3):513-523.
[41] GALLARDO C, S譧NCHEZ E G, P魪REZ-NU譙EZ
D, et al. African swine fever virus (ASFV) protection
mediated by NH/P68 and NH/P68 recombinant
live-attenuated viruses[J]. Vaccine,2018,36(19):2694-2704.
[42] KING K, CHAPMAN D, ARGILAGUET J M, et
al. Protection of European domestic pigs from virulent
African isolates of African swine fever virus by
experimental immunisation[ J]. Vaccine, 2011, 29(28) :
4593-4600.
[43] MULUMBA-MFUMU LK, GOATLEYLC, SAEGERMAN
C, et al. Immunization of African indigenous
pigs with attenuated genotype I African swine fever
virus OURT88/3 induces protection against challenge
with virulent strains of genotype I[J]. Transboundary and
Emerging Diseases, 2016, 63(5): e323-e327.
[44] S譧NCHEZ-CORD魷N P J, CHAPMAN D, JABBAR
T, et al. Different routes and doses influence protection in
pigs immunised with the naturally attenuated African
swine fever virus isolate OURT88/3[J]. Antiviral Research,
2017,138:1-8.
[45] GALLARDO C, SOLER A, RODZE I, et al. Attenuated
and non-haemadsorbing (non-HAD) genotype
II African swine fever virus (ASFV) isolated in
Europe, Latvia 2017[J]. Transboundary and Emerging
Diseases, 2019, 66(3): 1399-1404.
[46] BARROSO-AR魪VALO S, BARASONA J A, CADENAS-
FERN譧NDEZ E, et al. The role of interleukine-
10 and interferon-γ as potential markers of
the evolution of African swine fever virus infection in
wild boar[J]. Pathogens, 2021, 10(6): 757.
[47] KRUG P W, HOLINKA L G, O'DONNELL V, et
al. The progressive adaptation of a georgian isolate of
African swine fever virus to vero cells leads to a
gradual attenuation of virulence in swine corresponding
to major modifications of the viral genome[J]. Journal
of Virology, 2015, 89(4): 2324-2332.
[48] CARRASCOSA A L, BUSTOS M J, DE LEON P.
Methods for growing and titrating African swine fever
virus: Field and laboratory samples[J]. Current Protocols
in Cell Biology, 2011, Chapter 26: 26.14.1-26.14.25.
[49] WANG T, WANG L, HAN Y, et al. Adaptation of
African swine fever virus to HEK293T cells[J]. Transboundary
and Emerging Diseases, 2021,68(5):2853-2866.
[50] PORTUGAL R, GOATLEY L C, HUSMANN R, et
al. A porcine macrophage cell line that supports high
levels of replication of OURT88/3, an attenuated strain
of African swine fever virus[J]. Emerging Microbes amp;
Infections, 2020, 9(1): 1245-1253.
[51] BORCA M V, RAI A, ESPINOZA N, et al. African
swine fever vaccine candidate ASFV-G-ΔI177L produced
in the swine macrophage-derived cell line IPKM
remains genetically stable and protective against
homologous virulent challenge[J]. Viruses, 2023, 15(10):
2064.
[52] ZHANG X Y, WANG Z Z, GE S Q, et al. Attenuated
African swine fever virus through serial passaging
of viruses in cell culture: A brief review on the
knowledge gathered during 60 years of research[J]. Virus
Genes, 2023, 59(1): 13-24.
[53] G魷MEZ-PUERTAS P, OVIEDO J M, RODR魱GUEZ
F, et al. Neutralization susceptibility of African swine
fever virus is dependent on the phospholipid composition
of viral particles[J]. Virology,1997,228(2):180-189.
[54] LACASTA A, MONTEAGUDO P L, JIM魪NEZMAR
魱N 譧, et al. Live attenuated African swine fever viruses
as ideal tools to dissect the mechanisms involved in
viral pathogenesis and immune protection[J]. Veterinary
Research,2015,46:135.
[55] TITOV I, BURMAKINA G, MORGUNOV Y, et
al. Virulent strain of African swine fever virus eclipses
its attenuated derivative after challenge[J]. Archives of
Virology, 2017, 162(10): 3081-3088.
[56] KOLTSOVA G, KOLTSOV A, KRUTKO S, et al.
Growth kinetics and protective efficacy of attenuated
ASFV strain congo with deletion of the EP402 gene[J].
Viruses, 2021, 13(7): 1259.
[57] PETRINI S, RIGHI C, M魪SZ譧ROS I, et al. The
production of recombinant African swine fever virus
Lv17/WB/Rie1 strains and their in vitro and in vivo
characterizations[J]. Vaccines (Basel), 2023, 11(12): 1860.
[58] TRUONG Q L, WANG L H, NGUYEN T A, et
al. A cell-adapted live-attenuated vaccine candidate
protects pigs against the homologous strain VNUA-
ASFV-05L1, a representative strain of the contemporary
pandemic African swine fever virus[J]. Viruses,
2023, 15(10): 2089.
[59] RODR魱GUEZ J M, SALAS M L. African swine fever
virus transcription[J]. Virus Research, 2013,173(1):15-28.
[60] FROUCO G, FREITAS F B, COELHO J, et al.
DNA-binding properties of African swine fever virus
pA104R, a histone-like protein involved in viral replication
and transcription[J]. Journal of Virology, 2017, 91
(12): e02498-16.
[61] RAMIREZ-MEDINA E, VUONO E A, PRUITT
S, et al. Deletion of African swine fever virus histone-
like protein, A104R from the Georgia isolate
drastically reduces virus virulence in domestic pigs [J].
Viruses, 2022, 14(5): 1112.
[62] OLIVEROS M, GARC魱A-ESCUDERO R, ALEJO A,
et al. African swine fever virus dUTPase is a highly
specific enzyme required for efficient replication in
swine macrophages[J]. Journal of Virology, 1999, 73(11):
8934-8943.
[63] RAMIREZ-MEDINA E, VUONO E A, RAI A, et
al. The C962R ORF of African swine fever strain
Georgia is non-essential and not required for virulence
in swine[J]. Viruses, 2020, 12(6): 676.
[64] LI C Y, CHAI Y, SONG H, et al. Crystal structure of
African swine fever virus dUTPase reveals a potential
drug target[J]. mBio, 2019, 10(5): e02483-19.
[65] LI G B, WANG C W, YANG M Y, et al. Structural
insight into African swine fever virus dUTPase reveals
a novel folding pattern in the dUTPase family[J]. Journal
of Virology, 2020, 94(4): e01698-19.
[66] VUONO E, RAMIREZ-MEDINA E, SILVA E, et
al. Deletion of the H108R gene reduces virulence of
the pandemic Eurasia strain of African swine fever
virus with surviving animals being protected against
virulent challenge[J]. Journal of Virology, 2022, 96(14):
e0054522.
[67] GARC魱A R, ALMAZ譧N F, RODR魱GUEZ J M, et
al. Vectors for the genetic manipulation of African
swine fever virus[J]. Journal of Biotechnology, 1995, 40
(2): 121-131.
[68] RODR魱GUEZ J M, ALMAZ譧N F, VI譙UELA E, et al.
Genetic manipulation of African swine fever virus: construction
of recombinant viruses expressing the beta-
galactosidase gene[J]. Virology, 1992, 188(1): 67-76.
[69] MART魱N HERN譧NDEZ A M, CAMACHO A, PRIETO
J, et al. Isolation and characterization of TK-deficient
mutants of African swine fever virus [J]. Virus Research,
1995, 36(1): 67-75.
[70] G魷MEZ-PUERTAS P, RODR魱GUEZ F, ORTEGA
A, et al. Improvement of African swine fever virus neutralization
assay using recombinant viruses expressing chromogenic
marker genes[J]. Journal of Virological Methods,
1995, 55(2): 271-279.
[71] MOORE D M, ZSAK L, NEILAN J G, et al. The
African swine fever virus thymidine kinase gene is required
for efficient replication in swine macrophages and
for virulence in swine[J]. Journal of Virology, 1998, 72
(12): 10310-10315.
[72] SANFORD B, HOLINKA L G, O'DONNELL V, et
al. Deletion of the thymidine kinase gene induces complete
attenuation of the Georgia isolate of African swine
fever virus[J]. Virus Research,2016,213:165-171.
[73] RAMIREZ-MEDINA E, VUONO E A, PRUITT
S, et al. Evaluation of an ASFV RNA helicase gene
A859L for virus replication and swine virulence[J]. Viruses,
2021, 14(1): 10.
[74] RAMIREZ-MEDINA E, VUONO E A, PRUITT
S, et al. Deletion of an African swine fever virus
ATP-dependent RNA helicase QP509L from the
highly virulent Georgia 2010 strain does not affect
replication or virulence[J]. Viruses, 2022, 14(11): 2548.
[75] LI D, WU P X, LIU H N, et al. A QP509L/QP383Rdeleted
African swine fever virus is highly attenuated in
swine but does not confer protection against parental
virus challenge[ J]. Journal of Virology, 2022, 96(1) :
e0150021.
[76] VUONO E A, RAMIREZ-MEDINA E, PRUITT
S, et al. Deletion of the ASFV dUTPase gene E165R
from the genome of highly virulent African swine
fever virus Georgia 2010 does not affect virus repli-
cation or virulence in domestic pigs[J]. Viruses, 2022,
14(7): 1409.
[77] ZHU Z Z, CHEN H T, LIU L, et al. Classification and
characterization of multigene family proteins of African
swine fever viruses[J]. Briefings in Bioinformatics, 2021,
22(4): bbaa380.
[78] PORTUGAL R, COELHO J, H魻PER D, et al. Related
strains of African swine fever virus with different
virulence: Genome comparison and analysis[J]. The Journal
of General Virology, 2015, 96(Pt 2): 408-419.
[79] POST J, WEESENDORP E, MONTOYA M, et al.
Influence of age and dose of African swine fever virus
infections on clinical outcome and blood parameters
in pigs[J]. Viral Immunology, 2017, 30(1): 58-69.
[80] ZSAK L, NEILAN J G. Regulation of apoptosis in African
swine fever virus-infected macrophages[J]. Scientific World
Journal, 2002, 2: 1186-1195.
[81] BURRAGE T G, LU Z, NEILAN J G, et al. African
swine fever virus multigene family 360 genes affect
virus replication and generalization of infection in Ornithodoros
porcinus ticks [J]. Journal of Virology, 2004,
78(5): 2445-2453.
[82] REIS A L, GOATLEY L C, JABBAR T, et al.
Deletion of the African swine fever virus gene
DP148R does not reduce virus replication in culture
but reduces virus virulence in pigs and induces high
levels of protection against challenge[J]. Journal of Virology,
2017, 91(24): e01428-17.
[83] TAM譧S V, RIGHI C, M魪SZ 譧ROS I, et al. Involvement
of the MGF 110-11L gene in the African
swine fever replication and virulence[J]. Vaccines (Basel),
2023, 11(4): 846.
[84] BORCA M V, O'DONNELL V, HOLINKA L G, et al.
Development of a fluorescent ASFV strain that retains
the ability to cause disease in swine[J]. Scientific Reports,
2017, 7:46747.
[85] LI D, LIU Y G, QI X L, et al. African swine fever virus
MGF-110-9L-deficient mutant has attenuated virulence
in pigs[J]. Virologica Sinica,2021,36(2):187-195.
[86] RAMIREZ-MEDINA E, VUONO E A, RAI A, et
al. Evaluation in swine of a recombinant African
swine fever virus lacking the MGF-360-1L gene [J].
Viruses, 2020, 12(10): 1193.
[87] RAM魱REZ-MEDINA E, VUONO E A, VELAZQUEZSALINAS
L, et al. The MGF360-16R ORF of African
swine fever virus strain Georgia encodes for a nonessential
gene that interacts with host proteins SERTAD3 and
SDCBP[J]. Viruses, 2020, 12(1): 60.
[88] RAMIREZ-MEDINA E, VUONO E, SILVA E, et
al. Evaluation of the deletion of MGF110-5L-6L on
s wine virulence from the pandemic strain of African
swine fever virus and use as a DIVA marker in vaccine
candidate ASFV-G-ΔI177L[J]. Journal of Virology,
2022, 96(14): e0059722.
[89] LIU Y N, LI Y, XIE Z H, et al. Development and in
vivo evaluation of MGF100-1R deletion mutant in an
African swine fever virus Chinese strain[J]. Veterinary
Microbiology, 2021, 261: 109208.
[90] RAMIREZ-MEDINA E, VUONO E, PRUITT S,
et al. Development and in vivo evaluation of a
MGF110-1L deletion mutant in African swine fever
strain Georgia[J]. Viruses, 2021, 13(2): 286.
[91] LI D, YANG W P, LI L L, et al. African swine fever
virus MGF-505-7Rnegatively regulates cGAS-STINGmediated
signaling pathway[J]. Journal of Immunology,
2021, 206(8): 1844-1857.
[92] LI J N, SONG J, KANG L, et al. pMGF505-7R determines
pathogenicity of African swine fever virus infection
by inhibiting IL-1β and type I IFN production[J].
PLoS Pathogens,2021, 17(7): e1009733.
[93] DING M Y, DANG W, LIU H N,et al. Combinational
deletions of MGF360-9L and MGF505-7R attenuated
highly virulent African swine fever virus and
conferred protection against homologous challenge [J].
Journal of Virology, 2022, 96(14): e0032922.
[94] DEUTSCHMANN P, FORTH J H, SEHL-EWERT J,
et al. Assessment of African swine fever vaccine candidate
ASFV-G-ΔMGF in a reversion to virulence study[J].
NPJ Vaccines,2023, 8(1):78.
[95] ZHANG J Y, ZHANG Y Y, CHEN T, et al.
Deletion of the L7L-L11L genes attenuates ASFV
and induces protection against homologous challenge
[J]. Viruses, 2021, 13(2): 255.
[96] LI D, REN J J, ZHU G Q, et al. Deletions of
MGF110-9L and MGF360-9L from African swine
fever virus are highly attenuated in swine and confer
protection against homologous challenge[J]. The Journal
of Biological Chemistry, 2023, 299(6): 104767.
[97] O'DONNELL V, HOLINKA L G, GLADUE D P,
et al. African swine fever virus Georgia isolate har-
boring deletions of MGF360 and MGF505 genes is
attenuated in swine and confers protection against challenge
with virulent parental virus[J]. Journal of Virology,
2015, 89(11): 6048-6056.
[98] S譧NCHEZ-CORD魷N P J, JABBAR T, BERREZAIE
M, et al. Evaluation of protection induced by immunisation
of domestic pigs with deletion mutant African
swine fever virus BeninΔMGF by different doses and
routes[J]. Vaccine, 2018, 36(5): 707-715.
[99] KITAMURA T, MASUJIN K, YAMAZOE R, et al.
A spontaneously occurring African swine fever virus
with 11 gene deletions partially protects pigs challenged
with the parental strain[J]. Viruses, 2023, 15(2): 311.
[100] BOINAS F S, HUTCHINGS G H, DIXON L K, et al.
Characterization of pathogenic and non-pathogenic
African swine fever virus isolates from Ornithodoros
erraticus inhabiting pig premises in Portugal[J]. The
Journal of General Virology,2004, 85(Pt 8):2177-2187.
[101] CHAPMAN D A G, TCHEREPANOV V, UPTON C,
et al. Comparison of the genome sequences of
non-pathogenic and pathogenic African swine fever
virus isolates[J]. The Journal of General Virology, 2008,
89(Pt 2): 397-408.
[102] BORCA M V, CARRILLO C, ZSAK L, et al.
Deletion of a CD2-like gene, 8-DR, from African
swine fever virus affects viral infection in domestic
swine[J]. Journal of Virology, 1998, 72(4): 2881-2889.
[103] HEMMINK J D, ABKALLO H M, HENSON S P, et
al. The African swine fever isolate ASFV-Kenya-IX-
1033 is highly virulent and stable after propagation in the
wild boar cell line WSL[J]. Viruses, 2022, 14(9): 1912.
[104] HEMMINK J D, KHAZALWA E M, ABKALLO H
M, et al. Deletion of the CD2v gene from the
genome of ASFV-Kenya-IX-1033 partially reduces
virulence and induces protection in pigs[J]. Viruses,2022,
14(9): 1917.
[105] RATHAKRISHNAN A, REIS A L, PETROVAN
V, et al. A protective multiple gene-deleted African
swine fever virus genotype II, Georgia 2007/1, expressing
a modified non-haemadsorbing CD2v protein[
J]. Emerging Microbes amp;Infections, 2023, 12(2):
2265661.
[106] LOPEZ E, BOSCH-CAM魷S L, RAMIREZ-MEDINA
E, et al. Deletion mutants of the attenuated recombinant
ASF virus, BA71ΔCD2, show decreased
vaccine efficacy[J]. Viruses, 2021, 13(9): 1678.
[107] BORCA M V, RAMIREZ-MEDINA E, SILVA E,
et al. ASFV-G-ΔI177L as an effective oral nasal
vaccine against the Eurasia strain of Africa swine
fever[J]. Viruses, 2021, 13(5): 765.
[108] TRAN X H, LE T T P, NGUYEN Q H, et al. African
swine fever virus vaccine candidate ASFV-G-ΔI177L
efficiently protects European and native pig breeds against
circulating Vietnamese field strain[J]. Transboundary
and Emerging Diseases,2022,69(4):e497-e504.
[109] ZSAK L, LU Z, KUTISH G F, et al. An African
swine fever virus virulence-associated gene NL-S
with similarity to the herpes simplex virus ICP34.5
gene[J]. Journal of Virology, 1996, 70(12): 8865-8871.
[110] AFONSO C L, ZSAK L, CARRILLO C, et al. African
swine fever virus NL gene is not required for virus
virulence[J]. The Journal of General Virology, 1998, 79
(Pt 10):2543-2547.
[111] RAMIREZ-MEDINA E, VUONO E, O'DONNELL
V, et al. Differential effect of the deletion of African
swine fever virus virulence-associated genes in the
induction of attenuation of the highly virulent Georgia
strain[J]. Viruses, 2019, 11(7): 599.
[112] LEWIS T, ZSAK L, BURRAGE T G, et al. An
African swine fever virus ERV1-ALR homologue,
9GL, affects virion maturation and viral growth in
macrophages and viral virulence in swine[J]. Journal
of Virology, 2000, 74(3): 1275-1285.
[113] O'DONNELL V, RISATTI G R, HOLINKA L G,
et al. Simultaneous deletion of the 9GL and UK
genes from the African swine fever virus Georgia
2007 isolate offers increased safety and protection against
homologous challenge[J]. Journal of Virology,
2017, 91(1): e01760-16.
[114] SUN M W, YU S X, GE H L, et al. The A137R
protein of African swine fever virus inhibits type I interferon
production via the autophagy-mediated lysosomal
degradation of TBK1 [J]. Journal of Virology,
2022, 96(9): e0195721.
[115] GLADUE D P, RAMIREZ-MEDINA E, VUONO
E, et al. Deletion of the A137R gene from the
pandemic strain of African swine fever virus attenuates
the strain and offers protection against the virulent
pandemic virus[J]. Journal of Virology, 2021, 95
(21): e0113921.
[116] RAMIREZ-MEDINA E, VUONO E, PRUITT S, et
al. ASFV gene A151R is involved in the process of
virulence in domestic swine[J]. Viruses, 2022,14(8):1843.
[117] RAMIREZ-MEDINA E, VUONO E, RAI A, et
al. Deletion of E184L, a putative DIVA target from
the pandemic strain of African swine fever virus,
produces a reduction in virulence and protection against
virulent challenge[J]. Journal of Virology, 2022,
96(1): e0141921.
[118] LIU Y N, SHEN Z, XIE Z H, et al. African swine
fever virus I73R is a critical virulence-related gene:
A potential target for attenuation[J]. Proceedings of
the National Academy of Sciences of the United
States of America, 2023, 120(15): e2210808120.
[119] REIS A L, GOATLEY L C, JABBAR T, et al.
Deletion of the gene for the type I interferon inhibitor
I329L from the attenuated African swine
fever virus OURT88/3 strain reduces protection induced
in pigs[J]. Vaccines (Basel), 2020, 8(2): 262.
[120] FAN J Q, ZHANG J Y, WANG F J, et al. Identification
of L11L and L7L as virulence-related genes
in the African swine fever virus genome[J]. Frontiers
in Microbiology, 2024, 15: 1345236.
[121] YANG J J, ZHU R N, ZHANG Y Y, et al.
SY18ΔL60L: A new recombinant live attenuated
African swine fever virus with protection against
homologous challenge[J]. Frontiers in Microbiology,
2023, 14: 1225469.
[122] XIE Z H, LIU Y N, DI D D, et al. Protection evaluation
of a five-gene-deleted African swine fever
virus vaccine candidate against homologous challenge
[J]. Frontiers in Microbiology, 2022, 13: 902932.
[123] TEKLUE T, WANG T, LUO Y Z, et al. Generation
and evaluation of an African swine fever virus
mutant with deletion of the CD2v and UK genes[J].
Vaccines (Basel), 2020, 8(4): 763.
[124] YANG J J, ZHU R N, LI N, et al. Protection evaluation
of a new attenuated ASFV by deletion of the
L60L and CD2v genes against homologous challenge[J].
Viruses, 2024, 16(9): 1464.
[125] ABKALLO H M, HEMMINK J D, ODUOR B, et al.
Co-deletion of A238L and EP402R genes from a
genotype IX African swine fever virus results in partial
attenuation and protection in swine[J]. Viruses, 2022, 14
(9): 2024.
[126] P魪REZ-NU譙EZ D, SUNWOO SY, GARC魱A-BELMONTE
R, et al. Recombinant African swine fever
virus Arm/07/CBM/c2 lacking CD2v and A238L is
attenuated and protects pigs against virulent Korean
paju strain[J]. V accines (Basel), 2022, 10(12): 1992.
[127] ABRAMS C C, GOATLEY L, FISHBOURNE E,
et al. Deletion of virulence associated genes from attenuated
African swine fever virus isolate OUR
T88/3 decreases its ability to protect against challenge
with virulent virus[J]. Virology, 2013, 443(1): 99-105.
[128] GLADUE D P, O'DONNELL V, RAMIREZ-MEDINA
E, et al. Deletion of CD2-like(CD2v) and C-type
lectin-like (EP153R) genes from African swine fever
virus Georgia-Δ9GL abrogates its effectiveness as an
experimental vaccine[J]. Viruses, 2020,12(10):1185.
[129] QI X L, FENG T, MA Z, et al. Deletion of
DP148R, DP71L, and DP96R attenuates African
swine fever virus, and the mutant strain confers
complete protection against homologous challenges in
pigs[J]. Journal of Virology, 2023, 97(4): e00247-23.
[130] BORCA M V, RAMIREZ-MEDINA E, ESPINOZA
N, et al. Deletion of the EP402R gene from the
genome of African swine fever vaccine strain ASFV-
G- ΔI177L provides the potential capability of
differentiating between infected and vaccinated animals
[J]. Viruses, 2024, 16(3): 376.
[131] LI J N, SONG J, ZHOU S J, et al. Development of a
new effective African swine fever virus vaccine candidate
by deletion of the H240R and MGF505-7R
genes results in protective immunity against the Eurasia
strain[J]. Journal of Virology, 2023, 97(10): e00704-23.
[132] FRANZONI G, DEI GIUDICI S, OGGIANO A.
Infection, modulation and responses of antigen-presenting
cells to African swine fever viruses[J]. Virus
Research, 2018, 258: 73-80.
[133] WEINGARTL H M, SABARA M, PASICK J, et
al. Continuous porcine cell lines developed from alveolar
macrophages: Partial characterization and virus
susceptibility [J]. Journal of Virological Methods, 2002,
104(2): 203-216.
[134] MASUJIN K, KITAMURA T, KAMEYAMA K, et
al. An immortalized porcine macrophage cell line
competent for the isolation of African swine fever
virus[J]. Scientific Reports, 2021, 11(1): 4759.
[135] PIRES S, RIBEIRO G, COSTA J V. Sequence and
organization of the left multigene family 110 region
of the vero-adapted L60V strain of African swine
fever virus[J]. Virus Genes, 1997, 15(3): 271-274.
[136] RODR魱GUEZ J M, MORENO L T, ALEJO A, et
al. Genome sequence of African swine fever virus
BA71, the virulent parental strain of the nonpathogenic
and tissue-culture adapted BA71V[J]. PLoS One, 2015,
10(11): e0142889.
[137] S譧NCHEZ E G, QUINTAS A, NOGAL M, et al.
African swine fever virus controls the host transcription
and cellular machinery of protein synthesis [J].
Virus Research, 2013, 173(1): 58-75.
[138] CELMA C C, STEWART M, WERNIKE K, et al.
Replication-deficient particles: New insights into the
next generation of bluetongue virus vaccines[J]. Journal
of Virology, 2017, 91(1): e01892-16.
責任編輯:周慧