999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

微塑料遷移及其復合污染對土壤生態系統的影響研究進展

2025-04-24 00:00:00劉勇馬杰馮冰聰張瀟雨孫藝璇翁莉萍陳雅麗李永濤
農業環境科學學報 2025年3期

摘要:本文以微塑料污染現狀-遷移行為-與其他污染物相互作用-生態效應為主線,總結了國內外關于土壤微塑料污染來源、分類等研究進展,并針對土壤微塑料遷移途徑及機制研究進行了歸納分析。在此基礎上,系統總結了微塑料與其他環境污染物的相互作用機理,詳述了其可能帶來的生態風險。文章指出:農業源是土壤微塑料的最主要來源,我國不同省份微塑料豐度存在較大差異;土壤理化性質、農業生產活動、自然氣候條件、土壤生物活動、微塑料自身性質、土壤環境條件和土壤要素均可影響微塑料在土壤中的遷移行為,并且靜電相互作用是影響土壤微塑料遷移的最主要作用力。此外,在環境中遷移的微塑料易于通過范德華相互作用、靜電作用和表面絡合等作用與土壤中其他污染物形成復合污染,土壤環境微塑料及其復合污染會不可避免地接觸到各種土壤生物群,從而影響土壤微生物的群落結構和代謝,并影響土壤動物和植物的生長發育。

關鍵詞:土壤;微塑料;環境行為;遷移;生態效應

中圖分類號:X505;X53 文獻標志碼:A 文章編號:1672-2043(2025)03-0537-17 doi:10.11654/jaes.2024-0503

我國塑料制品產量約占全球產量的30%,位居世界首位[1]。塑料產品進入自然環境中,經受風化、紫外線輻射、生物降解和人類活動等作用后會逐漸分解和破碎產生粒徑更加微小、遷移能力更加強的微塑料。2004 年,Thompson 等在《Science》上提出微塑料的概念后,其引發的環境問題,便引起各國科學家們的高度關注[2]。微塑料是指直徑小于5 mm的塑料顆?;蛩槠?,其具有分布廣、粒徑小、化學性質穩定、易于被生物體吸收、可攜帶污染物遷移等特點,使其易在食物鏈中積累,并最終危害人體健康[3]。大量的微塑料通過灌溉、農膜覆蓋、污水污泥、垃圾填埋、大氣沉降等途徑進入土壤,對土壤理化性質、環境生物及糧食安全產生了不利影響。此外,由于粒徑較小,微塑料易在土壤中發生遷移,威脅土壤生物健康,形成生態風險[4]。微塑料表面還能夠吸附并富集土壤污染物,造成更加嚴重的復合污染[5]。目前,關于土壤微塑料污染的相關問題學術界已經展開了大量研究,前人在微塑料來源、污染現狀等方面已有總結。然而在土壤微塑料環境遷移行為、復合污染形成機制和生態效應方面的總結還缺少系統性。因此,本文在簡述土壤微塑料污染現狀的基礎上,系統歸納了土壤中微塑料的遷移行為、微塑料與復合污染相互作用機制及其帶來的生態效應影響,進一步論證其在土壤生態系統中的潛在風險,以期為保障土壤生態系統健康提供依據。

1 土壤中微塑料污染來源和污染現狀

1.1 土壤中微塑料來源

1.1.1 農業來源

塑料薄膜被廣泛用于農業生產,其主要成分為聚氯乙烯和聚乙烯。由于只有不到60%的回收率[6],農田覆膜可能是土壤中微塑料最直接、最主要的污染源[7]。我國新疆地區平均地膜殘留量在200 kg·hm-2以上,而甘肅、山西、內蒙古、東北和河北部分地區平均殘留量大于100 kg·hm-2[8],覆蓋塑料薄膜的土壤中微塑料的含量會顯著高于未覆蓋土壤[9]。農業灌溉也是土壤微塑料累積的原因之一(圖1)。一方面,地表大部分河流、湖泊等可灌溉用水中可檢測到微塑料的存在;另一方面,污灌污水中微塑料濃度可達1 000~627 000 個·m-3[10],從而可將大量微塑料帶入土壤環境。農田土壤中污泥的投入也會導致微塑料積累。研究發現,每次施用20~22 t·hm-2的污泥可使每千克農業土壤中平均增加280個輕密度微塑料和430個重密度微塑料[11]。此外,在農業生產中會消耗大量的化肥和農藥,從而產生大量的廢棄塑料包裝物。2018年我國化肥包裝廢棄物達15萬t,2019年農藥廢棄包裝達1×1010個[12],這些塑料制品絕大部分會被丟棄在農田附近,并經老化磨損分解為微塑料,最終進入土壤環境(圖1)。

1.1.2 其他來源

大氣沉降和雨水徑流沖刷也是土壤微塑料的來源(圖1)。監測數據發現我國上海地區空氣中每年的微塑料含量為121 kg[13],并且漂浮在空氣中的微塑料會隨著風力的作用進行遷移,在5個月內即可傳播95 km[14],并最終沉降到土壤環境中。洗面奶、染發劑、牙膏和各種化妝品等個人護理品中常會添加塑料微球,這些微塑料大多數會進入污水管網,并經過污水處理廠處理后隨著污泥施用排放到土壤中[10];個人護理品中被丟棄的部分則直接暴露于土壤環境[15]。不僅如此,城市生活垃圾填埋場和農村地區生活垃圾的隨意傾倒也會導致區域內土壤微塑料含量增加[16]。此外,車輛輪胎[17]和飛機輪胎磨損[18]也是土壤微塑料的來源之一,車輛輪胎磨損產生的全球微塑料排放量預估為每人每年0.81 kg。由于2019年開始的新冠肺炎大流行,大量廢棄口罩可能成為土壤微塑料的新來源[19]。

1.2 我國土壤微塑料污染現狀

目前全球范圍內普遍存在土壤微塑料污染,泛洪區、沿海濕地、城市公園、工業區土壤中都檢測到了微塑料的存在,但微塑料檢出量最大、關注度最高的還是農田土壤?;赪eb of Science 和中國知網(CNKI)數據庫,查詢了2019—2023年間發表的關于我國土壤微塑料豐度的學術論文,有關研究數量增長較快,已成為研究的熱點和焦點。我國(不包括香港、澳門和臺灣地區)土壤中檢測識別出的微塑料種類包括聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚對苯二甲酸乙二醇酯(PET)、聚酰胺(PA)、人造絲(RY)、乙烯醋酸乙烯共聚物(EVA)和聚乙烯醇(PVAL)等(圖2)。其中PE微塑料分布最廣,尤其是在農田土壤中,在現有調查的所有農業用地中都檢測到了PE 微塑料的存在(圖2),這可能是由農業生產中薄膜的大量使用所致。已有研究證實微塑料污染嚴重的地區通常都會有較長的農膜覆蓋歷史[20]。除PE外,PP和PS兩種微塑料的分布也較為廣泛,PE、PP和PS 3種主要微塑料類型在31個省市的檢出比例分別為100%、83%和48%(圖2)。

我國各省份(不包括香港、澳門和臺灣)土壤微塑料豐度有一定差異(圖2)。其中,安徽、云南和廣東3個省份土壤微塑料平均豐度最高(8 000~9 000 個·kg-1),內蒙古、青海、廣西、西藏等省份微塑料污染較輕,平均豐度均小于100個·kg-1。此外,同一區域不同土地利用類型土壤中微塑料豐度差異十分顯著,廣東地區果樹園林土壤和電子垃圾廠附近土壤微塑料豐度差距最高可達113倍[21-22]。臨近地區相同土地利用類型中土壤微塑料豐度差異不顯著,北京和天津溫室大棚中檢測出的微塑料豐度相似,且均為PE和PP微塑料,這表明相鄰地區數據有一定的參考意義。不同土層深度的微塑料豐度不同,淺層農田土壤中的微塑料豐度要顯著高于深層土壤[23]。

2 土壤微塑料的遷移行為

2.1 土壤微塑料的遷移途徑

微塑料進入土壤環境后可以發生橫向或縱向遷移[59]。土壤疏松多孔、帶負電的特性使得微塑料在淋溶和重力等自然作用下可以通過土壤孔隙向下遷移[60]。翻耕、化肥和有機投入品的施用、灌溉等農業生產活動也會對土壤中微塑料的遷移行為產生重要影響[58,61]。翻耕這一傳統的農田耕作方式能夠促進微塑料向更深層的土壤中傳遞,而淺耕、旋耕和耙地則會使得農田中的微塑料分散于表面耕作層當中[61]。另外,高強度機械耕作會導致農田中殘留地膜破碎,從而顯著影響微塑料遷移[62]。微塑料還會隨著灌溉用水以及降雨沖刷向下遷移,灌溉次數的增加會加劇這一現象。雖然大孔隙優先流中的微塑料可以被孔隙土壤表面捕獲、富集[4];但總的來說,土壤裂縫的形成會加速微塑料通過裂縫向更深層土壤遷移[63]。最近的研究發現微塑料比土壤中的礦物質更容易被微風帶入空氣,并且前人研究很可能低估了釋放到空氣中的塑料顆粒的實際數量[64],這些微塑料顆粒很可能遷移到較遠的未被塑料污染的地區,從而實現土壤中微塑料的跨區域遷移。

土壤生物(動物、植物、微生物)也會影響微塑料在土壤環境中的遷移。蚯蚓是微塑料在土壤中的重要遷移媒介,其攝食、排泄等生命活動以及微塑料在其身體表面的附著都會將微塑料向更深層土壤遷移[65-66]。據報道,聚乙烯微塑料可以通過蚯蚓向下運輸到10 cm深的土壤剖面中,并且粒徑越小的微塑料移動距離越大[61]。生活在土壤中的其他動物,如螞蟻和倉鼠,也會起到類似的作用[67]。此外,一些土壤動物可能會使用微塑料作為筑巢材料,這也會影響土壤環境中的微塑料遷移[59]。與土壤動物對微塑料縱向遷移的影響不同,植物根系活動更傾向于使微塑料固定在原有土層中[68]。但也有學者提出了相反的觀點,認為植物根系在生長過程中會在土壤中形成較大的孔隙,微塑料可以借助這些孔隙向下遷移[4]。小粒徑微塑料容易黏附在細菌表面或被細菌吞噬,隨著細菌的運動在小范圍內進行遷移[69]。微生物還可以改變微塑料的物理性質,使微塑料的遷移受到影響[70],例如銅綠假單胞菌、乳酸菌等細菌可附著在微塑料表面,降低其遷移能力[71]。

2.2 土壤環境中微塑料遷移的微觀機制

圖3顯示了土壤環境中微塑料遷移的微觀機制。微塑料的粒徑大小可以顯著影響其遷移,當其粒徑大于土壤臨界孔隙時,微塑料會在土壤中堵塞從而限制遷移[72]。與之相反的是小粒徑微塑料更容易發生遷移。由于其粒徑小,表面積極大,其與土壤顆粒之間的范德華力作用也會相應增強,這種增強的范德華力可以使微塑料與土壤顆粒之間形成更緊密的接觸和吸附,進而有利于小粒徑微塑料在土壤中的遷移[73]。微塑料形貌也會影響其遷移[74],有研究發現球狀和粒狀微塑料比纖維狀微塑料更容易遷移到深層土壤,因為纖維狀微塑料容易與土壤顆粒發生纏繞從而形成土塊抑制其遷移[75-76]。此外,微塑料的表面特性,包括官能團和疏水性對其遷移也起到了重要作用[77]。研究人員發現含有COOH與SO-4的微塑料比含有NH2的微塑料更容易通過飽和砂柱,這是由于NH2基團與帶負電的砂柱之間存在著較強的靜電吸引[78]。當微塑料表面的化學性質從疏水性轉為親水性后,產生的排斥相互作用也能促進其遷移[79]。

除微塑料自身性質外,土壤環境條件[離子強度、陽離子類型(單價、雙價以及更高價的陽離子)和pH值等]和土壤要素(土壤有機質和礦物質等)也會在不同程度上影響微塑料在土壤中的遷移[72,76]。研究表明離子強度的增加可以顯著抑制微塑料遷移,并且Ca2+的抑制作用顯著高于Na+ [80]。高價離子對雙電子層厚度的壓縮能力更強,更容易降低微塑料沉積到土壤固相上的能壘[81]。系統表面電荷也可以顯著影響土壤環境中微塑料的遷移,各種離子和pH能夠改變微塑料和土壤固相的表面電荷,影響微塑料與土壤之間的靜電相互作用[80]。土壤中大量存在的鐵/鋁氧化物在中性pH條件下可以產生表面正電荷,通過靜電吸引促進帶負電荷的微塑料和鐵鋁礦物的異質聚集,抑制微塑料遷移[82-83]。土壤中帶負電的黏土礦物(如高嶺石、蒙脫石、伊利石等)和微塑料的靜電吸引作用也可抑制微塑料的遷移[84]。此外,土壤有機質對微塑料的遷移影響也不容小覷[85]。有研究發現,由于胡敏酸表面富含大量的羧基和羥基等負電荷官能團,其與微塑料吸附后,能夠通過靜電排斥和空間位阻作用促進微塑料在土壤環境中的遷移[86-87]。同時,土壤環境中胡敏酸濃度與微塑料的遷移能力呈正相關[87]。生物炭、秸稈和豬糞有機肥等農田投入品釋放的溶解性有機質對不同粒徑微塑料的遷移具有差異性影響,微塑料會與溶解性有機質通過靜電引力、范德華力等相互作用形成微塑料-有機質-鐵礦物復合物,進而導致小粒徑(50 nm)微塑料的沉積,從而降低其遷移能力[85]。

3 微塑料與其他污染物的相互作用

微塑料易與環境中的其他污染物發生相互作用(圖4),通過靜電相互作用、疏水相互作用、π-π 相互作用、氫鍵相互作用和表面絡合、螯合作用等與其他污染物形成復合污染,間接對土壤生物產生毒害作用[88]。此外,微塑料在遷移過程中更容易與土壤中共存的污染物接觸,通過上述相互作用攜帶其他污染物進行遷移,給土壤生態系統帶來更嚴重的危害。因此揭示微塑料與土壤中共存污染物的相互作用至關重要。

3.1 微塑料與重金屬

重金屬被認為是可以與微塑料發生相互作用的最重要和最常見的土壤無機污染物。微塑料的存在增加了土壤重金屬的遷移能力[89]。微塑料在自然環境中大部分帶負電荷,其可與Ni2+、Cu2+和Zn2+等二價金屬離子發生靜電作用[90]。Pb2+在微塑料上的吸附機制可能以表面絡合為主[91];但Cd2+在微塑料上的吸附可能不涉及化學吸附過程,而是與表面吸附、離子交換和電荷分布有關,不同的表面官能團、離子強度、pH均對Cd2+在微塑料上的吸附有重要影響[92]。不同類型的微塑料對重金屬的吸附機制存在差異[93]。聚苯乙烯微塑料通過官能團絡合吸附Cd2+ [94],而Cu2+通過靜電相互作用被聚乙烯微塑料吸附[95]。此外,微塑料在土壤環境中的老化會導致其表面官能團以及比表面積的變化,并導致陰離子活性位點的形成,從而提高其對土壤中重金屬污染物的吸附[96]。一般來說,微塑料吸附重金屬可分為以下3個步驟:(1)重金屬在微塑料表面薄膜上的擴散;(2)重金屬在微塑料表面孔隙內的擴散;(3)重金屬在微塑料活性位點上的吸附[97]。值得注意的是,微塑料在自然環境中經過長時間紫外線輻射、風化、磨損后會顯著提高其表面粗糙度,增加對重金屬的吸附位點[98-99]。微塑料還會與土壤有機質形成復合膠體[100],從而為金屬離子提供更多的吸附位點[101]。

3.2 微塑料與持久性有機污染物

目前已在微塑料表面發現了200多種有機化合物,其中絕大部分為持久性有機污染物[102]。微塑料吸附的有機污染物含量遠高于土壤背景值[93],并且塑料碎片已被證實是自然環境中多環芳烴的來源和“匯”[103]。微塑料吸附有機污染物的主要機理包括疏水相互作用、靜電相互作用和其他非共價相互作用(圖4)。其中,疏水相互作用占據主導位置,多氯聯苯、多環芳烴、多溴聯苯醚和殺蟲劑等有機污染物主要通過疏水相互作用吸附在微塑料表面[104],疏水作用的強弱決定有機污染物的吸附量[105]。例如,研究發現微塑料中疏水性高的多環芳烴含量高于有機氯殺蟲劑(DDTs和HCHs)含量[97]。氫鍵、鹵素鍵和π-π鍵等相互作用在微塑料與有機污染物之間不可忽視[106-108]。例如,非共價鍵(氫和鹵素鍵)對促進有機污染物在微塑料上的吸附起到了關鍵作用,其與疏水作用一起抵消了兩種物質間的靜電斥力[109]。π-π相互作用主要發生在苯環較多的持久性有機污染物與微塑料之間,典型的例子是多氯聯苯在聚苯乙烯微塑料上的吸附[110]。烷基和π-π鍵之間的相互作用是烷基和芳香環之間產生的弱氫鍵,其被認為是聚烯烴材料和帶有苯環的化學品之間的關鍵驅動力[111]。不同類型微塑料對持久性有機污染物的吸附量存在較大差異。聚氯乙烯比聚乙烯和聚丙烯微塑料吸附全氟辛烷磺酸和全氟辛烷磺酰胺的能力更強[112]。此外,溫度、老化、pH值和含水率等條件也會影響微塑料對有機污染物的吸附[113]。

3.3 微塑料與塑料源污染物

在塑料制造過程中通常會加入塑料添加劑,其可以與塑料碎片一起釋放到環境中,引起一系列環境問題[114]。塑料產品含有約20種添加劑[115],且塑料添加劑的危害遠大于它們的聚合物,對環境并最終對人類健康構成風險。鄰苯二甲酸酯(PAEs)作為常見的增塑劑由于其不與塑料聚合物共價結合,因此PAEs有可能隨著微塑料浸出和遷移[116]。微塑料會在光、細菌和靜水壓力的作用下釋放PAEs[117-118]。另外,微塑料可以吸附PAEs[116]。在農膜密集覆蓋地區,微塑料與PAEs之間存在顯著的正相關關系[119]。微塑料對PAEs的吸附機理與持久性有機污染物的吸附機理大致相同,即疏水相互作用占據主導位置[120]。不同聚合物疏水性的強弱是吸附持久性有機污染物的關鍵因素,聚苯乙烯對PAEs的吸附量最高,其次是聚乙烯,最后是聚氯乙烯[120]。微塑料的粒徑、增塑劑含量、塑料的老化等塑料性能對PAEs的釋放有很大影響[121]。

3.4 微塑料與抗生素/抗生素抗性基因

抗生素在農業和畜牧業生產中的大量使用,導致其在農田土壤環境中積累[122],真實土壤環境中很可能存在微塑料與抗生素的復合污染[123]。微塑料具有吸附抗生素的能力,其與抗生素的復合污染對自然環境構成了嚴重威脅。近年來,國內外科學家的研究逐漸集中在微塑料與抗生素抗性基因之間的相互作用上[124]。與重金屬和持久性有機污染物相同,疏水相互作用、靜電相互作用和其他非共價相互作用也主導了抗生素/抗生素抗性基因與微塑料的相互作用機制[125-126]。例如,微塑料可以通過靜電吸引、范德華力和氫鍵吸附來改變四環素在環境中的歸趨[125]。微塑料的離子濃度、老化狀況、溫度、極性相互作用都會在不同程度上影響其對抗生素的吸附[127]。經過土壤暴露后的微塑料對四環素的吸附能力明顯增加,聚乳酸、聚氯乙烯和聚乙烯微塑料對四環素的吸附能力分別提高了88%、26%和15%[128]。微塑料在老化過程中形成的大量含氧基團( OH、COOH等)可與土壤孔隙之間的水分子形成氫鍵,從而增強親水抗生素對微塑料的吸附作用[129-130]。微塑料類型也會影響其對抗生素的吸附效果,聚酰胺微塑料與聚乙烯、聚苯乙烯、聚丙烯和聚氯乙烯微塑料相比對抗生素的吸附能力更強[131]。攜帶抗生素抗性基因的細菌可在土壤環境中長期存在,并可通過移動遺傳因子介導,在環境細菌中水平傳播。有研究發現微塑料可以作為抗生素與細菌接觸的載體,從而增加環境中抗生素抗性基因的豐度[132]。其中作用最為顯著的是聚乙烯微塑料,其使表面抗生素抗性基因的豐度增加了近1個數量級。目前,在微塑料表面已經檢測到多種潛在的細菌病原體和抗生素抗性基因,包括102種抗生素抗性基因和3種可移動遺傳元件,涵蓋了9個抗生素抗性基因類型。這些抗生素抗性基因的豐度有些高于土壤(微塑料表面的抗生素抗性基因相對豐度比土壤高1.7倍),其會隨著微塑料和土壤類型的不同而變化。施用有機肥、提高土壤溫度和濕度分別使得微塑料表面的抗生素抗性基因相對豐度增加179%、33%和24%,同時也會提高土壤中潛在的病原體豐度[133]。土壤中微塑料的粒徑和老化程度與抗生素抗性基因的吸附能力呈正相關,且可以增加可移動遺傳元件的豐度,促進抗生素抗性基因的傳播[133]。

4 微塑料對土壤生態系統的影響

微塑料會影響土壤性質,如pH值、土壤容重、土壤持水量、土壤團聚體、土壤有機質和土壤酶活性,從而間接影響土壤生態系統(圖5)。此外,微塑料進入土壤環境會不可避免地接觸到各種土壤生物群。微塑料會改變土壤微生物的群落結構,影響土壤動物和植物的生長發育。植物體內吸收的微塑料很可能通過食物鏈轉移,增加土壤生態系統污染的潛在危害。作為新興污染物,微塑料在土壤中持續的大量輸入對土壤生態系統的結構和功能會產生嚴重危害。吸附在微塑料表面的土壤污染物還會從微塑料表面解吸到環境中,因此系統總結二者在土壤中的生態風險具有重要意義。

4.1 對土壤結構和理化性質的影響

微塑料會影響土壤性質,如pH值、容重、持水量、團聚體、有機質和酶活性。研究發現,聚乳酸和聚乙烯塑料會分別增加和降低土壤pH,二者在土壤系統中的生物降解特性引起了這種差異[134]。此外,吸附在土壤膠體上的微塑料可以導致土壤膠體對陽離子的吸附能力減弱,引起土壤pH值降低[135]。微塑料會降低土壤容重,一項Meta分析結果表明,微塑料濃度與土壤容重降低之間存在顯著相關性,微塑料濃度和形狀的差異可能是微塑料暴露導致土壤容重差異的主要原因[136]。微塑料添加顯著提高了土壤水分的蒸發速率,從而破壞土壤結構完整性,引起土壤干裂[3]或缺氧[16]。微塑料粒徑大小顯著影響土壤的持水能力,微塑料粒徑越小土壤的持水能力降低越顯著[137]。并且其進入土壤后會有72% 黏附在土壤團聚體上,這意味著土壤中的微塑料可能參與土壤團聚體的形成[51]。高密度聚酯纖維微塑料可以通過改變土壤中的水穩性團聚體形態,影響土壤中大團聚體(gt;2 000μm)的形成[81]。在典型農田土壤中,聚酯纖維和聚丙烯微塑料的添加增大了土壤接觸角和飽和導水率,降低了土壤容重和持水能力。與聚丙烯顆粒相比,聚酯纖維對土壤物理性質的影響更大,這主要是因為聚酯纖維與土壤顆粒之間較大的形狀差異[138]。微塑料可以通過改變土壤團聚體內的生物、物理和化學過程(土壤有機質的聚集或土壤內部干濕循環),顯著抑制土壤團聚體的穩定性[136]。

微塑料對土壤有機碳、氮,以及土壤養分轉化也有一定的負面影響[139]。由于絕大部分微塑料由碳組成(多為具有長期穩定性的惰性碳),其在土壤中的積累可以增加土壤有機碳的含量,并以多種方式影響碳循環,如增加施肥土壤中CO2的釋放、影響土壤微生物呼吸、植物生長、凋落物分解等[140]。土壤中添加聚乙烯微塑料會導致土壤團聚體中全磷、全氮和鉀含量顯著降低[141]。微塑料可通過降低土壤養分的有效性,影響土壤微生物群落組裝和結構,從而影響碳、氮、磷循環相關酶活性以及生態系統的多功能性,這種對微塑料的響應與微塑料的濃度相關,微塑料濃度越高農田生態系統多功能性降低越嚴重[142]。然而,也有研究發現微塑料對土壤元素循環有一定的正向效應,微塑料通過改變土壤容重、含水量等理化性質和與碳、氮元素循環相關的細菌群落,使得與土壤碳、氮循環相關的基因表達水平均有增強。土壤水力特性(土壤含水量、飽和水容量和土壤飽和水力傳導率)、細菌群落和養分循環相關功能基因的相關性分析表明,土壤水力特性是影響土壤氮和碳儲量的主要因素[143]。微塑料可改變土壤結構或形成生物膜,影響硝化和反硝化微生物的生長及活性,通過提高反硝化速率,微塑料可使N2O的釋放速度加快約1.4倍,從而導致臭氧消耗或全球氣候變暖[144]。微塑料對土壤N2O排放的影響存在劑量效應,0.2%是聚乙烯微塑料影響水稻土N2O排放的濃度閾值,在一定濃度下,微塑料通過促進亞硝酸鹽還原加速N2O產生和排放[145]。綜上,我們發現微塑料對土壤元素循環的影響既有正向效應也有負向效應,造成差異化的關鍵在于微塑料改變了土壤理化性質,進而影響了與碳、氮等元素循環相關的微生物群落結構,從而在不同程度上調控了土壤元素循環。

4.2 對土壤酶的影響

土壤酶是調控土壤養分循環的關鍵因素,其活性會受到微塑料的影響,然而相關研究結果存在很大差異。研究發現,微塑料的添加提高了土壤脲酶[146]和高酸性磷酸酶的活性[147]。此外,低密度聚乙烯微塑料能顯著提高過氧化氫酶活性[148]。然而,也有研究指出微塑料會抑制酶活性。例如,土壤中添加微塑料后,熒光素二乙酸酯水解酶活性受到了抑制[147]。將聚苯乙烯微塑料加入土壤培養28 d后發現,土壤脫氫酶和參與土壤碳、氮、磷循環的酶活性顯著降低,主要包括亮氨酸氨肽酶、堿性磷酸酶、β葡萄糖苷酶和纖維二糖水解酶[149]。微塑料對土壤酶活性的影響與其含量相關,0.05%~0.40%的聚丙烯微塑料會抑制水解酶的活性[74]。當塑料薄膜殘留量為67.5 kg·hm-2時,熒光乙酸乙酯水解酶活性和脫氫酶活性會分別降低10%和20%[150]。最近一項研究利用Meta分析探究了不同微塑料類型、含量、尺寸、暴露時間、土壤pH對土壤呼吸和酶活性的影響,結果表明不可降解微塑料的暴露對土壤酶活性沒有顯著影響。然而,聚丙烯微塑料可促進酶活性,而聚乙烯和聚苯乙烯微塑料會抑制土壤酶活性[151]。有學者比較了不同組成和形狀的微塑料顆粒對土壤脲酶和磷酸酶活性的影響,發現對土壤脲酶和磷酸酶活性的促進作用大小順序為聚丙烯纖維gt;聚乙烯膜gt;聚丙烯微球和聚丙烯纖維gt;聚丙烯微球gt;聚乙烯膜[152]。微塑料對土壤酶活性影響的途徑主要受到微塑料濃度、類型、尺寸、暴露時間以及土壤pH等多種因素影響。盡管已有一些研究探討了微塑料對土壤酶活性的影響,但由于影響因素的復雜性和多樣性,研究結果仍然存在很大差異。因此,需要更多的研究來深入理解微塑料對土壤酶的影響,并制定相應的管理和防控策略。

4.3 對土壤生物的影響

4.3.1 對土壤微生物的影響

土壤生物是土壤生態系統的重要組成部分,在土壤形成和發展以及物質循環中起著重要作用。微塑料進入土壤環境會不可避免地接觸到各種土壤生物群。土壤微生物群落會受到微塑料的影響,其表面可以為微生物群落提供新的棲息地[153]。例如,牡蠣病原體J2-9菌株Vibro.crassostreae 可定殖在微塑料顆粒表面[154],弧菌科和假交替單胞菌科傾向于在微塑料表面富集[155]。此外,微生物可以快速附著并定殖于具有大比表面積和高粗糙度的微塑料上,并形成獨特的微生物群落[136]。微生物產生的細胞外聚合物質(由蛋白質、脂質、多糖和核酸組成)基質附著在土壤中的微塑料表面會形成生物膜[156]。微塑料的自身性質以及有利于定殖微生物產生細胞外聚合物質的環境條件(土壤pH、養分和溫度)均可影響生物膜的形成[157]。例如,一項研究發現,有機肥的施用顯著改善了微塑料表面細菌生物膜的α/β多樣性,并且牛糞肥比植物性秸稈肥對生物膜多樣性的提高更有效,黑土比紅土和黃土更有效[158]。此外,生物膜的形成促進了特定微生物物種的選擇性富集,并且提高了微塑料對生物體的應激損傷[159]。微塑料對微生物的影響與其本身的粒徑大小、類型和環境濃度有關。高濃度聚乙烯微塑料可以顯著提高土壤中變形桿菌目(Beta?proteobacteriales)和假單胞菌目(Pseudomonadales)的相對豐度,而低濃度微塑料的投入則會輕微抑制這兩個菌群的相對豐度[160]。聚乙烯微塑料對叢枝菌根真菌的多樣性沒有影響,但是顯著改變了叢枝菌根真菌的群落結構[134]。微塑料還能通過改變微生物的生存環境間接影響其群落結構和功能[161]。此外,微塑料可與土壤基質結合,通過建立輸水通道,加速土壤水分蒸發,使土壤表面干裂,從而改變土壤中氧的流動,改變好氧微生物的分布[137]。研究發現聚苯乙烯微塑料可吸附T4噬菌體,靜電相互作用是病毒吸附到微塑料上的主要吸附機制,紫外線老化的微塑料表現出增強的病毒吸附能力,并且吸附在微塑料上會顯著延長病毒的傳染性[162]。此外,微塑料可以在不同程度上改變微生物β多樣性并影響其功能,干擾多環芳烴的生物降解。大多數多環芳烴降解基因的豐度因不可生物降解的低密度聚乙烯微塑料的存在而增加[163]。微塑料表面還能夠選擇性地富集特定的細菌群落和功能基因。分析表明,這些細菌參與了包括碳、氮、硫、抗生素的合成與降解等多種代謝途徑[133,164]。

4.3.2 對動物的影響

目前,微塑料對土壤動物的影響研究主要是在實驗室里進行,其中蚯蚓作為土壤生態系統中重要的無脊椎動物,是土壤動物試驗的模式物種。蚯蚓能夠攝入土壤微塑料,暴露于微塑料含量較高的環境中會導致其腸道損傷及腸道微生物群落變化,甚至是死亡[165]。聚苯乙烯微塑料還可以通過激活活性氧介導的氧化應激途徑,損害蚯蚓免疫細胞的免疫功能,破壞蚯蚓的蛋白質結構[166]。不僅如此,微塑料還會損壞蚯蚓的生殖系統,干擾蚯蚓精子的生成并降低其體腔細胞活力[167]。微塑料的攝入以及微塑料在腸道中的長期駐留可能會改變動物的攝食活動。許多動物的腸道無法消化、排出攝入體內的微塑料顆粒,從而出現腸道堵塞的現象[168]。并且,土壤微塑料的存在會導致土壤動物對其產生明顯的回避行為,甚至會減少土壤動物的運動[169]。微塑料可以改變白符跳蟲(Folsomiacandida)的腸道微生物群落,對其造成明顯的毒性作用并且影響其繁殖,甚至可能導致其死亡[170]。微塑料還會引發土壤線蟲[171]、老鼠(ICR)[172]的代謝紊亂,影響其生長發育。此外,聚苯乙烯微塑料還會引起小鼠腸道屏障功能障礙、膽汁酸代謝紊亂和腸道菌群變化[172]。并且,其在小鼠胎盤和胎兒中的積累誘導了組織的異常形態并降低了胎兒體質量[173]。轉錄組分析結果表明,由于聚苯乙烯微塑料的存在,參與肌肉發育、脂質代謝和皮膚形成的基因在胎盤和胎兒骨骼肌中的表達發生了顯著變化[173]。研究人員發現長期的微塑料暴露會引發肉雞的肌肉和肝臟發生慢性炎癥,誘導肌肉肥大,降低肉質品質;結合轉錄組和代謝組學方法的研究發現,長期微塑料暴露可顯著改變宿主基因表達、影響組織的代謝進程[174]。

4.3.3 對陸生植物的影響

微塑料可以直接影響植物生長,也可以通過影響土壤性質或微生物間接影響植物生長。不同聚合物類型微塑料對植物生長有不同的影響,與聚乙烯相比,聚乳酸微塑料對小麥生長的負面影響更加顯著[175-176]。萵苣和小麥側根出現的裂紋能夠直接讓微塑料穿透到中柱,這是一種代表植物吸收微塑料的有效方式,即作物會通過自身裂縫吸收微塑料[177]。但是,嵌入植物角質層的較小的微塑料(lt;10 μm)難以去除[178]。因此,我們猜測一些根部吸收的微塑料很可能影響植物對水分和養分的吸收,從而影響其生長。已有研究指出微塑料可能通過堵塞植物種子種皮的孔隙,抑制水分的吸收,從而影響種子的發芽率[179-180]。殘留在土壤中的農膜會對小麥的生長產生負面影響,這可能是由于土壤性質受到了土壤微塑料的影響[175]。在新疆農田表層土壤(0~20 cm)長期覆蓋塑料薄膜可使棉花產量減少15%[181]。農田土壤中微塑料的顯著富集增加了蔥(Allium fistulosum)的總根長,其中一些微塑料還能引起蔥根生物量、平均根徑、根組織密度的變化[182]。生長于微塑料污染環境中的蘿卜的脆度及鎂、鈣和鐵的含量會降低,其營養價值也會受到影響[183]。聚丙烯微塑料添加顯著降低花生的地下生物量、可溶性糖含量和大豆的葉綠素含量,降幅分別為15.77%、25.51% 和5.74%。與之相反,微塑料添加增加了大豆的葉面積比值和可溶性糖含量,增幅分別為28.07%和25.82%[184]。植物根系吸收的微塑料很可能從根系遷移到地上組分,并通過食物鏈轉移,增加土壤生態系統污染的潛在危害。

綜合上述分析,我們發現微塑料通過提供新的棲息地富集微生物,并在微塑料表面形成生物膜,提高了微塑料對生物體的應激損傷。并且微塑料通過改變動物體內的微生物群落,影響其生命活動。暴露于微塑料環境下的植物會由于表皮孔隙堵塞影響對營養物質的吸收,從而對生長發育產生負面影響。植物體內吸收的微塑料很可能通過食物鏈轉移,增加對土壤生態系統污染的潛在危害。此外,與對土壤酶的影響類似,微塑料會通過改變土壤理化性質,從而影響土壤生態系統中的微生物、動物和植物。

4.4 微塑料復合污染對土壤生態系統的影響

微塑料作為土壤中的一個“匯”,重金屬、有機污染物、抗生素和增塑劑等都會在其表面富集[97,185]。當微塑料和重金屬共存于土壤時,其將成為重金屬向植物遷移的“運輸工具”,微塑料可以將Cu2+、Zn2+和Pb2+遷移至小麥根際并進行解吸,從而促進重金屬向植物轉移[186]。聚苯乙烯微塑料會增加水稻幼苗中砷的毒性以及促進砷揮發[187],而聚氯乙烯微塑料會降低水稻土壤中汞的甲基化[188]。土壤動物可能會受到微塑料表面攜帶的以上污染物的毒理學影響。水牛攝入微塑料后,其腎臟、血液、肌肉、瘤胃液和肝臟中的重金屬含量均有所增加[189]。此外,微塑料和抗生素的復合污染對植物生長造成了嚴重損害,并加劇了根系氧化脅迫反應[190]。微塑料還可以通過改變生物可利用性來介導有機污染物的降解[191]。大量證據表明,聚乙烯和聚苯乙烯微塑料可以吸附多環芳烴化合物并導致其表現出高生物可利用性[192-193],并且其還可以誘導生物體發生有機/細胞反應,例如氧化應激、組織病理學損傷、免疫變化和修飾基因表達特性[194]。微塑料和有機污染物的聯合效應會產生多種生態效應,包括毒性、生物積累和生物放大、物理效應、微生物群落的改變和生態系統的破壞[195]。已有研究表明微塑料的老化增加了土壤PAEs的豐度,并共同影響草地和農田土壤的碳平衡[196];同時,PAEs的釋放還會對土壤酶活性產生抑制作用[150]。微塑料可將PAEs運輸到小鼠腸道中,引起腸道積聚,對小鼠腸道造成嚴重不良影響[197]。微塑料復合污染不止有上述協同作用,其也會對生物體產生拮抗毒性作用。當PAEs和微塑料在環境中共同暴露時,PAEs會抑制微塑料對黃瓜幼苗生理特性的毒害[198]。簡而言之,微塑料對土壤生態系統的影響復雜多樣。其可以通過改變土壤理化性質,從而影響土壤酶活性和土壤微生物群落結構及多樣性。微塑料還能直接影響土壤動物如蚯蚓的健康,長期微塑料暴露可顯著改變食用動物如肉雞的基因表達,影響組織的代謝進程。此外,微塑料可以通過影響植物的生長,改變植物對水分和養分的吸收,甚至穿透植物外組織,對人類健康造成嚴重危害。作為土壤污染物的“匯”,微塑料通過富集多種污染物對土壤生態造成更加不利的影響,并通過誘發生物體發生有機/細胞反應,威脅其健康。

4 總結與展望

本文從土壤微塑料的來源以及污染現狀出發,著重關注了土壤微塑料的遷移行為及其可能帶來的生態風險。土壤理化性質、農業生產活動、土壤生物活動、微塑料自身性質、土壤環境條件和土壤要素等均會影響微塑料的遷移行為。此外,本文闡明了微塑料與其他污染物的相互作用機理,以期為相關研究者提供參考。微塑料易與環境中的其他污染物發生反應,通過靜電相互作用、疏水相互作用、π-π相互作用、氫鍵相互作用和表面絡合及螯合作用等與其他污染物產生復合污染,間接對土壤生物產生毒害作用。并且,微塑料還會改變土壤微生物的群落結構,影響土壤動物和植物的生長發育。植物體內吸收的微塑料很可能通過食物鏈轉移,增加土壤生態系統污染的潛在危害。此外,吸附在微塑料表面的污染物還會從微塑料表面解吸到環境中,微塑料與污染物的相互作用會改變這些污染物在土壤中的原始存在形態和生態風險。

為了進一步明確土壤微塑料的環境行為,降低其帶來的生態風險,我們認為未來應從以下幾個關鍵方向開展工作:

(1)推廣綠色降解型塑料產品。土壤環境中微塑料來源研究充分,然而污染現狀不容樂觀。農田覆膜是微塑料進入土壤最大的“源”,迫切需要推廣應用可生物降解地膜,完善廢棄塑料的回收利用機制。

(2)明確真實土壤微塑料污染遷移機制。目前,針對微塑料遷移影響的實驗都是在理想的實驗室環境中進行的,因此,在未來的研究中,應加強原位土壤中微塑料遷移實驗的開展,并應建立統一、適用的土壤微塑料遷移模型。

(3)重點關注微塑料與其他土壤污染物的相互作用及危害。關于微塑料與重金屬、抗生素/抗生素抗性基因、持久性有機污染物以及塑料源污染物的相關研究仍處于起步階段,應盡快開展相關研究,并闡明環境因素對微塑料與土壤污染物的相互作用機理。

(4)闡明微塑料對土壤生態系統多功能性影響的整體機理。微塑料對土壤生態系統的影響顯著,但現有研究尚未得出統一結論。因此需要更多的野外研究來進一步探討微塑料對土壤生態系統多功能性的影響,同時,厘清微塑料與土壤污染物聯合作用對土壤生態系統的影響,揭示復合污染進入食物鏈、危害人體健康的可能性。

參考文獻:

[1] 唐釗, 朱建華, 王于志. 中國塑料制品禁令的相關法律條款及其重

要價值探討[J]. 塑料工業, 2023, 51(4):206-207. TANG Z, ZHU J

H, WANG Y Z. Discussion on the relevant legal provisions and

important value of China′ s plastic products ban[J]. China Plastics

Industry, 2023, 51(4):206-207.

[2] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea:where

is all the plastic?[J]. Science, 2004, 304(5672):838.

[3] WANG W F, GE J, YU X Y, et al. Environmental fate and impacts of

microplastics in soil ecosystems:progress and perspective[J]. Science of

the Total Environment, 2020, 708:134841.

[4] LI J, SONG Y, CAI Y B. Focus topics on microplastics in soil:

analytical methods, occurrence, transport, and ecological risks[J].

Environmental Pollution, 2020, 257:113570.

[5] RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J].

Environmental Science amp; Technology, 2012, 46(12):6453-6454.

[6] 馬兆嶸, 劉有勝, 張芊芊, 等. 農用塑料薄膜使用現狀與環境污染分

析[J]. 生態毒理學報, 2020, 15(4):21-32. MA Z R, LIU Y S,

ZHANG Q Q, et al. The usage and environmental pollution of

agricultural plastic film[J]. Asian Journal of Ecotoxicology, 2020, 15

(4):21-32.

[7] HUANG Y, LIU Q, JIA W Q, et al. Agricultural plastic mulching as a

source of microplastics in the terrestrial environment[J]. Environmental

Pollution, 2020, 260:114096.

[8] 趙巖, 陳學庚, 溫浩軍, 等. 農田殘膜污染治理技術研究現狀與展望

[J]. 農業機械學報, 2017, 48(6):1-14. ZHAO Y, CHEN X G, WEN

H J, et al. Research status and prospect of control technology for

residual plastic film pollution in farmland[J]. Transactions of the

Chinese Society for Agricultural Machinery, 2017, 48(6):1-14.

[9] ZHOU B Y, WANG J Q, ZHANG H B, et al. Microplastics in

agricultural soils on the coastal plain of Hangzhou Bay, east China:

multiple sources other than plastic mulching film[J]. Journal of

Hazardous Materials, 2020, 388:121814.

[10] PIEHL S, LEIBNER A, L?DER M G J, et al. Identification and

quantification of macro- and microplastics on an agricultural farmland

[J]. Scientific Reports, 2018, 8:17950.

[11] VAN DEN BERG P, HUERTA-LWANGA E, CORRADINI F, et al.

Sewage sludge application as a vehicle for microplastics in eastern

Spanish agricultural soils[J]. Environmental Pollution, 2020, 261:

114198.

[12] 李鵬飛, 侯德義, 王劉煒, 等. 農田中的(微)塑料污染:來源、遷移、

環境生態效應及防治措施[J]. 土壤學報, 2021, 58(2):314-330.

LI P F, HOU D Y, WANG L W, et al.(Micro)plastics pollution in

agricultural soils:sources, transportation, ecological effects and

preventive strategies[J]. Acta Pedologica Sinica, 2021, 58(2):314-

330.

[13] LIU K, WANG X H, FANG T, et al. Source and potential risk

assessment of suspended atmospheric microplastics in Shanghai[J].

Science of the Total Environment, 2019, 675:462-471.

[14] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport

and deposition of microplastics in a remote mountain catchment[J].

Nature Geoscience, 2019, 12:339-344.

[15] CHEUNG P K, FOK L. Characterisation of plastic microbeads in

facial scrubs and their estimated emissions in Chinese Mainland[J].

Water Research, 2017, 122:53-61.

[16] GOLWALA H, ZHANG X Y, ISKANDER S M, et al. Solid waste:an

overlooked source of microplastics to the environment[J]. Science of

the Total Environment, 2021, 769:144581.

[17] CHOI Y R, KIM Y N, YOON J H, et al. Plastic contamination of

forest, urban, and agricultural soils:a case study of Yeoju City in the

Republic of Korea[J]. Journal of Soils and Sediments, 2021, 21(5):

1962-1973.

[18] KOLE P J, L?HR A J, VAN BELLEGHEM F, et al. Wear and tear of

tyres:a stealthy source of microplastics in the environment[J].

International Journal of Environmental Research and Public Health,

2017, 14(10):1265.

[19] AKHBARIZADEH R, DOBARADARAN S, NABIPOUR I, et al.

Abandoned Covid-19 personal protective equipment along the

Bushehr Shores, the Persian Gulf:an emerging source of secondary

microplastics in coastlines[J]. Marine Pollution Bulletin, 2021, 168:

112386.

[20] YU L, ZHANG J D, LIU Y, et al. Distribution characteristics of

microplastics in agricultural soils from the largest vegetable

production base in China[J]. Science of the Total Environment, 2021,

756:143860.

[21] CHAI B W, WEI Q, SHE Y Z, et al. Soil microplastic pollution in an

e-waste dismantling zone of China[J]. Waste Management, 2020, 118:

291-301.

[22] 胡佳妮. 農田土壤中微塑料污染特征和典型塑料地膜的環境行為

研究[D]. 上海:華東師范大學, 2021:19-20. HU J N. A study on

pollution characteristics of microplastics in agricultural soils and

environmental behaviors of typical mulching films[D]. Shanghai:East

China Normal University, 2021:19-20.

[23] FENG S S, LU H W, TIAN P P, et al. Analysis of microplastics in a

remote region of the Tibetan Plateau:implications for natural

environmental response to human activities[J]. Science of the Total

Environment, 2020, 739:140087.

[24] ZHANG S L, LIU X, HAO X H, et al. Distribution of low-density

microplastics in the mollisol farmlands of northeast China[J]. Science

of the Total Environment, 2020, 708:135091.

[25] 劉旭. 典型黑土區耕地土壤微塑料空間分布特征[D]. 哈爾濱:東

北農業大學, 2019:19 - 20. LIU X. Spatial distribution of

microplastics in mollisol farmland of northeast China[D]. Harbin:

Northeast Agricultural University, 2019:19-20.

[26] WANG J, LI J Y, LIU S T, et al. Distinct microplastic distributions in

soils of different land-use types:a case study of Chinese farmlands[J].

Environmental Pollution, 2021, 269:116199.

[27] 王展, 陳春羽, 蘇沛瑤, 等. 遼寧地區農田土壤中微塑料豐度及其

在團聚體中的分布特征[J]. 農業環境科學學報, 2024, 43(4):858-

865. WANG Z, CHEN C Y, SU P Y, et al. Abundance of

microplastics in farmland soil and its distribution in soil aggregate

fractions in the Liaoning area[J]. Journal of Agro-Environment

Science, 2024, 43(4):858-865.

[28] WANG K, CHEN W, TIAN J Y, et al. Accumulation of microplastics

in greenhouse soil after long-term plastic film mulching in Beijing,

China[J]. Science of the Total Environment, 2022, 828:154544.

[29] CHEN Y X, WU Y H, MA J, et al. Microplastics pollution in the soil

mulched by dust-proof nets:a case study in Beijing, China[J].

Environmental Pollution, 2021, 275:116600.

[30] FU F R, SUN Y, YANG D, et al. Combined pollution and soil

microbial effect of pesticides and microplastics in greenhouse soil of

suburban Tianjin, northern China[J]. Environmental Pollution, 2024,

340:122898.

[31] 田霞. 河北壩上農田土壤及風蝕物的微/中塑料研究[D]. 石家莊:

河北師范大學, 2022:29 - 30. TIAN X. Study on micro / meso

plastics in soil and aeolian sediment for farmlands of Bashang region,

Hebei Province[D]. Shijiazhuang:Hebei Normal University, 2022:29-

30.

[32] LUO S, WU H N, XU J F, et al. Effects of lakeshore landcover types

and environmental factors on microplastic distribution in lakes on the

Inner Mongolia Plateau, China[J]. Journal of Hazardous Materials,

2024, 465:133115.

[33] 張舒婷. 山西農田土壤微塑料分布及與重金屬的相關性研究[D].

太谷:山西農業大學, 2022:24-25. ZHANG S T. Distribution of

microplastics in farmland soil in Shanxi and their correlation with

heavy metals[D]. Taigu:Shanxi Agricultural University, 2022:24-25.

[34] 田浩琦, 李唐慧嫻, 郭倩倩, 等. 汾河上中游沿岸農田土壤微塑料

污染現狀和分布規律研究[C]//2019年中國土壤學會土壤環境專

業委員會、土壤化學專業委員會聯合學術研討會, 2019:1. TIAN

H Q, LI T H X, GUO Q Q, et al. Study on the status and distribution

of soil microplastics pollution in farmland along the upper and middle

reaches of Fenhe River[C]//2019 Joint Symposium of Soil

Environment Committee and Soil Chemistry Committee of Soil Society

of China, 2019:1.

[35] 張成麗, 李霜, 雷雨辰, 等. 開封某農田土壤重金屬和微塑料空間

分布及生態風險[J]. 沈陽農業大學學報, 2023, 54(6):693-701.

ZHANG C L, LI S, LEI Y C, et al. Spatial distribution of the farmland

soil heavy metal and microplastics and ecological risk assessment[J].

Journal of Shenyang Agricultural University, 2023, 54(6):693-701.

[36] 衛洲. 微塑料在土壤中的分布及其對有機污染物吸附特征的研究

[D]. 淮南:安徽理工大學, 2022:28-29. WEI Z. Study on the

distribution of microplastics in soil and the adsorption characteristics

of microplastics to organic pollutants[D]. Huainan:Anhui University

of Science and Technology, 2022:28-29.

[37] CAO L, WU D, LIU P, et al. Occurrence, distribution and affecting

factors of microplastics in agricultural soils along the lower reaches of

Yangtze River, China[J]. Science of the Total Environment, 2021, 794:

148694.

[38] 胡博. 福建晉江河口紅樹林恢復濕地土壤、間隙水重金屬與微塑

料的分布特征及其環境意義[D]. 泉州:華僑大學, 2021:62-65.

HU B. Distribution characteristics and environmental significance of

heavy metals and microplastics in soil and interstitial water of

mangrove restoration wetland in Jinjiang Estuary, Fujian Province[D].

Quanzhou:Huaqiao University, 2021:62-65.

[39] CHEN Y L, LENG Y F, LIU X N, et al. Microplastic pollution in

vegetable farmlands of suburb Wuhan, central China[J].

Environmental Pollution, 2020, 257:113449.

[40] DING L, ZHANG S Y, WANG X Y, et al. The occurrence and

distribution characteristics of microplastics in the agricultural soils of

Shaanxi Province, in north-western China[J]. Science of the Total

Environment, 2020, 720:137525.

[41] JIA Z F, WEI W, WANG Y H, et al. Occurrence characteristics and

risk assessment of microplastics in agricultural soils in the loess hilly

gully area of Yan′ an, China[J]. Science of the Total Environment,

2024, 912:169627.

[42] 程萬莉, 樊廷錄, 王淑英, 等. 我國西北覆膜農田土壤微塑料數量

及分布特征[J]. 農業環境科學學報, 2020, 39(11):2561-2568.

CHENG W L, FAN T L, WANG S Y, et al. Quantity and distribution

of microplastics in film mulching farmland soil of northwest China[J].

Journal of Agro-Environment Science, 2020, 39(11):2561-2568.

[43] MIN R, MA K, ZHANG H W, et al. Distribution and risk assessment

of microplastics in Liujiaxia Reservoir on the upper Yellow River[J].

Chemosphere, 2023, 320:138031.

[44] 馬貴, 丁家富, 周悅, 等. 固原市農田土壤微塑料的分布特征及風

險評估[J]. 環境科學, 2023, 44(9):5055-5062. MA G, DING J F,

ZHOU Y, et al. Distribution characteristics and risk assessment of

microplastics in farmland soil in Guyuan[J]. Environmental Science,

2023, 44(9):5055-5062.

[45] XU Z X, HU C, WANG X F, et al. Distribution characteristics of

plastic film residue in long-term mulched farmland soil[J]. Soil

Ecology Letters, 2022, 5(3):220144.

[46] LI W F, WANG S Z, WUFUER R, et al. Distinct soil microplastic

distributions under various farmland-use types around Urumqi, China

[J]. Science of the Total Environment, 2023, 857:159573.

[47] ZHANG G S, LIU Y F. The distribution of microplastics in soil

aggregate fractions in southwestern China[J]. Science of the Total

Environment, 2018, 642:12-20.

[48] XU G R, YANG L, XU L, et al. Soil microplastic pollution under

different land uses in tropics, southwestern China[J]. Chemosphere,

2022, 289:133176.

[49] 張淑怡. 貴州覆膜耕地微塑料污染特征及其對煙草的生長脅迫研

究[D]. 貴陽:貴州民族大學, 2023:39-41. ZHANG S Y. A study

on characteristics of microplastic pollution in mulched arable land in

Guizhou and the growth stress of microplastic on tobacco(Nicotiana

tabacum L.)[D]. Guiyang:Guizhou Minzu University, 2023:39-41.

[50] 蘭莉莎. 涪江重慶段沉積物中微塑料的分布特征及其對典型抗生

素的吸附行為研究[D]. 重慶:重慶交通大學, 2022:36-39. LAN

L S. The distribution characteristics of microplastics in the sediments

of the Chongqing section of the Fujiang River and their adsorption

behaviors for typical antibiotics[D]. Chongqing:Chongqing Jiaotong

University, 2022:36-39.

[51] LIAO Y L, TANG Q X, YANG J Y. Microplastic characteristics and

microplastic-heavy metal synergistic contamination in agricultural

soil under different cultivation modes in Chengdu, China[J]. Journal

of Hazardous Materials, 2023, 459:132270.

[52] 劉琳琳, 王鵬, 孫曙光, 等. 四川廣元植煙土壤微塑料分布狀況分

析[J]. 中國煙草學報, 2023, 29(1):46-54. LIU L L, WANG P,

SUN S G, et al. Distribution of micro plastics in tobacco planting soil

in Guangyuan, Sichuan Province[J]. Acta Tabacaria Sinica, 2023, 29

(1):46-54.

[53] LONG B B, LI F Y, WANG K, et al. Impact of plastic film mulching

on microplastic in farmland soils in Guangdong Province, China[J].

Heliyon, 2023, 9(6):e16587.

[54] ZHANG X Y, XIA X J, DAI M, et al. Microplastic pollution and its

relationship with the bacterial community in coastal sediments near

Guangdong Province, south China[J]. Science of the Total

Environment, 2021, 760:144091.

[55] LIU M T, LU S B, SONG Y, et al. Microplastic and mesoplastic

pollution in farmland soils in suburbs of Shanghai, China[J].

Environmental Pollution, 2018, 242:855-862.

[56] 謝福武, 田毓婷, 吳思怡, 等. 海南樂東農用地土壤微塑料分布狀

況調查[J]. 中國無機分析化學, 2024, 14(8):1116-1125. XIE F

W, TIAN Y T, WU S Y, et al. Investigation on microplastics

distribution of soil in Ledong farmland, Hainan[J]. Chinese Journal of

Inorganic Analytical Chemistry, 2024, 14(8):1116-1125.

[57] 馮三三, 盧宏瑋, 薛宇軒, 等. 青藏高原微塑料賦存特征和歸趨分

析[C]//華東師范大學, 上海市海洋湖沼學會, 中國土壤學會環境微

塑料工作組. 第四屆全國(海洋)環境微塑料污染與管控學術研討

會摘要集, 2023:3. FENG S S, LU H W, XUE Y X, et al. Analysis

of the occurrence characteristics and trend of microplastics in the

Tibetan Plateau[C]//East China Normal University, Shanghai Society

of Oceanology and Limnology, Environmental Microplastics Working

Group of the Soil Society of China. Abstract of the 4th National

(Marine) Environmental Microplastic Pollution and Control

Symposium, 2023:3.

[58] FENG S S, LU H W, LIU Y L. The occurrence of microplastics in

farmland and grassland soils in the Qinghai-Tibet Plateau:different

land use and mulching time in facility agriculture[J]. Environmental

Pollution, 2021, 279:116939.

[59] YANG H R, YAN Y M, YU Y K, et al. Distribution, sources,

migration, influence and analytical methods of microplastics in soil

ecosystems[J]. Ecotoxicology and Environmental Safety, 2022, 243:

114009.

[60] ZHANG X T, CHEN Y X, LI X Y, et al. Size / shape-dependent

migration of microplastics in agricultural soil under simulative and

natural rainfall[J]. Science of the Total Environment, 2022, 815:

152507.

[61] RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A.

Microplastic incorporation into soil in agroecosystems[J]. Frontiers in

Plant Science, 2017, 8:1805.

[62] MENG F R, FAN T L, YANG X M, et al. Effects of plastic mulching

on the accumulation and distribution of macro and micro plastics in

soils of two farming systems in northwest China[J]. PeerJ, 2020, 8:

e10375.

[63] O′ CONNOR D, PAN S Z, SHEN Z T, et al. Microplastics undergo

accelerated vertical migration in sand soil due to small size and wetdry

cycles[J]. Environmental Pollution, 2019, 249:527-534.

[64] LEONARD J, RAVI S, MOHANTY S K. Preferential emission of

microplastics from biosolid-applied agricultural soils:field evidence

and theoretical framework[J]. Environmental Science amp; Technology

Letters, 2024, 11(2):136-142.

[65] DONG Y M, GAO M L, QIU W W, et al. Effect of microplastics and

arsenic on nutrients and microorganisms in rice rhizosphere soil[J].

Ecotoxicology and Environmental Safety, 2021, 211:111899.

[66] YU M, VAN DER PLOEG M, LWANGA E H, et al. Leaching of

microplastics by preferential flow in earthworm(Lumbricus terrestris)

burrows[J]. Environmental Chemistry, 2019, 16(1):31.

[67] XU B L, LIU F, CRYDER Z, et al. Microplastics in the soil

environment:occurrence, risks, interactions and fate:a review[J].

Critical Reviews in Environmental Science and Technology, 2020, 50

(21):2175-2222.

[68] LI H X, LU X Q, WANG S Y, et al. Vertical migration of

microplastics along soil profile under different crop root systems[J].

Environmental Pollution, 2021, 278:116833.

[69] DE TENDER C, DEVRIESE L I, HAEGEMAN A, et al. Temporal

dynamics of bacterial and fungal colonization on plastic debris in the

North Sea[J]. Environmental Science amp; Technology, 2017, 51(13):

7350-7360.

[70] HE S Y, JIA M Y, XIANG Y P, et al. Biofilm on microplastics in

aqueous environment:physicochemical properties and environmental

implications[J]. Journal of Hazardous Materials, 2022, 424:127286.

[71] MITZEL M R, SAND S, WHALEN J K, et al. Hydrophobicity of

biofilm coatings influences the transport dynamics of polystyrene

nanoparticles in biofilm-coated sand[J]. Water Research, 2016, 92:

113-120.

[72] BRADFORD S A, SIMUNEK J, BETTAHAR M, et al. Modeling

colloid attachment, straining, and exclusion in saturated porous media

[J]. Environmental Science amp; Technology, 2003, 37(10):2242-2250.

[73] ZHAO W G, SU Z, GENG T, et al. Effects of ionic strength and

particle size on transport of microplastic and humic acid in porous

media[J]. Chemosphere, 2022, 309:136593.

[74] DE SOUZA MACHADO A A, LAU C W, TILL J, et al. Impacts of

microplastics on the soil biophysical environment[J]. Environmental

Science amp; Technology, 2018, 52(17):9656-9665.

[75] ZHANG G S, ZHANG F X, LI X T. Effects of polyester microfibers on

soil physical properties:perception from a field and a pot experiment

[J]. Science of the Total Environment, 2019, 670:1-7.

[76] REN Z F, GUI X Y, XU X Y, et al. Microplastics in the soilgroundwater

environment:aging, migration, and co-transport of

contaminants:a critical review[J]. Journal of Hazardous Materials,

2021, 419:126455.

[77] LIU J, ZHANG T, TIAN L L, et al. Aging significantly affects mobility

and contaminant-mobilizing ability of nanoplastics in saturated loamy

sand[J]. Environmental Science amp; Technology, 2019, 53(10):5805-

5815.

[78] DONG Z Q, ZHU L, ZHANG W, et al. Role of surface functionalities

of nanoplastics on their transport in seawater-saturated sea sand[J].

Environmental Pollution, 2019, 255:113177.

[79] IVANIC F M, GUGGENBERGER G, WOCHE S K, et al. Soil organic

matter facilitates the transport of microplastic by reducing surface

hydrophobicity[J]. Colloids and Surfaces A:Physicochemical and

Engineering Aspects, 2023, 676:132255.

[80] WU X L, LYU X Y, LI Z Y, et al. Transport of polystyrene

nanoplastics in natural soils:effect of soil properties, ionic strength

and cation type[J]. Science of the Total Environment, 2020, 707:

136065.

[81] BRADFORD S A, TORKZABAN S. Colloid adhesive parameters for

chemically heterogeneous porous media[J]. Langmuir, 2012, 28(38):

13643-13651.

[82] CORNELIS G, PANG L P, DOOLETTE C, et al. Transport of silver

nanoparticles in saturated columns of natural soils[J]. Science of the

Total Environment, 2013, 463/464:120-130.

[83] WANG D J, BRADFORD S A, HARVEY R W, et al. Humic acid

facilitates the transport of ARS-labeled hydroxyapatite nanoparticles

in iron oxyhydroxide-coated sand[J]. Environmental Science amp;

Technology, 2012, 46(5):2738-2745.

[84] LU T T, GILFEDDER B S, PENG H, et al. Effects of clay minerals on

the transport of nanoplastics through water-saturated porous media[J].

Science of the Total Environment, 2021, 796:148982.

[85] MA J, QIU Y, ZHAO J Y, et al. Effect of agricultural organic inputs

on nanoplastics transport in saturated goethite-coated porous media:

particle size selectivity and role of dissolved organic matter[J].

Environmental Science amp; Technology, 2022, 56(6):3524-3534.

[86] GAO J, PAN S Z, LI P F, et al. Vertical migration of microplastics in

porous media:multiple controlling factors under wet-dry cycling[J].

Journal of Hazardous Materials, 2021, 419:126413.

[87] TAN M M, LIU L F, ZHANG M G, et al. Effects of solution chemistry

and humic acid on the transport of polystyrene microplastics in

manganese oxides coated sand[J]. Journal of Hazardous Materials,

2021, 413:125410.

[88] SARKER A, DEEPO D M, NANDI R, et al. A review of microplastics

pollution in the soil and terrestrial ecosystems:a global and

Bangladesh perspective[J]. Science of the Total Environment, 2020,

733:139296.

[89] LIN H, CUI G F, JIN Q, et al. Effects of microplastics on the uptake

and accumulation of heavy metals in plants:a review[J]. Journal of

Environmental Chemical Engineering, 2024, 12(1):111812.

[90] TANG S, LIN L J, WANG X S, et al. Interfacial interactions between

collected nylon microplastics and three divalent metal ions[Cu(Ⅱ),

Ni(Ⅱ), Zn(Ⅱ)] in aqueous solutions[J]. Journal of Hazardous

Materials, 2021, 403:123548.

[91] TANG S, LIN L J, WANG X S, et al. Pb(Ⅱ)uptake onto nylon

microplastics:interaction mechanism and adsorption performance[J].

Journal of Hazardous Materials, 2020, 386:121960.

[92] GUO X T, HU G L, FAN X Y, et al. Sorption properties of cadmium

on microplastics:the common practice experiment and A twodimensional

correlation spectroscopic study[J]. Ecotoxicology and

Environmental Safety, 2020, 190:110118.

[93] TEUTEN E L, ROWLAND S J, GALLOWAY T S, et al. Potential for

plastics to transport hydrophobic contaminants[J]. Environmental

Science amp; Technology, 2007, 41(22):7759-7764.

[94] LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects

the heavy metal adsorption capacity of polystyrene microplastics[J].

Science of the Total Environment, 2020, 722:137762.

[95] WANG Y, WANG X J, LI Y, et al. Effects of exposure of polyethylene

microplastics to air, water and soil on their adsorption behaviors for

copper and tetracycline[J]. Chemical Engineering Journal, 2021, 404:

126412.

[96] KHALID N, AQEEL M, NOMAN A, et al. Interactions and effects of

microplastics with heavy metals in aquatic and terrestrial

environments[J]. Environmental Pollution, 2021, 290:118104.

[97] GUO X, WANG J L. The chemical behaviors of microplastics in

marine environment:a review[J]. Marine Pollution Bulletin, 2019,

142:1-14.

[98] BRENNECKE D, DUARTE B, PAIVA F, et al. Microplastics as

vector for heavy metal contamination from the marine environment[J].

Estuarine, Coastal and Shelf Science, 2016, 178:189-195.

[99] WANG Q J, ZHANG Y, WANGJIN X X, et al. The adsorption

behavior of metals in aqueous solution by microplastics effected by

UV radiation[J]. Journal of Environmental Sciences, 2020, 87:272-

280.

[100] SHIU R F, VAZQUEZ C I, TSAI Y Y, et al. Nano-plastics induce

aquatic particulate organic matter(microgels)formation[J]. Science

of the Total Environment, 2020, 706:135681.

[101] SHIU R F, LEE C L. Role of microgel formation in scavenging of

chromophoric dissolved organic matter and heavy metals in a riversea

system[J]. Journal of Hazardous Materials, 2017, 328:12-20.

[102] LIN L J, TANG S, WANG X S, et al. Sorption of tetracycline onto

hexabromocyclododecane / polystyrene composite and polystyrene

microplastics:statistical physics models, influencing factors, and

interaction mechanisms[J]. Environmental Pollution, 2021, 284:

117164.

[103] ROCHMAN C M, MANZANO C, HENTSCHEL B T, et al.

Polystyrene plastic:a source and sink for polycyclic aromatic

hydrocarbons in the marine environment[J]. Environmental Science

amp; Technology, 2013, 47(24):13976-13984.

[104] SONG X C, ZHUANG W, CUI H Z, et al. Interactions of

microplastics with organic, inorganic and bio-pollutants and the

ecotoxicological effects on terrestrial and aquatic organisms[J].

Science of the Total Environment, 2022, 838:156068.

[105] ZICCARDI L M, EDGINGTON A, HENTZ K, et al. Microplastics as

vectors for bioaccumulation of hydrophobic organic chemicals in the

marine environment:a state-of-the-science review[J]. Environmental

Toxicology and Chemistry, 2016, 35(7):1667-1676.

[106] BAKIR A, ROWLAND S J, THOMPSON R C. Competitive sorption

of persistent organic pollutants onto microplastics in the marine

environment[J]. Marine Pollution Bulletin, 2012, 64(12):2782-

2789.

[107] FU L N, LI J, WANG G Y, et al. Adsorption behavior of organic

pollutants on microplastics[J]. Ecotoxicology and Environmental

Safety, 2021, 217:112207.

[108] LI J Y, HUANG X T, HOU Z M, et al. Sorption of diclofenac by

polystyrene microplastics:kinetics, isotherms and particle size

effects[J]. Chemosphere, 2022, 290:133311.

[109] WU P F, CAI Z W, JIN H B, et al. Adsorption mechanisms of five

bisphenol analogues on PVC microplastics[J]. Science of the Total

Environment, 2019, 650:671-678.

[110] RICARDO I A, ALBERTO E A, SILVA JúNIDR A H, et al. A

critical review on microplastics, interaction with organic and

inorganic pollutants, impacts and effectiveness of advanced

oxidation processes applied for their removal from aqueous matrices

[J]. Chemical Engineering Journal, 2021, 424:130282.

[111] YAMATE T, KUMAZAWA K, SUZUKI H, et al. CH/π interactions

for macroscopic interfacial adhesion design[J]. ACS Macro Letters,

2016, 5(7):858-861.

[112] WANG F, SHIH K M, LI X Y. The partition behavior of

perfluorooctanesulfonate(PFOS) and perfluorooctanesulfonamide

(FOSA)on microplastics[J]. Chemosphere, 2015, 119:841-847.

[113] BESSELING E, WEGNER A, FOEKEMA E M, et al. Effects of

microplastic on fitness and PCB bioaccumulation by the lugworm

Arenicola marina(L.)[J]. Environmental Science amp; Technology,

2013, 47(1):593-600.

[114] HERMABESSIERE L, DEHAUT A, PAUL-PONT I, et al.

Occurrence and effects of plastic additives on marine environments

and organisms:a review[J]. Chemosphere, 2017, 182:781-793.

[115] VAN OERS L, VAN DER VOET E, GRUNDMANN V. Additives in

the plastics industry[M]//The handbook of environmental chemistry.

Berlin:Springer Berlin Heidelberg, 2011:133-149.

[116] WANG F, WANG Y, XIANG L L, et al. Perspectives on ecological

risks of microplastics and phthalate acid esters in crop production

systems[J]. Soil Ecology Letters, 2022, 4(2):97-108.

[117] FAUVELLE V, GAREL M, TAMBURINI C, et al. Organic additive

release from plastic to seawater is lower under deep-sea conditions

[J]. Nature Communications, 2021, 12:4426.

[118] PALUSELLI A, FAUVELLE V, GALGANI F, et al. Phthalate

release from plastic fragments and degradation in seawater[J].

Environmental Science amp; Technology, 2019, 53(1):166-175.

[119] XU Y W, JIA W Q, HU A L, et al. Co-occurrence of light

microplastics and phthalate esters in soils of China[J]. Science of the

Total Environment, 2022, 852:158384.

[120] LIU F F, LIU G Z, ZHU Z L, et al. Interactions between

microplastics and phthalate esters as affected by microplastics

characteristics and solution chemistry[J]. Chemosphere, 2019, 214:

688-694.

[121] YAN Y Y, ZHU F X, ZHU C Y, et al. Dibutyl phthalate release from

polyvinyl chloride microplastics:influence of plastic properties and

environmental factors[J]. Water Research, 2021, 204:117597.

[122] XU B L, LIU F, BROOKES P C, et al. Microplastics play a minor

role in tetracycline sorption in the presence of dissolved organic

matter[J]. Environmental Pollution, 2018, 240:87-94.

[123] SUN M M, YE M, JIAO W T, et al. Changes in tetracycline

partitioning and bacteria/phage-comediated ARGs in microplasticcontaminated

greenhouse soil facilitated by sophorolipid[J]. Journal

of Hazardous Materials, 2018, 345:131-139.

[124] SHI J H, WU D, SU Y L, et al. Selective enrichment of antibiotic

resistance genes and pathogens on polystyrene microplastics in

landfill leachate[J]. Science of the Total Environment, 2021, 765:

142775.

[125] GUO J J, HUANG X P, XIANG L, et al. Source, migration and

toxicology of microplastics in soil[J]. Environment International,

2020, 137:105263.

[126] LV M J, ZHANG T, YA H B, et al. Effects of heavy metals on the

adsorption of ciprofloxacin on polyethylene microplastics:

mechanism and toxicity evaluation[J]. Chemosphere, 2023, 315:

137745.

[127] 郝愛紅, 趙保衛, 張建, 等. 土壤中微塑料污染現狀及其生態風險

研究進展[J]. 環境化學, 2021, 40(4):1100-1111. HAO A H,

ZHAO B W, ZHANG J, et al. Research progress on pollution status

and ecological risk of microplastics in soil[J]. Environmental

Chemistry, 2021, 40(4):1100-1111.

[128] WANG K, HAN T, CHEN X D, et al. Insights into behavior and

mechanism of tetracycline adsorption on virgin and soil-exposed

microplastics[J]. Journal of Hazardous Materials, 2022, 440:

129770.

[129] DING L, MAO R F, MA S R, et al. High temperature depended on

the ageing mechanism of microplastics under different

environmental conditions and its effect on the distribution of organic

pollutants[J]. Water Research, 2020, 174:115634.

[130] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and

mechanism of hydrophilic organic chemicals to virgin and aged

microplastics in freshwater and seawater[J]. Environmental

Pollution, 2019, 246:26-33.

[131] LI J, ZHANG K N, ZHANG H. Adsorption of antibiotics on

microplastics[J]. Environmental Pollution, 2018, 237:460-467.

[132] WEI J X, CHEN M Y, WANG J. Insight into combined pollution of

antibiotics and microplastics in aquatic and soil environment:

environmental behavior, interaction mechanism and associated

impact of resistant genes[J]. Trends in Analytical Chemistry, 2023,

166:117214.

[133] ZHU D, MA J, LI G, et al. Soil plastispheres as hotspots of antibiotic

resistance genes and potential pathogens[J]. The ISME Journal,

2022, 16:521-532.

[134] WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of

microplastics and cadmium on plant growth and arbuscular

mycorrhizal fungal communities in an agricultural soil[J].

Chemosphere, 2020, 254:126791.

[135] HOU J H, XU X J, YU H, et al. Comparing the long-term responses

of soil microbial structures and diversities to polyethylene

microplastics in different aggregate fractions[J]. Environment

International, 2021, 149:106398.

[136] QIU Y F, ZHOU S L, ZHANG C C, et al. Soil microplastic

characteristics and the effects on soil properties and biota:a

systematic review and meta-analysis[J]. Environmental Pollution,

2022, 313:120183.

[137] WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on

water evaporation and desiccation cracking in soil[J]. Science of the

Total Environment, 2019, 654:576-582.

[138] YU Y X, BATTU A K, VARGA T, et al. Minimal impacts of

microplastics on soil physical properties under environmentally

relevant concentrations[J]. Environmental Science amp; Technology,

2023, 57(13):5296-5304.

[139] CAO D D, WANG X, LUO X X, et al. Effects of polystyrene

microplastics on the fitness of earthworms in an agricultural soil[J].

IOP Conference Series:Earth and Environmental Science, 2017, 61:

012148.

[140] MONDOL M, ANGON P B, ROY A. Effects of microplastics on soil

physical, chemical and biological properties[J]. Natural Hazards

Research, 2025, 5(1):14-20.

[141] ZHANG J R, REN S Y, XU W, et al. Effects of plastic residues and

microplastics on soil ecosystems:a global meta-analysis[J]. Journal

of Hazardous Materials, 2022, 435:129065.

[142] LIU Z Q, WEN J H, LIU Z X, et al. Polyethylene microplastics alter

soil microbial community assembly and ecosystem multifunctionality

[J]. Environment International, 2024, 183:108360.

[143] MA R J, XU Z N, SUN J Y, et al. Microplastics affect C, N, and P

cycling in natural environments:highlighting the driver of soil

hydraulic properties[J]. Journal of Hazardous Materials, 2023, 459:

132326.

[144] SMITH K A. Changing views of nitrous oxide emissions from

agricultural soil:key controlling processes and assessment at

different spatial scales[J]. European Journal of Soil Science, 2017, 68

(2):137-155.

[145] YU Y X, LI X, FAN H X, et al. Dose effect of polyethylene

microplastics on nitrous oxide emissions from paddy soils cultivated

for different periods[J]. Journal of Hazardous Materials, 2023, 453:

131445.

[146] YU Z F, SONG S, XU X L, et al. Sources, migration, accumulation

and influence of microplastics in terrestrial plant communities[J].

Environmental and Experimental Botany, 2021, 192:104635.

[147] FEI Y F, HUANG S Y, ZHANG H B, et al. Response of soil enzyme

activities and bacterial communities to the accumulation of

microplastics in an acid cropped soil[J]. Science of the Total

Environment, 2020, 707:135634.

[148] HUANG Y, ZHAO Y R, WANG J, et al. LDPE microplastic films

alter microbial community composition and enzymatic activities in

soil[J]. Environmental Pollution, 2019, 254:112983.

[149] AWET T T, KOHL Y, MEIER F, et al. Effects of polystyrene

nanoparticles on the microbiota and functional diversity of enzymes

in soil[J]. Environmental Sciences Europe, 2018, 30(1):11.

[150] WANG J, LV S H, ZHANG M Y, et al. Effects of plastic film

residues on occurrence of phthalates and microbial activity in soils

[J]. Chemosphere, 2016, 151:171-177.

[151] LIU X H, LI Y Y, YU Y X, et al. Effect of nonbiodegradable

microplastics on soil respiration and enzyme activity:a metaanalysis[

J]. Applied Soil Ecology, 2023, 184:104770.

[152] YI M L, ZHOU S H, ZHANG L L, et al. The effects of three different

microplastics on enzyme activities and microbial communities in soil

[J]. Water Environment Research, 2021, 93(1):24-32.

[153] WRIGHT R J, ERNI-CASSOLA G, ZADJELOVIC V, et al. Marine

plastic debris: a new surface for microbial colonization[J].

Environmental Science amp; Technology, 2020, 54(19):11657-11672.

[154] FOULON V, LE ROUX F, LAMBERT C, et al. Colonization of

polystyrene microparticles by Vibrio crassostreae:light and electron

microscopic investigation[J]. Environmental Science amp; Technology,

2016, 50(20):10988-10996.

[155] DE TENDER C A, DEVRIESE L I, HAEGEMAN A, et al. Bacterial

community profiling of plastic litter in the Belgian part of the North

Sea[J]. Environmental Science amp; Technology, 2015, 49(16):9629-

9638.

[156] SOORIYAKUMAR P, BOLAN N, KUMAR M, et al. Biofilm

formation and its implications on the properties and fate of

microplastics in aquatic environments:a review[J]. Journal of

Hazardous Materials Advances, 2022, 6:100077.

[157] MENG L, LIANG L R, SHI Y S, et al. Biofilms in plastisphere from

freshwater wetlands: biofilm formation, bacterial community

assembly, and biogeochemical cycles[J]. Journal of Hazardous

Materials, 2024, 476:134930.

[158] ZHANG S W, LI Y S, JIANG L S, et al. Organic fertilizer facilitates

the soil microplastic surface degradation and enriches the diversity

of bacterial biofilm[J]. Journal of Hazardous Materials, 2023,459:

132139.

[159] YU Z Y, QIU D H, ZHOU T, et al. Biofilm enhances the interactive

effects of microplastics and oxytetracycline on zebrafish intestine[J].

Aquatic Toxicology, 2024, 270:106905.

[160] FENG X Y, WANG Q L, SUN Y H, et al. Microplastics change soil

properties, heavy metal availability and bacterial community in a

Pb-Zn-contaminated soil[J]. Journal of Hazardous Materials, 2022,

424:127364.

[161] JUDD K E, CRUMP B C, KLING G W. Variation in dissolved

organic matter controls bacterial production and community

composition[J]. Ecology, 2006, 87(8):2068-2079.

[162] LU J, YU Z G, NGIAM L, et al. Microplastics as potential carriers of

viruses could prolong virus survival and infectivity[J]. Water

Research, 2022, 225:119115.

[163] LI Y T, GU P, ZHANG W, et al. Effects of biodegradable and nonbiodegradable

microplastics on bacterial community and PAHs

natural attenuation in agricultural soils[J]. Journal of Hazardous

Materials, 2023, 449:131001.

[164] YU X, ZHANG Y, TAN L, et al. Microplastisphere may induce the

enrichment of antibiotic resistance genes on microplastics in aquatic

environments:a review[J]. Environmental Pollution, 2022, 310:

119891.

[165] WANG J, COFFIN S, SUN C L, et al. Negligible effects of

microplastics on animal fitness and HOC bioaccumulation in

earthworm Eisenia fetida in soil[J]. Environmental Pollution, 2019,

249:776-784.

[166] HE F L, SHI H J, GUO S Q, et al. Molecular mechanisms of nanosized

polystyrene plastics induced cytotoxicity and immunotoxicity

in Eisenia fetida[J]. Journal of Hazardous Materials, 2024, 465:

133032.

[167] KWAK J I, AN Y J. Microplastic digestion generates fragmented

nanoplastics in soils and damages earthworm spermatogenesis and

coelomocyte viability[J]. Journal of Hazardous Materials, 2021, 402:

124034.

[168] HUERTA LWANGA E, MENDOZA VEGA J, KU QUEJ V, et al.

Field evidence for transfer of plastic debris along a terrestrial food

chain[J]. Scientific Reports, 2017, 7:14071.

[169] ZHU D, BI Q F, XIANG Q, et al. Trophic predator-prey

relationships promote transport of microplastics compared with the

single Hypoaspis aculeifer and Folsomia candida[J]. Environmental

Pollution, 2018, 235:150-154.

[170] JU H, ZHU D, QIAO M. Effects of polyethylene microplastics on the

gut microbial community, reproduction and avoidance behaviors of

the soil springtail, Folsomia candida[J]. Environmental Pollution,

2019, 247:890-897.

[171] KIM H M, LEE D K, LONG N P, et al. Uptake of nanopolystyrene

particles induces distinct metabolic profiles and toxic effects in

Caenorhabditis elegans[J]. Environmental Pollution, 2019, 246:

578-586.

[172] JIN Y X, LU L, TU W Q, et al. Impacts of polystyrene microplastic

on the gut barrier, microbiota and metabolism of mice[J]. Science of

the Total Environment, 2019, 649:308-317.

[173] CHEN G Q, XIONG S Y, JING Q, et al. Maternal exposure to

polystyrene nanoparticles retarded fetal growth and triggered

metabolic disorders of placenta and fetus in mice[J]. Science of the

Total Environment, 2023, 854:158666.

[174] CHEN J H, CHEN G H, PENG H Q, et al. Microplastic exposure

induces muscle growth but reduces meat quality and muscle

physiological function in chickens[J]. Science of the Total

Environment, 2023, 882:163305.

[175] QI Y L, YANG X M, PELAEZ A M, et al. Macro - and micro -

plastics in soil-plant system:effects of plastic mulch film residues

on wheat(Triticum aestivum) growth[J]. Science of the Total

Environment, 2018, 645:1048-1056.

[176] QI Y L, OSSOWICKI A, YANG X M, et al. Effects of plastic mulch

film residues on wheat rhizosphere and soil properties[J]. Journal of

Hazardous Materials, 2020, 387:121711.

[177] LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre

plastics by crop plants via a crack-entry mode[J]. Nature

Sustainability, 2020, 3:929-937.

[178] AUSTEN K, MACLEAN J, BALANZATEGUI D, et al. Microplastic

inclusion in birch tree roots[J]. Science of the Total Environment,

2022, 808:152085.

[179] BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics

accumulate on pores in seed capsule and delay germination and root

growth of the terrestrial vascular plant Lepidium sativum[J].

Chemosphere, 2019, 226:774-781.

[180] KAL?íKOVá G, ?GAJNAR GOTVAJN A, KLADNIK A, et al.

Impact of polyethylene microbeads on the floating freshwater plant

duckweed Lemna minor[J]. Environmental Pollution, 2017, 230:

1108-1115.

[181] LIU E K, HE W Q, YAN C R.‘White revolution’to‘white pollution’:

agricultural plastic film mulch in China[J]. Environmental Research

Letters, 2014, 9(9):091001.

[182] DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al.

Microplastics can change soil properties and affect plant

performance[J]. Environmental Science amp; Technology, 2019, 53

(10):6044-6052.

[183] GONG W W, ZHANG W, JIANG M Y, et al. Species-dependent

response of food crops to polystyrene nanoplastics and microplastics

[J]. Science of the Total Environment, 2021, 796:148750.

[184] 江俊濤, 陳宏偉, 閻薪竹, 等. 聚丙烯微塑料添加對大豆和花生生

長及生理生態特征的影響[J]. 農業環境科學學報, 2023, 42(4):

761-768. JIANG J T, CHEN H W, YAN X Z, et al. Effects of

polypropylene microplastics on the growth and ecophysiological

characteristics of soybean(Glycine max) and peanut(Arachis

hypogaea L.)[J]. Journal of Agro - Environment Science, 2023, 42

(4):761-768.

[185] BERIOT N, PEEK J, ZORNOZA R, et al. Low density-microplastics

detected in sheep faeces and soil:a case study from the intensive

vegetable farming in southeast Spain[J]. Science of the Total

Environment, 2021, 755:142653.

[186] ABBASI S, MOORE F, KESHAVARZI B, et al. PET-microplastics

as a vector for heavy metals in a simulated plant rhizosphere zone[J].

Science of the Total Environment, 2020, 744:140984.

[187] DONG Y M, GAO M L, SONG Z G, et al. Microplastic particles

increase arsenic toxicity to rice seedlings[J]. Environmental

Pollution, 2020, 259:113892.

[188] YANG X, LI Z H, MA C, et al. Microplastics influence on Hg

methylation in diverse paddy soils[J]. Journal of Hazardous

Materials, 2022, 423:126895.

[189] MAHADAPPA P, KRISHNASWAMY N, KARUNANIDHI M, et al.

Effect of plastic foreign body impaction on rumen function and

heavy metal concentrations in various body fluids and tissues of

buffaloes[J]. Ecotoxicology and Environmental Safety, 2020, 189:

109972.

[190] ZHANG Z K, ZHAO L, JIN Q W, et al. Combined contamination of

microplastic and antibiotic alters the composition of microbial

community and metabolism in wheat and maize rhizosphere soil[J].

Journal of Hazardous Materials, 2024, 473:134618.

[191] ZHU J H, LIU S Q, SHEN Y, et al. Microplastics lag the leaching of

phenanthrene in soil and reduce its bioavailability to wheat[J].

Environmental Pollution, 2022, 292:118472.

[192] AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and

toxicological risk from microplastics to marine mussels[J].

Environmental Pollution, 2015, 198:211-222.

[193] PITTURA L, AVIO C G, GIULIANI M E, et al. Microplastics as

vehicles of environmental PAHs to marine organisms:combined

chemical and physical hazards to the Mediterranean mussels,

Mytilus galloprovincialis[J]. Frontiers in Marine Science, 2018, 5:

103.

[194] GONZáLEZ-SOTO N, CAMPOS L, NAVARRO E, et al. Effects of

microplastics alone or with sorbed oil compounds from the water

accommodated fraction of a North Sea crude oil on marine mussels

(Mytilus galloprovincialis)[J]. Science of the Total Environment,

2022, 851:157999.

[195] NGUYEN M K, RAKIB M R J, LIN C, et al. A comprehensive

review on ecological effects of microplastic pollution:an interaction

with pollutants in the ecosystems and future perspectives[J]. Trends

in Analytical Chemistry, 2023, 168:117294.

[196] ZHANG H X, HUANG Y M, AN S S, et al. Mulch-derived

microplastic aging promotes phthalate esters and alters organic

carbon fraction content in grassland and farmland soils[J]. Journal

of Hazardous Materials, 2024, 461:132619.

[197] DENG Y F, YAN Z H, SHEN R Q, et al. Microplastics release

phthalate esters and cause aggravated adverse effects in the mouse

gut[J]. Environment International, 2020, 143:105916.

[198] XIAO H Y, LIU Y J, YU H X, et al. Combined toxicity influence of

polypropylene microplastics and di-2-ethylhexyl phthalate on

physiological-biochemical characteristics of cucumber(Cucumis

sativus L.)[J]. Plant Physiology and Biochemistry, 2023, 201:

107811.

(責任編輯:李丹)

主站蜘蛛池模板: 国产不卡网| 欧美日韩专区| 亚洲热线99精品视频| 久久特级毛片| 综合网久久| 久久99热66这里只有精品一| 就去吻亚洲精品国产欧美| 91毛片网| 国产欧美在线观看一区| 久久香蕉国产线看精品| 欧美成人免费| 久久国产亚洲偷自| 亚洲精品人成网线在线| 免费视频在线2021入口| 中文字幕永久在线观看| 毛片视频网址| 国产精品极品美女自在线网站| 欧美精品不卡| 欧美va亚洲va香蕉在线| 色九九视频| 免费观看无遮挡www的小视频| 91麻豆精品国产91久久久久| 欧美成在线视频| 国模私拍一区二区| 99视频在线免费看| 91精品国产情侣高潮露脸| 日本高清有码人妻| 午夜综合网| 日本手机在线视频| 国产精品成| 在线亚洲天堂| 国产亚洲成AⅤ人片在线观看| 在线亚洲精品自拍| 91尤物国产尤物福利在线| 日韩在线视频网| 91在线国内在线播放老师| 免费国产福利| 亚洲精品免费网站| 干中文字幕| 亚洲欧洲日韩久久狠狠爱| 99久久国产精品无码| 日韩大乳视频中文字幕| 性网站在线观看| 国产成人无码AV在线播放动漫 | 99久久精品免费看国产免费软件| 男女男精品视频| 99伊人精品| 超清人妻系列无码专区| 国产成人精品视频一区二区电影 | 国产96在线 | 国产精品国产三级国产专业不| 无码乱人伦一区二区亚洲一| 国内精品久久久久久久久久影视| 成人噜噜噜视频在线观看| 亚洲AV无码一二区三区在线播放| 尤物国产在线| 欧美亚洲国产精品久久蜜芽| 黄色网站不卡无码| 黄色网在线免费观看| 免费毛片视频| 亚洲中文字幕23页在线| 亚洲无码A视频在线| 欧美一级色视频| 欧美在线三级| 97色婷婷成人综合在线观看| 国产鲁鲁视频在线观看| 色爽网免费视频| 五月天丁香婷婷综合久久| 少妇极品熟妇人妻专区视频| 一级香蕉人体视频| 亚洲色欲色欲www在线观看| 天天摸天天操免费播放小视频| 日本在线免费网站| 国产在线欧美| 国产精品手机在线观看你懂的| 国产综合在线观看视频| 伊人色天堂| 午夜国产大片免费观看| 欧美成人精品在线| 欧美亚洲另类在线观看| 国产00高中生在线播放| 国产一区二区视频在线|