





摘""要:桑葚是一種營養豐富、藥食同源果樹,深受消費者的喜愛。香氣是桑葚感官品質的重要因素,對消費者的購買行為起到重要作用。白長果是一種非常獨特的桑葚品種,它能散發出濃烈的類似于奶油的香味,有巨大的潛在市場價值,但關于這種香味形成的關鍵代謝物和機制尚不清楚。本研究利用GC-MS和RNA-seq技術,檢測白長果和無特殊香味的紅長果桑的關鍵香味物質(VOCs)和基因表達情況。結果表明:2個桑葚品種共檢測出661種揮發性代謝物,其中多數在白長果桑中有更高的相對含量,且47種僅在白長果桑中存在,表明白長果桑含有豐富的VOCs。312種代謝物被鑒定為差異代謝物;結合VOCs感官注釋信息和相對含量,其中70種候選VOCs被注釋為與甜、香、椰子味和奶油味的感官形成有關,可能是白長果桑獨特香氣形成的關鍵代謝物;利用相對氣味活性值(rOAV)分析,最終確定γ-葵內酯為白長果桑特殊香氣形成的關鍵VOC;通過RNA-seq鑒定19個與酯類合成相關的關鍵結構基因(包括AAT、ACX、ALDH、CYP、EHL、FAD、HPL、LOX),這些結構基因多在白長果桑果實中的高表達,可能是形成其特殊奶油香味的主要因素。本研究為不同種類桑葚的香氣差異研究提供依據,為后續桑葚的品種改良提供新思路。
關鍵詞:揮發性代謝物;相對氣味活度值;γ-葵內酯;轉錄組中圖分類號:S663.9""""""文獻標志碼:A
Unique"Flavor"Substance"Composition"and"Its"Synthetic"Pathway"of"Baichang"Mulberry"Revealed"by"Metabolome"and"Transcriptome"Analyses
WU"Huazhou1,2,"HUANG"Jingjing1,2,"LOU"Dezhao1,"GENG"Tao1,"LIN"Peiqun1,"WANG"Shuchang1*
1."National"Key"Laboratory"for"Tropical"Crop"Breeding,"Sanya,"Hainan,"572024,"China;"2."Institute"of"Environment"and"Plant"Protection,"Chinese"Academy"of"Tropical"Agricultural"Science"(Key"Laboralory"of"Integrated"Pest"Management"on"Tropical"Crops,"Ministry"of"Agriculture"and"Rural"Aflairs"/"Hainan"Key"Laboratory"for"Monitoring"and"Control"of"Tropical"Agricultural"Pests),"Haikou,"Hainan,"571101,"China;"3."School"of"Tropical"Agriculture"and"Forestry,"Hainan"University,"Haikou,"Hainan"570228,"China
Abstract:"Mulberry"is"a"fruit"tree"with"rich"nutrition"and"dual"functions"of"food"and"medicine,"which"is"deeply"loved"by"consumers."The"fragrance"is"a"significant"factor"in"the"sensory"quality"of"mulberries,"playing"a"crucial"role"in"consumer"purchasing"behavior."Mulberry"Baichang"is"a"unique"variety"that"emits"a"strong,"creamy"fragrance,"which"has"enormous"potential"market"value."However,"the"key"metabolites"and"mechanisms"responsible"for"the"formation"of"this"fragrance"are"still"unclear."In"this"study,"we"utilized"GC-MS"and"RNA-seq"technology"to"examine"the"volatile"organic"compounds"(VOCs)"and"gene"expression"in"Baichang"and"Hongchang,"which"lacking"a"distinct"fragrance."The"results"showed"that"661"volatile"metabolites"were"detected"in"both"varieties."Most"of"these"were"found"in"higher"relative"amounts"in"Baichang,"with"47"types"being"present"only"in"Baichang,"suggesting"a"rich"composition"of"VOCs"in"this"variety."A"total"of"312"metabolites"were"identified"as"differential"metabolites;"combining"the"sensory"annotation"information"and"relative"content"of"VOCs,"70"candidate"VOCs"were"annotated"as"being"related"to"the"formation"of"“sweet,"waxy,"coconut"and"oily”"sensations."These"could"potentially"be"the"key"metabolites"contributing"to"the"unique"aroma"of"Baichang."The"relative"odor"activity"value"(rOAV)"analysis"revealed"that"5-hexyldihydro-2(3H)-furanone"(also"known"as"γ-decalactone)"was"the"key"VOC"contributing"to"the"formation"of"the"special"aroma"of"Baichang."Using"RNA-seq,"19"key"structural"genes"related"to"ester"synthesis"were"screened,"including"AAT,"ACX,"ALDH,"CYP,"EHL,"FAD,"HPL"and"LOX."The"high"expression"levels"of"these"structural"genes"in"Baichang"may"contribute"to"the"unique"creamy"aroma"of"this"variety;"however,"the"underlying"mechanisms"require"further"investigation."This"study"would"provide"insights"into"the"aroma"differences"among"different"kinds"of"mulberries.
Keywords:"volatile"organic"compounds;"rOAV;"2(3H)-furanone,"5-hexyldihydro;"RNA-seq
DOI:"10.3969/j.issn.1000-2561.2025.04.006
香氣是判斷水果風味品質的重要指標之一,具有誘人香味的水果能增強消費者的購買欲望[1]。不同品種的水果具有不同的香氣特征,而具有獨特的風味品質的產品更容易在市場競爭中勝出。桑葚果實汁水豐沛、口味甜美、營養充足,既可以鮮食,也可以加工成桑葚酒、桑葚飲品或其他桑葚產品,深受市場的青睞。近期本課題組發現一種新的白長果桑,在成熟時能散發出獨特的類似奶油的香味,這在其他品種桑葚中不常見。作為差異明顯的品種,該桑葚具有巨大的育種價值和潛在商業價值。
水果的香味主要由揮發性物質(volatile"organic"compounds,"VOCs)決定,VOCs的種類包括酯類、醇類、醛類、酮類、萜類和雜環化合物等[2-3]。雖然VOCs只占果實重量的很小一部分,但是對水果的香氣起著決定性作用,對果實的口感也有一定影響。不同的VOCs給人以不同的風味感官,因此,VOCs對香氣成分的貢獻不僅僅取決于濃度,還與VOCs的閾值密切相關[4]。對于單一VOC來說,其濃度和閾值共同決定了其對香氣構成的貢獻,通常用香氣強度值(odor"activity"value,"OAV)來衡量[5]。
已有的研究顯示,酯類是VOCs中重要組成部分,對很多水果的感官風味起到決定性作用。如歐洲梨(Pyrus"spp)的主要香味來源則是十烯二酸甲酯和己基酯[6];在桃子(Prunus"persica)已經被鑒定出的100多種VOCs中,酯類對其香味有著決定性的影響[7-8]。揮發性酯類通常在果實成熟期積累更多,并為多種果實如草莓(Fragaria×"ananassa)、香蕉(Musa"acuminata)和蘋果(Malus"domestica)等提供獨特的水果風味[9-10]。植物中酯類通過脂肪酸途徑合成,涉及多個結構基因,包括丙酮酸脫羧酶(pyruvate"decarboxylase,"PDC)、乙醛脫氫酶(aldehyde"dehydrogenase,"ALDH)、酰基載體蛋白酰基轉移酶(acyl"carrier"protein-acyltransferase,"ACP)、脂肪酸脫氫酶(fatty"acid"desaturase,"FAD)、酯酰輔酶A氧化酶(acyl-CoA"oxidase,"ACX)、細胞色素P450酶(cytochrome"P450,"CYP)、脂肪酸羥化酶(fatty"acidhydr"oxylase,"FAH)、脂氧合酶(lipoxygenase,"LOX)、?環氧化物水解酶(?epoxide"hydrolase,"EHL)、裂解酶(hydroperoxide"lyase,"HPL)、乙醇脫氫酶(alcohol"dehydrogenase,"ADH)和乙酰轉移酶(acetyltransferase,"AAT)等[11-14]。
本研究利用GC-MS技術檢測白長果桑和無特殊香味的紅長果桑果實的VOCs和基因表達情況,篩選決定白長果桑特殊香氣的關鍵VOCs,并通過轉錄組鑒定與香氣形成的關鍵結構基因。本研究將為桑葚香氣的形成機制提供新的依據。
1.1""植物材料
本研究使用的試驗材料為白長果桑(BC)和紅長果桑(HC)的果實,栽培于中國熱帶農業科學研究院環境與植物保護研究所種質資源圃(海南儋州,中國)。每個品種選取9株生長狀況良好的壯年樹,每3棵作為1個生物學重復,每株取10~15個完熟果實作為樣品。取樣后立即液氮冷凍,?80"℃冰箱保存備用。
1.2""方法
1.2.1""揮發性代謝組檢測與分析""將研磨均勻的500"mg樣品加入頂空瓶中,再依次加入飽和NaCl溶液、10"μL(50"μg/mL)內標溶液,進行全自動頂空固相微萃取(HS-SPME)后備用。萃取條件:60"℃恒溫,5"min震蕩,120"μm"DVB/CWR/PDMS萃取頭置于樣品頂空瓶中萃取15"min,250"℃下解析5"min,進行GC-MS分離鑒定。取樣前,萃取頭在Fiber"Conditioning"Station中進行5"min老化,溫度為250"℃。色譜條件為DB-5MS毛細管柱,載氣為高純氦氣,恒流流速設定為1.2"mL/min,進樣口設定溫度250"℃,不分流進樣,溶劑延遲3.5"min。程序升溫設置,40"℃保持3.5"min,以10"℃/min升至100"℃,再以7"℃/min升至180"℃,最后以25"℃/min升至280"℃,保持5"min。質譜條件設置為:電子轟擊離子源(EI),離子源設定溫度230"℃,四級桿設定溫度為150"℃,質譜接口溫度為280"℃,電子能量70"eV。掃描方式為選擇離子檢測模式(SIM),定性定量離子精準掃描(GB"23200.8—2016)。
使用MassHunter軟件處理質譜分析后的下機原始數據,基于Metetware公司自建數據庫進行定性定量分析。利用主成分分析(PCA)對樣品中代謝物的差異性和可靠性進行分析驗證。使用R軟件繪制聚類熱圖,利用cor函數計算皮爾遜相關系數。以VIPgt;1和Fold"Change≥2和Fold"Change≥0.5為標準篩選差異代謝物,使用LRI"amp;"odour"database、Flavornet"and"human"odor"space和Flavor"Ingredient"Library數據庫對VOCs的感官風味特征注釋。通過R包計算VOCs的相對氣味活度值(relative"odor"activity"value,"rOAV)值[15]。
1.2.2""轉錄組測序與分析""取1.1的樣品用于轉錄組測序(RNA-seq),測序由武漢邁特維爾公司完成。使用CTAB法提取樣品RNA,利用片段化后的mRNA和隨機引物進行cDNA合成,然后在其兩端加上接頭并進行純化。
每個樣品建立1個測序文庫,用Illumina"Hiseq"X進行測序,并通過邊合成邊測序的方法進行雙端測序。
對所測讀序(read)進行過濾,然后組裝轉錄本,所用程序為Trinity,主要參數為“min_kmer_"cov2”,最后將最長的轉錄本指定為元基因(unigene)。采用DESeq"R包(1.10.1)分析2組間的差異表達,|log2(Fold"Change)|gt;1且P-valuelt;"0.05視為差異表達基因(differential"expression"genes,"DEGs)。RNA-seq的原始數據以以下ID號提交給NCBI:PRJNA1084918和PRJNA1142089。
1.2.3""qRT-PCR分析""首先,用天根RNA試劑盒提取1.1的樣品RNA;接著使用天根FastKing"gDNA"Dispelling"RT"SuperMix試劑盒反轉錄合成"cDNA;以酯類合成關途徑基因脂肪酸脫氫酶(fatty"acid"desaturase,"FAD)、酯酰輔酶A氧化酶(acyl-CoA"oxidase,"ACX)、脂氧合酶(lipoxyge na se,"LOX)、?環氧化物水解酶(?epoxide"hydrolase,"EHL)和乙酰轉移酶(acetyltransferase,"AAT)基因為目的基因,使用Primer"3.0(https://primer3.ut."ee/)軟件設計基因的qPCR引物(表1),然后通過ChamQ"Universal"SYBR"qPCR"Master"Mix試劑盒進行PCR反應,反應體系(20"μL):2×ChamQ"Universal"SYBR"qPCR"Master"Mix"10"μL,primer1"0.4"μL,primer2"0.4"μL,cDNA"2"μL,ddH2O"7.2"μL。反應程序:95"℃"15"min;95"℃"10"s,60"℃"30"s,72"℃"30"s,40個循環。以桑樹肌動蛋白(Actin)為內參基因[16]。按照2?ΔΔCt方法計算。
1.3""數據處理
本研究主要使用TBtools軟件[17]和邁維云平臺(https://cloud.metware.cn)進行熱圖繪制和數據分析。采用SPSS"27.0軟件進行獨立樣本t檢驗分析,P-valuelt;0.05和P-valuelt;0.01被認為具有統計學意義,并使用“*”和“**”表示。
2.1""白長果桑和紅長果桑成熟果實代謝組分析
白長果桑和紅長果桑的成熟果實如圖1A所示。在2個種類的桑葚成熟果實中共鑒定出661種揮發性代謝產物,分為15個種類,其中萜烯類(terpenoids)數量最多,為133個,占全部揮發性代謝產物種類的20.12%,其次為酯類(ester)和雜環化合物(heterocyclic"compound),分別占總量的16.79%和15.89%,其余為含氮化合物(nitrogen"compounds)、醛類(aldehyde)、酮類(ketone)、醇類(alcohol)、烴類(hydrocarbons)、芳烴(aromatics)、酸類(acid)、苯酚(phenol)、鹵代烴(halogenated"hydrocarbons)、胺類(amine)、硫化合物(sulfur"compounds)等成分(圖1B)。有47種揮發性代謝物僅在白長果桑中被檢測出,表明其香氣成分可能更豐富。主成分分析(PCA)顯示,同一桑葚種類之間的3個重復相互靠攏,表明樣品的重復性良好;2組之間呈明顯的分離趨勢,表明2個品種的VOCs差異較大;其中第一主成分決定了64.40%的變異率,第二主成分決定了29.14%的變異率(圖1C)。
2.2""差異揮發性代謝物分析
2個桑葚品種共鑒定出312種差異代謝物。相比于白長果桑,紅長果桑多數差異代謝物(290種)下調,僅有22種差異代謝物上調,這可能是白長果桑更有特色香氣成分的成因。根據感官體驗,白長果桑具有香味,而紅長果桑不含香味,所以影響白長果桑香味的關鍵代謝物很可能屬于下調差異代謝物(圖2A)。通過對2個品種桑葚的差異代謝物進行感官風味特征注釋,發現青香(green)、辛辣香(spicy)、木香(woody)、花香(floral)、清香(fresh)、草香(herbal)、蠟香(waxy)、脂肪香(fatty)、果味(fruity)、甜味(sweet)為排名前十的差異代謝物感官風味,其中青香、甜味、果味、脂肪香4種感官風味中含有的差異代謝物數量最多(圖2B)。
2.3""香氣成分的關鍵差異代謝物篩選
通過繪制感官風味網絡圖確定每種感官風味的關鍵差異代謝物(圖3A)。甜味、蠟香、椰子油(coconut"oily)幾種感官風味與白長果桑的嗅覺體驗一致,基于這4種感官風味,共篩選出73種相關聯的差異代謝物。白長果桑在嗅覺感官上有較為濃郁的奶香味,因此,白長果桑中與香味相關的關鍵差異代謝物的相對含量更高。5-乙基-3-羥基-4-甲基-2(5H)-呋喃酮[2(5H)-Furanone,"5-ethyl-3-hydroxy-4-methyl-]、trans,"cis-2,6-Non ad i en-1-ol、1-Nonanol三種物質的含量在紅長果桑中更高,表明其不是形成白長果桑香味的關鍵物質,而其余70種差異代謝物在白長果桑中相對含量更高,可能是造成2個種類桑葚果實香味差異的候選關鍵代謝物質(圖3B)。
2.4""相對氣味活度值(rOAV)分析
相對氣味活度值(rOAV)可以闡明每種香氣化合物對果實整體香氣特征的貢獻,與差異代謝物的含量結合分析,可以進一步尋找到造成白長果桑和紅長果桑香味存在差異的關鍵物質。由圖4可知,對白長果桑香味影響最大的4種物質分別是1-對孟烯-8-硫醇(3-Cyclohexene-1-m etha ne thiol,.alpha.,.alpha.,4-trimethyl-)、5-乙基-3-羥基-4-甲基-2(5H)-呋喃酮、3-巰基-3-甲基丁基甲酸酯[3-Mercapto-3-methylbutyl"formate"(ester)]、γ-葵內酯[2(3H)-Furanone5-hexyldihydro-]。其中5-乙基-3-羥基-4-甲基-2(5H)-呋喃酮、3-巰基-3-甲基丁基甲酸酯的rOAV值在紅長果桑中高,而在白長果桑中低,與白長果桑香味濃郁而紅長果桑無明顯香味的嗅覺感官體驗不相符。因此,推測這2種物質不是造成2個桑葚品種香味差異的關鍵物質。1-對孟烯-8-硫醇的氣味注釋為硫磺味、芳香味、柚子味、樹脂味和木頭味,與白長果桑實際的奶香味嗅覺感受相差甚遠。綜合分析,推測γ-葵內酯為白長果桑奶香味來源的主要物質,也是形成2種桑葚氣味差異的關鍵代謝產物。
2.5""轉錄組測序和差異基因分析
通過轉錄組分析,6個桑葚果實樣品分別獲得42"731"000~51"231"176個raw"reads,過濾后分別得到41"862"788~49"701"590個clean"reads和6.28~7.46"Gb的clean"base。所有樣品的錯誤率均為0.02%,Q20含量在98.06%~98.14%之間,Q30含量在94.42%~94.76%之間,GC含量在46.3%~"47.04%之間。相關性分析顯示樣品重復性較好(圖5A)。差異分析顯示,在BC"vs"HC比較組中,有1823個基因上調,2352個基因下調(圖5B)。
GO分析將差異基因歸類與生物過程(biolog ic al"process"BP)、細胞組成(cellular"component"CC)和分子功能(molecular"function"MF)3個條目,在3個比較組合中,生物過程中注釋基因數量最多的為細胞過程(cellular"process)(基因數目為2063個),細胞組成中注釋基因數量最多的為cellular"anatomical"entity"(基因數目為2689個),分子功能中注釋基因數量最多的為binding(基因數目為1932個)(圖5C)。KEGG分析將差異基因被富集到多個代謝通路,包括biosynthesis"of"secondary"metabolites、metabolic"pathways、flavone"and"flavonol"biosynthesis、alpha-
2.6""桑葚發育過程中Lactones(內脂)合成途徑基因表達情況
本研究從差異基因中篩選了與酯類合成相關的結構基因,包括1個乙酰轉移酶基因AAT(M.alba_G0004770)、1個酯酰輔酶A氧化酶ACX(M.alba_G0004521)、3個乙醛脫氫酶ALDH(M.alba_G0000606、M.alba_G0019840和M.alba_G0013314)、4個細胞色素P450酶CYP(novel.128、M.alba_G0014072、M.alba_G0006952和M.alba_G0003440)、4個環氧化物水解酶EHL(M.alba_G0008184、M.alba_G0005973、M.alba_G0000938和M.alba_G0010612)、3個脂肪酸脫氫酶FAD(novel.4905、M.alba_G0000805和M.alba_G0009644)、1個裂解酶HPL(M.alba_"G0002152)和2個脂氧合酶LOX(M.alba_"G0015824和M.alba_G0014496)。在這些結構基因中,多數成員在白長果品種中高表達,少部分在紅長果品種中高表達(附表1)。如相較于紅長果桑,M.alba_G0000606(ALDH)在白長果桑中的表達上調了14.50倍,M.alba_G0014072(CYP)上調11.14倍,M.alba_G0004521(ACX)上調了7.06倍,M.alba_G0004770(AAT)上調了2.71倍等(圖6)。這些基因可能是白長果桑獨特香氣成分形成的關鍵因素。qPCR驗證基因表達結果與轉錄組結果趨勢一致(圖7)。
香味是衡量水果品質重要的標準之一,它影響著水果的價格及銷量,一些能散發出迷人香氣的新品種水果往往更容易得到消費者的偏愛[18-19]。香味不僅對鮮食水果有著深遠的影響,對其后續加工制品,如果酒、罐頭、水果凍干、果醬等生產同樣意義重大[20-21]。部分香味物質如內酯類物質,還可以用于制作香水、食用香精或藥品等[22]。果實的香氣通常由VOCs的種類、不同含量和各組分的氣味閾值共同決定[23]。水果中的VOCs以其中萜類、酯類和脂肪酸衍生物最為常見[24]。ZHU等[25]對3個栽培品種桑葚(Morus"nigra,"Morus"macroura,"Morus"alba)香氣成分的研究顯示,Hex anal、(E)-2-Hexenal、Benzaldehyde、Methyl"benzo ate、Ethyl"benzoate、Ethyl"acetate、Ethyl"butanoate、E thyl"hexanoate、methional、3-mercapt ohexyl"acetate等是桑葚香氣形成的主要物質。然而,至今還無相關研究報道存在明顯奶油香味的桑葚品種。本研究以白長果桑和紅長果桑2個種類桑葚為樣本,共檢測到661種VOCs,其中包括大量的酯類、萜類、醛類和雜環化合物,這和前人研究是相似的。然而γ-葵內酯僅在白長果桑中具有較高的相對含量,在其他品種中未見報道,顯示了其在香氣組分上的特殊性,具有較大的潛在市場價值[26-27]。
γ-葵內酯的氣味被認為具有濃郁的奶油、堅果和焦糖的香氣,是對桃子香氣貢獻最大的揮發性物質,它使得桃子區別于其他水果[28-29]。然而,就感官而言,白長果桑散發的香氣濃郁而獨特,與桃子并不相同,這可能是由于二者其他成分的VOCs組成與含量不同所導致的。王娟等[30]研究了8個草莓品系的香氣成分,發現γ-葵內酯對京桃香草莓的獨特香味形成有決定性作用。γ-葵內酯除了是水果香味的重要組成成分之外,還是香料和食品工業中最廣泛使用的內酯之一[31]。
酯在植物中的合成途徑尚未被完全解析,脂肪酸(FAs)被認為是酯類合成的主要前體,香蕉、草莓、甜瓜(Cucumis"melo)果實的香氣主要由脂肪酸衍生物導致[10,"32]。目前已經有報道了一些脂肪酸途徑的關鍵的結構基因,包括脂肪酸去飽和酶(FAD)、醇脫氫酶(ADH)、脂氧合酶(LOX)和乙酰轉移酶(AAT)等[33]。百香果(Passiflora"edulis)上的研究顯示脂肪酸通路中的ACX13/14/"15/20、ADH13/26/33、ALDH1/4/21、HPL4/6、FAD13/50/52/53/55、PeLOX5/18、PeFAE6、PeFAH2、PeCYP7/13、PeEHL13/15、PeACP-AP1/"5/6/7、PeAAT3可能參與酯類合成的調控[14]。AdFAD1、AdALDH2、AdAAT17參與了獼猴桃(Actinidia"deliciosa)成熟過程中酯類合成的調控[34]。1-MCP顯著調控梨酯類和VOCs的釋放,調控AATs和LOX的表達[35]。AAT催化了酯生物合成的最后一步,通常果實的成熟水平和酯類含量同步增加[36]。杏(Prunus"armeniaca)、木瓜(Carica"papaya)、獼猴桃、葡萄(Vitis"vinifera)和草莓等多種水果種的AATs已被克隆和功能驗證[9,"37-40]。PENG等[41]利用產油酵母表達系統證實了PpAAT1能催化γ-葵內酯的合成。本研究中,多數脂肪酸途徑的結構基因在白長果桑果實中高表達,其中也包含1個AAT(M.alba_G0004770)。這些基因的高表達可能導致了白長果桑擁有更復雜的香氣組成和獨特香味。
關于揮發性酯類的調控,多數集中在轉錄因子對脂肪酸途徑的關鍵結構基因的轉錄調控上。ZHANG等[34]通過雙熒光素酶試驗證明了AdNAC5和AdDof4分別激活和抑制了AdFAD1啟動子活性,進而調控獼猴桃酯類的合成。NAC轉錄因子可以激活AAT表達,催化多種果實中揮發性酯類的形成,如桃中PpNAC1激活PpAAT1的表達,蘋果中MdNAC5激活MdAAT1的表達。CAO等[36]的研究表明這種調控受到表觀遺傳的調控,與果樹成熟過程中抑制標記H3K27me3的去除密切相關。關于桑葚中γ-葵內酯合成的調控機制有待于進一步探究。
本研究利用HS-SPME萃取和GC-MS技術檢測白長果桑和紅長果桑的揮發性代謝物,并通過RNA-seq篩選影響白長果桑香氣形成的關鍵基因。從代謝組中共檢測出661中揮發性代謝物,其中47種為白長果桑特有,共篩選到312種為差異代謝物,結合其相對含量、感官注釋和rOAV分析,最終確定了γ-葵內酯為白長果桑特殊香氣形成的關鍵VOC。通過RNA-seq,鑒定了19個與酯類合成相關的關鍵結構基因,包括AAT、ACX、ALDH、CYP、EHL、FAD、HPL和LOX,這些結構基因在白長果桑果實中的高表達,可能是形成其特殊奶油香味的主要因素。本研究為不同種類桑葚的香氣差異研究提供了依據,為后續桑葚的品種改良提供了新思路。
參考文獻
[1]"ZHU"J,"CHEN"F,"WANG"L,"NIU"Y,"CHEN"H"X,"WANG"H"L,"XIAO"Z."Characterization"of"the"key"aroma"volatile"compounds"in"cranberry"(Vaccinium"macrocarpon"Ait.)"using"gas"chromatography-olfactometry"(GC-O)"and"odor"activity"value"(OAV)[J]."Journal"of"Agricultural"and"Food"Chemistry,"2016,"64(24):"4990-4999.
[2]"GOFF"S"A,"KLEE"H"J."Plant"volatile"compounds:"sensory"cues"for"health"and"nutritional"value?[J]."Science,"2006,"311(5762):"815-819.
[3]"PICHERSKY"E,"GERSHENZON"J."The"formation"and"function"of"plant"volatiles:"perfumes"for"pollinator"attraction"and"defense[J]."Current"Opinion"in"Plant"Biology,"2002,"5(3):"237-243.
[4]"KLEE"H"J."Improving"the"flavor"of"fresh"fruits:"genomics,"biochemistry,"and"biotechnology[J]."New"Phytologist,"2010,"187(1):"44-56.
[5]"HE"Y"L,"QIN"H"Y,"WEN"J"L,"CAO"W"Y,"YAN"Y"P,"SUN"Y"N,"YUAN"P"Q,"SUN"B"W,"FAN"S"T,"LU"W"P,"LI"C"Y."Characterization"of"key"compounds"of"organic"acids"and"aroma"volatiles"in"fruits"of"different"Actinidia"argute"resources"based"on"high-performance"liquid"chromatography"(HPLC)"and"headspace"gas"chromatography-ion"mobility"spectrometry"(HS-GC-IMS)[J]."Foods,"2023,"12(19):"3615.
[6]"RAPPARINI"F,"PREDIERI"S."Pear"fruit"volatiles[J]."Horticultural"Reviews,"2002,"28:"237-324.
[7]"EDUARDO"I,"CHIETERA"G,"BASSI"D,"ROSSINI"L,"VECCHIETTI"A."Identification"of"key"odor"volatile"compoundsnbsp;in"the"essential"oil"of"nine"peach"accessions[J]."Journal"of"the"Science"of"Food"and"Agriculture,"2010,"90(7):"1146-1154.
[8]"JIA"H,"HIRANO"K,"OKAMOTO"G."Effects"of"fertilizer"levels"on"tree"growth"and"fruit"quality"of"'Hakuho'"peaches"(Prunus"persica)[J]."Journal"of"the"Japanese"Society"for"Horticultural"Science,"1999,"68(3):"487-493.
[9]"BEEKWILDER"J,"ALVAREZ-HUERTA"M,"NEEF"E,"VERSTAPPEN"F"W,"BOUWMEESTER"H"J,"AHARONI"A."Functional"characterization"of"enzymes"forming"volatile"esters"from"strawberry"and"banana[J]."Plant"Physiology,"2004,"135(4):"1865-1878.
[10]"SOULEYRE"E"J,"CHAGNE"D,"CHEN"X,"TOMES"S,"TURNER"R"M,"WANG"M"Y,"MADDUMAGE"R,"HUNT"M"B,"WINZ"R"A,"WIEDOW"C."The"AAT"1"locus"is"critical"for"the"biosynthesis"of"esters"contributing"to"‘ripe"apple’"flavour"in"‘Royal"Gala’"and"‘Granny"Smith’"apples[J]."The"Plant"Journal,"2014,"78(6):"903-915.
[11]"ECHEVERRA"G,"GRAELL"J,"LóPEZ"M"L,"LARA"I."Volatile"production,"quality"and"aroma-related"enzyme"activities"during"maturation"of"‘Fuji’"apples[J]."Postharvest"Biology"and"Technology,"2004,"31(3):"217-227.
[12]"LInbsp;X,"TIEMAN"D,"LIU"Z,"CHEN"K,"KLEE"H"J."Identification"of"a"lipase"gene"with"a"role"in"tomato"fruit"short-chain"fatty"acid-derived"flavor"volatiles"by"genome-wide"association[J]."The"Plant"Journal,"2020,"104(3):"631-644.
[13]"SONG"J,"BANGERTH"F."Fatty"acids"as"precursors"for"aroma"volatile"biosynthesis"in"pre-climacteric"and"climacteric"apple"fruit[J]."Postharvest"Biology"and"Technology,"2003,"30(2):"113-121.
[14]"XIA"Z"Q,"HUANG"D"M,"ZHANG"S"K,"WANG"W"Q,"MA"F"N,"WU"B,"XU"Y,"XU"B"Q,"CHEN"D,"ZOU"M"L,"XU"H"Y,"ZHOU"X"C,"ZHAN"R"L,"SONG"S."Chromosome-scale"genome"assembly"provides"insights"into"the"evolution"and"flavor"synthesis"of"passion"fruit"(Passiflora"edulis"Sims)[J]."Horticulture"Research,"2023,"1:"259-272.
[15]"YUE"Y,"WANG"C,"CHEN"Y"S,"ZHENG"M"M,"ZHANG"Y,"DENG"Q"C,"ZHOU"Q."Aroma"characteristics"of"flaxseed"milk"via"GC–MS-O"and"odor"activity"value"calculation:"imparts"and"selection"of"different"flaxseed"varieties[J]."Food"Chemistry,"2024,"432:"137095.
[16]"DAI"F"W,"ZHAO"X"T,"TANG"C"M,"WANG"Z"J,"KUANG"Z"S,"LI"Z"Y,"HUANG"J,"LUO"G"Q."Identification"and"validation"of"reference"genes"for"qRT-PCR"analysis"in"mulberry"(Morus"alba"L.)[J]."PLoS"One,"2018,"13(3):"e0194129.
[17]"GONG"P,"SHEN"Q"T,"ZHANG"M"Z,"QIAO"R,"JIANG"J,"SU"L"L,"ZHAO"S"W,"FU"S,"MA"Y,"GE"L"H,"WANG"Y"Q,"LOZANO-DURáN"R,WANG"A"M,"LI"F"F,"ZHOU"X"P."Plantnbsp;and"animal"positive-sense"single-stranded"RNA"viruses"encode"small"proteins"important"for"viral"infection"in"their"negative-sense"strand[J]."Molecular"Plant,"2023,"16(11):"1794-"1810.
[18]"LU"H"F,"ZHAO"H"F,"ZHONG"Tnbsp;L,"CHEN"D"W,"WU"Y"Q,"XIE"Z"W."Molecular"regulatory"mechanisms"affecting"fruit"aroma[J]."Foods,"2024,"13(12):"1870.
[19]"NUZZI"M,"LO"SCALZO"R,"TESTONI"A,"RIZZOLO"A."Evaluation"of"fruit"aroma"quality:"comparison"between"gas"chromatography–olfactometry"(GC–O)"and"odour"activity"value"(OAV)"aroma"patterns"of"strawberries[J]."Food"Analytical"Methods,"2008,"1(4):"270-282.
[20]"EL"HADI"M"A"M,"ZHANG"F"J,"WU"F"F,"ZHOU"C"H,"TAO"J."Advances"in"fruit"aroma"volatile"research[J]."Molecules,"2013,"18(7):"8200-8229.
[21]"SIEGMUND"B."Biogenesis"of"aroma"compounds:"flavour"formation"in"fruits"and"vegetables[M]."Amsterdam:"Elsevier."2015:"127-149.
[22]"SARTORI"S"K,"DIAZ"M"A"N,"DIAZ-MU?OZ"G."Lactones:"classification,"synthesis,"biological"activities,"and"industrial"applications[J]."Tetrahedron,"2021,"84:"132001.
[23]"NIU"Y"W,"ZHU"Q,"XIAO"Z"B."Characterization"of"perceptual"interactions"among"ester"aroma"compounds"found"in"Chinese"Moutai"Baijiu"by"gas"chromatography-olfactometry,"odor"Intensity,"olfactory"threshold"and"odor"activity"value[J]."Food"Research"International,"2020,"131:"108986.
[24]"LIU"J,"YIN"X,"KOU"C"X,"THIMMAPPA"R,"HUA"X,"XUE"Z"Y."Classification,"biosynthesis"and"biological"function"of"triterpene"esters"in"plants[J]."Plant"Communications,"2024,"5(4):"100845.
[25]"ZHU"J"C,"WANG"L"Y,"XIAO"B"Z,"NIU"Y"W."Characterization"of"the"key"aroma"compounds"in"mulberry"fruits"by"application"of"gas"chromatography–olfactometry"(GC-O),"odor"activity"value"(OAV),"gas"chromatography-mass"spectrometry"(GC–MS)"and"flame"photometric"detection"(FPD)[J]."Food"Chemistry,"2018,"245:"775-785.
[26]"ELMAC"Y,"ALTU?"T."Flavour"evaluation"of"three"black"mulberry"(Morus"nigra)"cultivars"using"GC/MS,"chemical"and"sensory"data[J]."Journal"of"the"Science"of"Food"and"Agriculture,"2002,"82(6):"632-635.
[27]"FENG"Y"M,"LIU"M,"OUYANG"Y"A,"ZHAO"X"F,"JU"Y"L,"FANG"Y"L."Comparative"study"of"aromatic"compounds"in"fruit"wines"from"raspberry,"strawberry,"and"mulberry"in"central"Shaanxi"area[J]."Food"amp;"Nutrition"Research,"2015,"59(1):"29290.
[28]"PENG"B,"YU"M"M,"ZHANG"B"B,"XU"J"L,"MA"R."Differences"in"PpAAT1"activity"in"high-and"low-aroma"peach"varieties"affect"γ-decalactone"production[J]."Plant"Physiology,"2020,"182(4):"2065-2080.
[29]"ZHANG"L"P,"LI"H"Y,"GAO"L,"QI"Y"J,"FU"W"Y,"LI"X"W,"ZHOU"X,"GAO"Q"K,"GAO"Z"S,"JIA"H"J."Acyl-CoA"oxidase1"is"involved"in"γ-decalactone"release"from"peach"(Prunus"persica)"fruit[J]."Plant"Cell"Reports,"2017,"36:"829-842.
[30]"王娟,"孫瑞,"王桂霞,"常琳琳,"孫健,"鐘傳飛,"董靜,"張運濤,"ULRICH"D."8個草莓品種"(系)"果實特征香氣成分比較分析[J]."果樹學報,"2018,"35(8):"967-976.WANG"J,"SUN"R,"WANG"G"X,"CHANG"L"L,"SUN"J,"ZHONG"C"F,"DONG"J,"ZHANG"Y"T,"ULRICH"D."Comparative"analysis"of"characteristic"aroma"components"in"fruits"of"eight"strawberry"cultivars"(lines)[J]."Journal"of"Fruit"Science,"2018,"35(8):"967-976."(in"Chinese)
[31]"WACHé"Y,"AGUEDO"M,"NICAUD"J"M,"BELIN"J"M."Catabolism"of"hydroxyacids"and"biotechnological"production"of"lactones"by"Yarrowia"lipolytica[J]."Applied"microbiology"and"biotechnology,"2003,"61:"393-404.
[32]"EL-SHARKAWY"I,"MANRíQUEZ"D,"FLORES"F"B,"REGAD"F,"BOUZAYEN"M,"LATCHE"A,"PECH"J"C."Functional"characterization"of"a"melon"alcohol"acyl-transferase"gene"family"involved"in"the"biosynthesis"of"ester"volatiles."Identification"of"the"crucial"role"of"a"threonine"residue"for"enzyme"activity[J]."Plant"Molecular"Biology,"2005,"59:"345-362.
[33]"ZHOU"D"D,"SUN"Y,"LI"M"Y,"ZHU"T,"TU"K."Postharvest"hot"air"and"UV-C"treatments"enhance"aroma-related"volatiles"by"simulating"the"lipoxygenase"pathway"in"peaches"during"cold"storage[J]."Food"Chemistry,"2019,"292:"294-303.
[34]"ZHANG"A"D,"ZHANG"Q"Y,"LI"J"Z,"GONG"H"S,"FAN"X"G,"YANG"Y"Q,"LIU"X"Q,"YIN"X"R."Transcriptome"co-expre s sion"network"analysis"identifies"key"genes"and"regulators"of"ripening"kiwifruit"ester"biosynthesis[J]."BMC"Plant"Biology,"2020,"20:"1-12.
[35]"LI"G"P,"JIA"H"J,"LI"J"H,"LI"H"X,"TENG"Y"W."Effects"of"1-MCP"on"volatile"production"and"transcription"of"ester"biosynthesis"related"genes"under"cold"storage"in"‘Ruanerli’"pear"fruit"(Pyrus"ussuriensis"Maxim.)[J]."Postharvest"Biology"and"Technology,"2016,"111:"168-174.
[36]"CAO"X"M,"WEI"C"Y,"DUAN"W"Y,"GAO"Y,"KUANG"J"F,"LIU"M"C,"CHEN"K"S,"KLEE"H,"ZHANG"B."Transcriptional"and"epigenetic"analysis"reveals"that"NAC"transcription"factors"regulate"fruit"flavor"ester"biosynthesis[J]."The"Plant"Journal,"2021,"106(3):"785-800.
[37]"BALBONTIN"C,"GAETE-EASTMAN"C,"FUENTES"L,"FIG U EROA"C"R,"HERRERA"R,"MANRIQUEZ"D,"LAT CH E"A,"PECH"J"C,"MOYA-LEO?N"M"A"A."VpAAT1,"a"gene"encoding"an"alcohol"acyltransferase,"is"involved"in"ester"biosynthesis"during"ripening"of"mountain"papaya"fruit[J]."Journal"of"Agricultural"and"Food"Chemistry,"2010,"58(8):"5114-5121.
[38]"GONZáLEZ-AGüERO"M,"TRONCOSO"S,"GUDE NSC HWAGER"O,"CAMPOS-VARGAS"R,"MOYA-LEóN"M"A,"DEFILIPPI"B"G."Differential"expression"levels"of"aroma-"rela t ed"genes"during"ripening"of"apricot"(Prunus"armeniaca"L.)[J]."Plant"Physiology"and"Biochemistry,"2009,"47(5):"435-440.
[39]"GüNTHER"C"S,"CHERVIN"C,"MARSH"K"B,"NEWCOMB"R"D,"SOULEYRE"E"J."Characterisation"of"two"alcohol"acyltransferases"from"kiwifruit"(Actinidia"spp.)"reveals"distinct"substrate"preferences[J]."Phytochemistry,"2011,"72(8):"700-"710.
[40]"WANG"J"H,"LUCA"V"D."The"biosynthesis"and"regulation"of"biosynthesis"of"Concord"grape"fruit"esters,"including"‘foxy’"methylanthranilate[J]."The"Plant"Journal,"2005,"44(4):"606-619.
[41]"PENG"B,"XU"J"L,"CAI"Z"X,"ZHANG"B"B,"YU"M"L,"MA"R"J."Different"roles"of"the"five"alcohol"acyltransferases"in"peach"fruit"aroma"development[J]."Journal"of"the"American"Society"for"Horticultural"Science,"2020,"145(6):"374-381.