摘 要:【目的】桉樹是我國三大速生樹種之一,作為廣西林業經濟的四大支柱之一,具有重要的經濟、社會和生態價值。隨著種植面積的擴大,生態環境的變化以及管理不善,桉樹葉部病害發生日趨嚴重,影響桉樹生長,制約了桉樹產業的健康發展。桉樹生長迅速,葉部病害初期難以發現,成災后導致葉片大面積脫落,植株生長時間縮短,生長緩慢,造成了重大經濟損失。明確桉樹葉部病害病原種類,探索桉樹葉部病害生物防治方法,制定合理的病害防治方案。【方法】基于柯赫法則進行致病性測定,明確病原菌,利用形態學特征、rDNAITS序列分析對病原菌進行鑒定,同時采用平板對峙法從桉樹葉表微生物中篩選病原菌拮抗菌,并對其進行鑒定,并開展了生防細菌的防效評價,為病害的生物防治提供基礎?!窘Y果】從大桂山國有林場桉樹葉部分離出4種病原真菌,分別為F202310093、F202310094、F202310095、F202310096,其導致的葉部病害癥狀與林間發病癥狀一致,結合形態學特征、rDNA-ITS序列分析4種真菌分別為果生炭疽菌Colletotrichum fructicola、蘭花炭疽菌C. cliviicola、暹羅炭疽菌C. siamense和桉樹墊殼孢Coniella quercicola。平板對峙法篩選出對以上4種病原菌均有明顯拮抗作用的菌株B2311001,經形態學及16s rDNA序列分析,鑒定其為枯草芽孢桿菌Bacillus subtillis。拮抗細菌的防效優于嘧菌酯,其中對果生炭疽菌的盆栽防效為84.01%,其次為暹羅炭疽菌,防效為83.67%,防治效果最低為桉樹墊殼孢,林間防效為81.33%?!窘Y論】研究結果首次報道蘭花炭疽菌、暹羅炭疽菌為桉樹葉部病害病原菌。本研究篩選了桉樹葉部病原菌的拮抗細菌,豐富了桉樹葉部病害生防資源,為桉樹葉部病害生物防治提供理論基礎。
關鍵詞:桉樹;病原菌;分離;鑒定;拮抗細菌
中圖分類號:S792.39 文獻標志碼:A 文章編號:1673-923X(2025)03-0037-10
基金項目:廣西自籌經費林業科技項目(桂林科研〔2022ZC〕第17、24號);中央財政林草科技推廣示范項目(〔2023〕TG10號)。
Molecular identification of pathogenic bacteria in Eucalyptus leaves and evaluation of the control effect of phyllosphere antagonistic bacteria YU Pingfu1, LI Xingyu2, WANG Jichun1, ZHOU Juan1, XU Shiping2,3, HE Yuanhao2, DENG Xiaojun2,3, CHEN Xiaolong1
(1. Guangxi Daguishan State-owned Forest Farm, Hezhou 542899, Guangxi, China; 2. College of Forestry, Central South University of Forestry Technology, Changsha 410004, Hunan, China; 3. Guangxi Forestry Research Institute, Nanning 530002, Guangxi, China)
Abstract:【Objective】Eucalyptus is one of the three fast-growing tree species in China, and as one of the four pillars of Guangxi’s forestry economy, it has important economic, social and ecological values. With the expansion of planting area, the change of ecological environment and poor management, the occurrence of Eucalyptus leaf diseases is becoming more and more serious, which affects the growth of Eucalyptus and restricts the healthy development of Eucalyptus industry. Eucalyptus grows rapidly, leaf diseases are difficult to detect in the early stage, and after the disaster, the leaves are lost in a large area, the plant growth cycle is shortened, and the growth is slow, causing significant economic losses. In order to identify the diseases pathogenic fungi, enriching the biological control resources of Eucalyptus leaf diseases and formulate a reasonable disease control plan.【Method】Based on the Koch rule to determine the pathogenicity, identify the pathogenic fungi, use morphological characteristics and rDNA-ITS sequence analysis to identify the pathogenic fungi, and use the plate confrontation method to screen the pathogenic antagonistic bacteria from the surface of Eucalyptus leaves, and identify them, and the evaluation of the control efficacy of biocontrol bacteria was also carried out, so as to provide a basis for the biological control of the Eucalyptus leaf diseases.【Result】The results showed that four pathogenic fungi were isolated from the leaves of eucalyptus trees in Da Gui Shan Stateowned forest farm, namely F202310093, F202310094, F202310095 and F202310096, and the leaf disease symptoms caused by them were consistent with the onset symptoms of forest disease. Combined with morphological characteristics and rDNA-ITS sequence analysis, the four fungi were Colletotrichum fructicola, C. cliviicola, C. siemese and Coniella quercicola. The strains B2311001 with obvious antagonism to the above four pathogenic fungi were screened and identified as Bacillus subtillis by plate confrontation method which identified as Bacillus subtilis by morphological and 16s rDNA sequence analysis. The control effect of antagonistic bacteria was better than that of azoxystrobin, and the potted control effect against C. fructicola was 84.01%, followed by C. siemese with 83.67%, and the lowest control effect was Coniella quercicola, with an interforest control effect of 81.33%. C. cliviicola and C. siamense was first reported as a pathogenic fungi of Eucalyptus leaves disease.【Conclusion】In this study, the antagonistic bacteria of eucalyptus leaf pathogens were screened, and the biocontrol resources of Eucalyptus leaf diseases were enriched, and a theoretical basis was provided for the biological control of Eucalyptus leaf diseases.
Keywords: Eucalyptus robuasta; pathogens; segregation; identification; antagonistic bacteria
桉樹是桃金娘科Myrtaceae桉屬Eucalyptus、杯果木屬Angophora和傘房屬Corinbia植物的總稱,是世界三大速生造林樹種之一,具有生長周期短、輪伐期短、易存活、用途廣等優點[1]。目前,我國桉樹人工林面積超過450萬hm2,廣西壯族自治區(以下簡稱廣西)的桉樹種植面積和蓄積量均位列全國第一[2]。桉樹人工林林相結構單一,生態系統脆弱,同時隨著種植面積的不斷擴大和栽培環境的變化,導致病蟲害頻發,威脅著桉樹產業的可持續發展。據調查,桉樹的葉部病害主要有炭疽病Colletotrichum gloeosporioides、焦枯病Cylindrocladium quinqueseptatum、紫斑病Phaeoseptoria eucalypti、輪紋葉斑病Coniella fragariae、擬盤多毛孢葉斑病Pestalotiopsis sp.和墊殼霉葉斑病Coniella granati等。其中國內對桉樹炭疽病病原菌的報道僅限于膠孢炭疽菌和博寧刺盤孢C. boninense[3-4],而對于本研究發現的病原菌蘭花炭疽菌和暹羅炭疽菌研究屬首次在桉樹葉部病害病原中報道。目前桉樹葉部病害的防治主要以化學防治為主,但化學防治易污染環境、導致耐藥性產生,而生物防治可有效解決這些問題。
2022—2023年,廣西大桂山林場暴發了大面積的桉樹葉部病害,導致葉片過早脫落,縮短了生長時間,降低了蓄積量的增長,影響了桉樹產業的發展。為明確廣西大桂山林場桉樹葉部病害的病原菌種類,本研究對發病植株葉部病原菌進行分離、致病性測定,結合形態學及rDNA-ITS序列分析確定了病原菌種類,并從桉樹葉片表面篩選對病原菌具有拮抗作用的細菌,測定其盆栽和林間防效,以期為桉樹葉部病害的生物防治提供理論基礎。
1 材料與方法
1.1 試驗材料
1.1.1 樣地概況
大桂山林場為廣西壯族自治區直屬國有十三家林場之一。23°58′33″~24°14′25″N,111°20′05″~111°54′39″E,林場屬于低山丘陵地貌類型,土壤以山地紅壤為主,濕潤亞熱帶季風氣候,年平均氣溫19.3 ℃,年平均降水量2 056 mm。樣地造林品種為DH32-29,造林時間為2017年。
1.1.2 樣品采集與分離純化
2023年6月在廣西壯族自治區大桂山林場桉樹種植地進行調查,采集桉樹發病葉片,并記錄病害發生的特點和癥狀。采用常規組織分離法分離病原菌。
1.1.3 培養基
PDA培養基:馬鈴薯200 g,葡萄糖20 g,瓊脂15 g,蒸餾水1 000 mL,pH值7.4~7.6,121 ℃,滅菌20 min。LB固體培養基:胰蛋白胨10 g,氯化鈉10 g,酵母提取物5 g,瓊脂15 g,蒸餾水1 000 mL,pH值自然,121 ℃,滅菌20 min。PDA和LB液體培養基不加瓊脂即可。
1.2 病原菌的分離、純化與培養
切取病健交界處的發病組織3~5 mm的小塊,將切取好的發病組織放入75%酒精中浸泡2~3 s后取出發病組織并放入NaClO溶液中浸泡5~10 s,放入無菌水中漂洗3~5次,用滅菌的吸水紙將表面水分吸干后,移至加有0.15 mol/L氯霉素的PDA固體培養基上,28 ℃,培養3~5 d。待真菌長出后,純化。拍照并記錄真菌的菌落顏色、形態及生長狀態,繼續培養一段時間在顯微鏡下觀察其孢子,菌絲形態,并拍照記錄。
1.3 致病性測定
采摘新鮮的正常桉樹葉片,將葉柄用石蠟封口。葉片表面用酒精和NaClO溶液依次進行消毒處理5~10 s,無菌水洗滌3次以上。用5 mm打孔器在培養5~7 d的真菌菌塊邊緣打孔,菌餅置于葉片表面,以不接真菌的PDA菌餅為對照。葉片置于無菌培養皿中,無菌水浸濕脫脂棉28 ℃,黑暗條件保濕培養5~7 d,觀察并記錄其發病情況。
1.4 病原菌的鑒定
將病原菌接入PDA液體培養基中,28 ℃160 r/min培養5~7 d。采用CTAB法進行真菌DNA的提取,以真菌ITS序列通用引物ITS1(TCCGTAGGTGAACCTGCGG)和ITS4(TCCTCCGCTTATTGATATGC)進行PCR擴增。PCR擴增體系:2×TsingKEMasterMix 25 μL、正反向引物(10 μm)各1 μL、50 ng/μL DNA 1 μL、ddH2O 22 μL。反應條件:94 ℃預變性10 min;94 ℃變性30 s,55 ℃退火30 s,72 ℃延伸1.5 min,循環30次;72 ℃保溫10 min。將擴增產物送至擎科生物科技公司進行測序。在GenBank中用Blast搜索、下載與測定的片段相關的序列信息,用MAGE進行比對并用N-J法構建系統發育樹。對于由序列長度多態性所造成的空位(gap),在運算中處理為缺失(missing)狀態。利用bootstrap(1 000次重復)檢驗各分支的置信度。
1.5 拮抗菌的分離、篩選及鑒定
1.5.1 菌株的分離和純化
將桉樹葉片表面清水沖洗,于20 mL無菌水離心管中超聲振蕩5~10 min,取200 μL振蕩后的液體涂布于LB培養基中,28 ℃培養24~48 h,挑取單菌落進行純化。純化后的菌種于4 ℃保存。
1.5.2 拮抗菌株的篩選
采用平板對峙法,將直徑為6 mm的病原菌菌餅放于PDA平板中央,細菌距菌餅3 cm處畫線,28 ℃培養,4 d后觀察記錄抑菌帶的有無及大小,以純病原菌為對照,每組重復3次。
1.5.3 拮抗菌株的鑒定
形態觀察,觀察拮抗菌株菌落、菌體形態特征,并對菌株進行革蘭氏染色。主要生理生化測定,參照《常見細菌系統鑒定手冊》[5]和《伯杰細菌鑒定手冊》[6]的方法,對菌株的生理生化特性進行測定:接觸酶反應、糖發酵測定、需氧性測定、淀粉水解、明膠液化、甲基紅試驗、V.P試驗、H2S產生試驗等。分子鑒定,拮抗菌株接于LB液體培養基中,180 r/min培養16 h,取菌懸液于離心管中,12 000 r/min離心去上清。細菌DNA提取采用天根細菌DNA細菌提取試劑盒。以細菌通用引物27F (5′-AGAGTTTGATCCTGGCTCAG-3′)和1492R (5′-TACGACTT AACCCCAATCGC-3′)進行PCR擴增。PCR擴增程序:94 ℃預變性3 min;進入PCR循環,94 ℃ 30 s,58 ℃ 30 s,72 ℃ 1 min,35個循環;72 ℃最后延伸5 min。1%的瓊脂糖凝膠檢測擴增產物,然后將擴增產物送交北京擎科生物科技股份有限公司進行測序。序列分析同1.4。
1.6 拮抗菌株防效測定
1.6.1 盆栽防效測定
病原菌孢子懸浮液的制備,將桉樹葉片四種病原菌果生炭疽菌、蘭花炭疽菌、暹羅炭疽菌和桉樹墊殼孢在PDB液體上28 ℃培養,待充分產孢后,過濾菌絲,得到孢子懸浮液,將孢子含量調到10×10倍視野80~100個孢子。
拮抗菌發酵液的制備用150 mL的三角瓶裝入50 mL LB培養液(pH值7.0),滅菌,接種1 mL拮抗細菌菌液(108 CFU/mL),28 ℃,140 r/min振蕩培養72 h。
防效測定,選取生長一致的3個月的實生桉樹苗,每個處理3株苗,分別設3次重復。將預先制好的拮抗菌發酵液、化學對照劑及清水噴灑在桉樹苗葉片上,3 d后,接種病原菌孢子懸浮液(80~100個/視野)。化學對照藥劑:250 g/L嘧菌酯SC125 mg/L,清水為對照CK,28 ℃保濕培養,7 d后待對照桉樹葉充分發病后,進行病情調查并計算病情指數和防治效果。桉樹葉部病害的分級標準見表1(以葉片為單位)。
1.6.2 林間防效測定
林間防效測定,在廣西大桂山林場桉樹苗圃進行。試驗設置3個處理:拮抗細菌菌液(108 CFU/ mL) 3 000 mL/hm2,嘧菌酯(250 g/L)SC 500 mL/hm2,空白對照。3月初開始施藥,每隔7 d施用1次,連續施用3次。每個處理50 m2,3個重復。末次用藥7 d后,統計病情指數并計算防效。
2 結果與分析
2.1 病原菌分離與致病性測定
對采集到的桉樹病葉進行病原菌分離純化,經桉樹葉片回接驗證獲得致病菌株4株,分別為F202310093、F202310094、F202310095、F202310096。
F202310093、F202310094、F202310095自然發病癥狀相似,侵染初期,葉片邊緣出現褪綠斑點,隨著病情發展,病斑逐漸擴大,侵染后期,病斑為褐色,葉片出現形變,甚至枯萎的癥狀,濕潤條件下,病斑上出現粉紅色分生孢子堆。F202310096自然發病癥狀感病葉片初期出現針頭狀紫色斑點,小斑逐漸擴大,后期病斑灰褐色,當條件適宜時,病斑上形成少量褐色至黑色子實體。
將F202310093、F202310094、F202310095、 F202310096分別回接到桉樹健康葉片上,其感病癥狀與自然發病葉片癥狀完全一致,說明這些真菌是大桂山林場桉樹葉部病害的病原菌。F202310093、F202310094、F202310095的室內接種(人工誘發)的感病癥狀均出現不同程度的褐色或黑褐色圓形病斑,但存在一定的差異。F202310093接種健康葉片7 d后病斑部位即可見粉紅色孢子堆;F202310094接種葉片,發病后病斑顏色較深;F202310095接種葉片病斑部位氣生菌絲繁茂。F202310096病斑顏色為灰褐色的,且病斑邊緣不規整,后期可見黑色子實體(圖1)。


2.2 病原菌培養特性和形態特征
4株病原菌均在PDA培養基平板上正常生長,28 ℃黑暗培養。菌株F202310093菌落圓盤狀,邊緣整齊,菌絲絨毛狀,灰黑色,菌落背面顏色相同,后期形成粉紅色孢子堆;菌絲細長、分枝狀,有隔;分生孢子單胞,無色,長橢圓形,大小7~22 μm×3.5~5 μm(圖2A—C)。菌株F202310094菌落圓盤狀,邊緣整齊,菌絲絨毛狀,灰白色,菌落背面顏色相同,后期形成黑色的子實體;菌絲細長,樹狀分枝,有隔。子囊雙壁,內生7~8個子囊孢子,子囊孢子單胞或雙胞,長橢圓形,兩頭梢尖,大小9.5~25 μm×5~10 μm;分生孢子單胞,無色,長橢圓形,大小6~20 μm×3~5.5 μm(圖2D—G)。菌株F202310095菌落圓盤狀,邊緣整齊,菌絲絮狀,氣生菌絲繁茂,灰白色,菌落背面顏色相同,7 d后菌落上可見黑色產孢結構;菌絲細長,樹狀分枝,有隔;分生孢子單胞或雙胞,無色,圓柱形,大小8~20 μm×5.5~8 μm(圖2H—J)。菌株F202310096菌落邊緣波紋狀,輻射狀延伸,菌絲白色,菌落背面顏色相同,后期菌落上有黑色產孢結構;菌絲細長、分枝狀,有隔;分生孢子單胞,無色,紡錘狀,大15~35 μm×2.5~5 μm(圖2K—M)。

2.3 病原菌分子生物學鑒定
采用真菌ITS序列通用引物,對菌株F202310093、F202310094、F202310095和F202310096進行PCR擴增,得到有效序列分別為 560、552、552和590 bp。在NCBI中對4株病原菌的rDNA-ITS序列進行比對,下載相似性97%及以上序列,通過構建系統發育樹,進行系統進化分析(圖3)。菌株F202310093與C. fructicola聚在同一個分支上,結合形態特征,初步判定F202310093為果生炭疽菌。菌株F202310094與C. cliviicola聚在同一個分支上,結合形態特征,初步判定F202310094為蘭花炭疽菌。菌株F202310095與C. siamense聚在同一個分支上,結合形態特征,初步判定F202310093為暹羅炭疽菌。菌株F202310096與C. quercicola聚在同一個分支上,結合形態特征,初步判定F202310093為桉樹墊殼孢(圖4)。

2.4 拮抗菌的分離、篩選及鑒定
2.4.1 拮抗菌的篩選
從桉樹葉面分離純化出163株細菌,篩選出對果生炭疽菌、蘭花炭疽菌、暹羅炭疽菌和桉樹墊殼孢具有拮抗作用的細菌15株,其中對4株病原菌均具有拮抗效果且效果最佳的細菌1株B2311001(表2)。表中對4株病原菌同時具有拮抗效果的細菌8株,只對炭疽屬具有拮抗效果的細菌5株,只對墊殼孢具有拮抗效果的細菌2株。表明不同的拮抗細菌之間拮抗性能存在差異。
2.4.2 拮抗菌的鑒定
1)形態學特征 B2311001在LB平板上,30℃培養,呈現乳白色,菌落表面粗糙不透明,菌落濕潤,邊緣不整齊,皺褶,不透明,不產生色素。革蘭氏染色陽性,菌體桿狀,鏈狀排列,產生芽孢,中生,芽孢橢圓形,芽孢囊不明顯膨大(圖5)。

2)生理生化特征 B2311001菌株的生理生化特征如表3所示,結果表明,拮抗菌株B2311001的生化反應葡萄糖產酸,V.P、接觸酶、需氧性測定呈陽性,硫化氫、吲哚產生及甲基紅反應陰性,其生長能水解淀粉、明膠等。B2311001與枯草芽孢桿菌的特征基本一致。

3)分子生物學鑒定結果 對分離得到的拮抗細菌B2311001進行分子鑒定,所得序列在NCBI 數據庫中進行BLAST 比對,并與相關菌種構建系統發育樹(圖6)。經比對,B2311001與B. subtillis有較高的親緣性,結合形態特征,初步判定為枯草芽孢桿菌。

2.5 拮抗細菌的防效測定
2.5.1 盆栽防效測定
對拮抗菌株B2311001的盆栽防效測定,結果見表4。由表4可以看出拮抗細菌B2311001對由果生炭疽菌、蘭花炭疽菌、暹羅炭疽菌和桉樹墊殼孢4種病原菌引起的桉樹葉部病害都有很好的防治效果,優于嘧菌酯。尤其對果生炭疽菌的防治效果最佳,達到了84.01%,其次為暹羅炭疽菌,防效為83.67%,防治效果最低為桉樹墊殼孢。

2.5.2 林間防效測定
對拮抗細菌B2311001的林間防效測定,結果見表5。林間防效結果表明,經拮抗細菌B2311001(108 CFU/ mL)處理的桉樹葉部病害病情指數和防效分別為17.83,81.33%,優于嘧菌酯(250 g/L)SC。

3 討 論
桉樹由于適應性良好、生長速度快以及高利用率,在我國種植面積不斷擴大。但隨著大面積桉樹純林的營造,病害的發生與危害也日趨嚴重,已經嚴重制約桉樹產業的健康發展。據統計2022年廣西桉樹人工林病害發生面積2.10萬hm2,與2018年相比發生面積增長了16.67%[2]。桉樹病害病原真菌種類繁多,達到1 350個種左右。羅基同等對廣西速生豐產桉樹進行病害調查,鑒定出30種傳染性病害,其中葉部病害15種,主要包括草莓墊殼孢菌C. fragariae引起的輪紋葉斑病、帚梗柱孢菌Cylindrocladium sp.引起的焦枯病、桉殼褐針孢菌P. eucalypti引起的紫斑病、灰葡萄孢菌Botrytis cinerea引起的灰霉病[7-10]。在本研究中,大桂山林場的病害以炭疽病、葉斑病為主。炭疽菌Colletotrichum spp.寄主范圍廣泛,所引起的植株病害十分普遍,例如梨炭疽病、黃柏炭疽病、芒果炭疽病、草莓炭疽病、錦葵炭疽病、核桃炭疽病等,受到炭疽菌侵染的植株經濟價值下降[11-14]。目前國內外研究人員分離到桉樹炭疽病病原有可可炭疽菌C. theobromicola、果生炭疽菌、西加羅炭疽菌C. cigarro、大豆炭疽病菌C. truncatum、卡哈瓦炭疽菌C. kahawae、辣椒炭疽菌C. capsici、寧博炭疽菌、 尖孢炭疽菌C. acutatum、香蕉炭疽菌C. musae[15-21]。本研究中桉樹葉片的炭疽病菌,通過形態學以及基于rDNA-ITS序列的系統發育分析,大桂山林場的桉樹炭疽病病原菌主要有果生炭疽菌、蘭花炭疽菌和暹羅炭疽菌3種,其中蘭花炭疽菌和暹羅炭疽菌首次在桉樹上分離到。墊殼孢屬可引起多種植物病害,桉樹上主要的病原有C. quercicola[22-24]。本研究中分離到的葉枯病病原菌,通過形態學及基于rDNA-ITS序列的系統發育分析屬于C. quercicola。
廣西屬亞熱帶氣候,雨量充沛,熱量豐富,發展桉樹人工林具有得天獨厚的條件,同時這些條件也為病原菌的生長提供了良好的條件。桉樹人工林以生產木材為主要目的,純林林相結構單一,生態結構較為脆弱。近年來,隨著桉樹人工種植產業的不斷發展,種植面積的不斷擴大,病蟲害問題日趨嚴重。桉樹生長迅速,樹冠的葉部病害極易被忽視,但葉部病害導致葉片過早脫落,使得桉樹生長周期縮短,嚴重地影響了蓄積量的積累。因此,開展桉樹葉部病害防治的相關研究迫在眉睫。桉樹病害的防治通常采用化學防治,但其對環境影響大、易產生抗藥性,生物防治可有效解決這些問題。本研究篩選出拮抗細菌15株,但不同的拮抗細菌具有不同的抑菌譜,僅菌株B2311001對4株病原菌均具有較好的拮抗效果,并且在盆栽試驗和林間試驗的防治效果均優于嘧菌酯。經形態學和系統發育分析鑒定拮抗細菌B2311001為枯草芽孢桿菌。芽孢桿菌最突出的特征是生長快、營養簡單,能產生耐熱抗逆的芽孢,這也有利于生防菌劑的生產、劑型加工及在環境中的存活、定殖與繁殖,而且批量生產工藝簡單,成本也較低,施用方便,是一種理想的生防微生物[25]。鐘雅婷等[26]發現貝萊斯芽孢桿菌B. velezensis可以抑制桉樹葉部病害輪斑病的病原菌輪斑病菌C. eucalyptorum的生長,未來可以測定菌株B2311001對輪斑病菌的拮抗效果,并考慮將枯草芽孢桿菌和貝萊斯芽孢桿菌制成復合菌劑,擴大菌劑的防治范圍。
4 結 論
本研究從桉樹葉部分離出4種病原真菌,分別為果生炭疽菌、蘭花炭疽菌、暹羅炭疽菌和桉樹墊殼孢,獲得了一株拮抗細菌枯草芽孢桿菌B2311001,并進行了初步的盆栽防效和林間防效試驗,豐富了桉樹葉部病害生物防治資源。
參考文獻:
[1] 黃國勤,趙其國.廣西桉樹種植的歷史、現狀、生態問題及應對策略[J].生態學報,2014,34(18):5142-5152. HUANG G Q, ZHAO Q G. The history, status quo,ecological problems and countermeasures of Eucalyptus plantations in Guangxi[J]. Acta Ecologica Sinica,2014,34(18):5142-5152.
[2] 字強,張龍,張劍.廣西桉樹病蟲害發生現狀及防治方法探析[J].南方農業,2023,17(6):71-73,77. ZI Q, ZHANG L, ZHANG J. Analysis on the current status and control methods of Eucalyptus robusta diseases and pests in Guangxi[J]. South China Agriculture,2023,17(6):71-73,77.
[3] PHAN C K(潘功?。?廣西桉樹人工林葉部病害及其與鄉土樹種病害的關系[D].南寧:廣西大學,2015. PHAN C K. The investigation of Eucalyptus leaf diseases and its relationship with native trees leaf diseases in Guangxi[D]. Nanning: Guangxi University,2015.
[4] 曾學英.大葉桉炭疽病病原菌的鑒定及室內藥劑篩選[J].林業科技開發,2015,29(4):121-125. ZENG X Y. Identification of the pathogen causing Eucalyptus anthrax and laboratory screening of fungicides[J]. China Forestry Science and Technology,2015,29(4):121-125.
[5] 東秀珠,蔡妙英.常見細菌系統鑒定手冊[M].北京:科學出版社,2001. DONG X Z, CAI M Y. Manual for the identification of common bacterial systems[M]. Beijing: Science Press,2001.
[6] 布坎南R E,吉本期N E.伯杰氏細菌鑒定手冊[M].8版.北京:科學出版社,1984:729-795. BUCHANAN R E,GILTPERIOD N E. Berger’s bacterial identification manual[M]. 8th ed. Beijing: Science Press,1984: 729-795.
[7] 羅基同,薛振南,廖旺姣,等.廣西速生豐產桉樹病害調查[J].中國森林病蟲,2012,31(4):21-24,30. LUO J T, XUE Z N, LIAO W J, et al. Investigation on the diseases in fast growing Eucalyptus spp. in Guangxi[J]. Forest Pest and Disease,2012,31(4):21-24,30.
[8] LOMBARD L, CROUS P W, WINGFIELD B D, et al. Species concepts in Calonectria (Cylindrocladium)[J]. Studies in Mycology,2010,66:1-13.
[9] LIU Q L, LI J Q, WINGFIELD M J, et al. Reconsideration of species boundaries and proposed DNA barcodes for Calonectria[J]. Studies in Mycology,2020,97:100-106.
[10] LOMBARD L, CROUS P W, WINGFIELD B D, et al. Phylogeny and systematics of the genus Calonectria[J]. Studies in Mycology, 2010,66:31-69.
[11] CAI L, HYDE K D, TAYLOR P, et al. A polyphasic approach for studying Colletotrichum[J]. Fungal Diversity,2009,39:183-204.
[12] CANNON P F, DAMM U, JOHNSTON P R, et al. Colletotrichum current status and future directions[J]. Studies in Mycology,2012,73:181-213.
[13] DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.
[14] WEIR B S, JOHNSTON P R, DAMM U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012,73:115-180.
[15] BARBOSA M S, VIEIRA G H C, TEIXEIRA A V. Atividade biológica in vitro de própolis e óleos essenciais sobre o fungo Colletotrichum musae isolado de bananeira (Musa spp.)[J]. Revista Brasileira de Plantas Medicinais,2015,17(2):254-261.
[16] ILIGER K S, AHMAD KSOFI T A, AHMAD BHAT N A, et al. Copper nanoparticles: green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici[J]. Saudi Journal of Biological Sciences,2021,28(2):1477-1486.
[17] MANGWENDE E, CHIRWA P W, AVELING T A S. Evaluation of seed treatments against Colletotrichum kahawae subsp. cigarro on Eucalyptus spp.[J]. Crop Protection,2020,132:105113.
[18] OLIVEIRA J, GLORIA E M, PARISI M C M, et al. Antifungal activity of essential oils associated with carboxymethylcellulose against Colletotrichum acutatum in strawberries[J]. Scientia Horticulturae,2019,243:261-267.
[19] PIETA S, GAVASSONI W L, BACCHI L M A, et al. Eficácia dos extratos pirolenhosos de Cana-de-a?úcar (Saccharum officinarum) e eucalipto (Eucalyptus spp.) no controle in vitro de patógenos da Soja[J]. Summa Phytopathologica,2021,47(1):67-69.
[20] SOLíS M, WINGFIELD M J, GREYLING I, et al. A serious shoot and leaf disease caused by Colletotrichum theobromicola discovered on eucalypts in south Africa[J]. Southern Forests, 2022,84(1):8-20.
[21] ZHANG J, ZHU T H. First report of Colletotrichum boninense causing leaf anthracnose on Eucalyptus robusta (Smith) in the upper reaches of Yangtze river[J]. Plant Disease,2018,102: 1446-1447.
[22] TANG Z X, CHEN L J, MA W L, et al. First report of Coniella quercicola causing leaf spot on Elaeocarpus decipiens in China[J]. Plant Disease,2023,102:1457-1458.
[23] VAN NIEKERK J M, GROENEWALD J Z E, VERKLEY G J M, et al. Systematic reappraisal of Coniella and Pilidiella, with specific reference to species occurring on Eucalyptus and Vitis in South Africa[J]. Mycological Research,2004,108(3):283-303.
[24] ZOU D X, LIAO W J, ZHONG Y T, et al. First report of leaf blight on Eucalyptus cloeziana caused by Coniella quercicola in China[J]. Plant Disease,2023,107(3):1.
[25] ELLIOTT M L, DES JARDIN E A, BATSON W E, et al. Viability and stability of biological control agents on cotton and snap bean seeds[J]. Pest Management Science,2001,57:695-706.
[26] 鐘雅婷,鄒東霞,廖旺姣,等.輪斑病導致的桉樹葉片內生真菌群落結構差異分析[J].中南林業科技大學學報,2022,42(4): 68-75. ZHONG Y T, ZOU D X, LIAO W J, et al. Differential analysis of community structure of endophytic fungi in the Eucalyptus leaves infected by Coniella eucalyptorum[J]. Journal of Central South University of Forestry Technology,2022,42(4):68-75.
[本文編校:吳 毅]