







摘要:目的 分析2型糖尿病(T2DM)合并非酒精性脂肪性肝病(NAFLD)患者外周血中微RNA(miRNA)-128-3p、沉默信息調節因子1(SIRT1)和AMP活化蛋白激酶(AMPK)的表達情況,探討miRNA-128-3p對T2DM患者發生NAFLD的預測作用。
方法 選取2022年9月—2023年8月在安徽中醫藥大學第一附屬醫院住院的80例T2DM患者,分為T2DM組(40例)和合并NAFLD組(40例),并依據肝纖維化評分(NFS)分為T2DM合并進行性肝纖維化組(16例)和T2DM未合并進行性肝纖維化組(64例),收集基本資料和生化指標,采用定量實時PCR方法檢測外周血miRNA-128-3p、SIRT1、AMPK的mRNA表達水平,Western Blot方法檢測SIRT1、AMPK蛋白表達水平。正態分布的數據兩組間比較采用成組t檢驗,偏態分布的數據兩組間比較采用Mann-Whitney U檢驗,計數資料兩組間比較采用χ 2 檢驗;Logistic回歸分析NAFLD及進行性肝纖維化的影響因素;使用受試者操作特征曲線(ROC曲線)以確定根據miRNA-128-3p水平判斷發生NAFLD的最佳閾值。結果 合并NAFLD組和T2DM組BMI、空腹血糖、糖化血紅蛋白、空腹胰島素、空腹C肽、ALT、AST、GGT、ALP、纖維連接蛋白、TG、HDL-C、總三碘甲狀腺原氨酸(TT3)、胰島素抵抗指數(HOMA-IR)、NFS 比較差異均有統計學意義(P 值均lt;0.05)。合并 NAFLD 組外周血miRNA-128-3p的mRNA表達水平高于T2DM組(t=?8.765,Plt;0.001),而SIRT1和AMPK的mRNA及蛋白表達水平均明顯降低(P值均lt;0.001)。T2DM合并進行性肝纖維化組與T2DM未合并進行性肝纖維化組的年齡、ALT、游離三碘甲狀腺原氨酸、TT3、超氧化物歧化酶、miRNA-128-3p比較差異均有統計學意義(P值均lt;0.05)。Logistic回歸分析表明,miRNA-128-3p是發生NAFLD和進行性肝纖維化的獨立危險因素(OR=8.221,95%CI:2.735~24.714,Plt;0.001;OR=1.493,95%CI:1.117~1.997,P=0.007);ROC曲線顯示其曲線下面積為0.890(95%CI:0.829~0.950),最佳截斷值為13.165,敏感度89.3%,特異度72.7%。
結論 miRNA-128-3p在 T2DM 合并 NAFLD 患者外周血中表達增高,SIRT1、AMPK 表達降低,miRNA-128-3p水平對識別NAFLD及肝纖維化具有一定診斷價值。
關鍵詞:糖尿病,2型;非酒精性脂肪性肝病;微RNAs;抗衰老酶1;AMP活化蛋白激酶類
基金項目:國家自然科學基金(82274468);安徽省高校科學研究項目-重大項目(2023AH040103);安徽中醫藥大學臨床科研項目(2021yfylc49)
Diagnostic value of miR-128-3p,SIRT1,and AMPK in patients with type 2 diabetes mellitus comorbid with nonalcoholic fatty liver disease
LI Juyi a ,NI Yingqun b ,ZHANG Yuanyuan a ,LIU Huaizhen a
a. Department of Endocrinology,Center for Geriatrics,b. Department of Endocrinology,The First Affiliated Hospital of Anhui University of Chinese Medicine,Hefei 230031,China
Corresponding author:LIU Huaizhen,liuhuaizhen0723@163.com (ORCID:0009-0002-6533-969X)
Abstract:Objective To investigate the expression levels of miR-128-3p,SIRT1,and AMPK in the peripheral blood of patients with type 2 diabetes mellitus (T2DM) comorbid with nonalcoholic fatty liver disease (NAFLD),as well as the role of miR-128-3p in predicting NAFLD in T2DM patients. Methods A total of 80 patients with T2DM who were hospitalized in The First Affiliated Hospital of Anhui University of Chinese Medicine from September 2022 to August 2023 were enrolled and divided into T2DM group with 40 patients and NAFLD group with 40 patients,and according to the NAFLD fibrosis score (NFS),the patients were further divided into progressive liver fibrosis group with 16 patients and non-progressive liver fibrosis group with 64 patients. General data and biochemical parameters were collected;quantitative real-time PCR was used to measure the mRNA expression levels of miR-128-3p,SIRT1,and AMPK in peripheral blood,and Western blot was used to measure the protein expression levels of SIRT1 and AMPK. The independent-samples t test was used for comparison of normally distributed data between two groups,and the Mann-Whitney U test was used for comparison of data with skewed distribution between two groups;the chi-square test was used for comparison of categorical data between two groups. The logistic regression analysis was used to identify the influencing factors for the presence of NAFLD and progressive liver fibrosis,and the receiver operating characteristic (ROC) curve analysis was used to determine the optimal cut-off value of miR-128-3p for predicting NAFLD. Results There were significant differences between the NAFLD group and the non-NAFLD group in body mass index,fasting plasma glucose,glycated hemoglobin,fasting insulin,fasting C-peptide,alanine aminotransferase (ALT),aspartate aminotransferase,gamma-glutamyl transpeptidase,alkaline phosphatase,fibronectin,triglycerides,high-density lipoprotein cholesterol,total triiodothyronine (TT3),Homeostasis Model Assessment of Insulin Resistance (HOMA-IR),and NFS (all Plt;0.05). Compared with the non-NAFLD group,the NAFLD group had a significantly higher mRNA expression level of miR-128-3p in peripheral blood (t=?8.765,Plt;0.001) and significant reductions in the mRNA and proteins expression levels of SIRT1 and AMPK (Plt;0.001). There were significant differences between the progressive liver fibrosis group and the non-progressive liver fibrosis group in age,ALT,free triiodothyronine,TT3,superoxide dismutase,and miR-128-3p (all Plt;0.05). The logistic regression analysis showed that miR-128-3p was an independent risk factor for the development of NAFLD (odds ratio [OR]=8.221,95% confidence interval [CI]:2.735 — 24.714,Plt;0.001) and progressive liver fibrosis (OR=1.493,95%CI:1.117 — 1.997,P=0.007). The ROC curve analysis showed that miR-128-3p had an area under the ROC curve of 0.890 (95%CI:0.829 — 0.950),with an optimal cut-off value of 13.165,a sensitivity of 89.3%,and a specificity of72.7%. Conclusion There is an increase in the expression of miR-128-3p in peripheral blood of T2DM patients with NAFLD,while there are reductions in the expression levels of SIRT1 and AMPK,suggesting that miR-128-3p has a certain diagnostic value in identifying NAFLD and liver fibrosis in such population.
Key words:Diabetes Mellitus,Type 2;Non-alcoholic Fatty Liver Disease;MicroRNAs;Sirtuin 1;AMP-Activated Protein Kinases
Research funding:National Natural Science Foundation of China (82274468);Anhui Provincial University Scientific Research Project-Major Project (2023AH040103);Anhui University of Traditional Chinese Medicine Research Project(2021yfylc49)
2型糖尿病(T2DM)是世界范圍常見的慢性病,合并非酒精性脂肪性肝病(NAFLD)的患病率非常高,約65.04%,NAFLD與肥胖、糖尿病、高血壓、血清酶升高等因素呈雙向關聯[1-2],其可能先于和/或促進T2DM的發展,它們的協同作用不僅增加T2DM的發病率和死亡風險[3-4],并且會加速糖尿病并發癥的進展[5];這種共存會導致更差的代謝特征和更高的心血管風險[6]。微RNA(microRNA,miRNA)是真核生物中非編碼RNA的重要成員,一些miRNA被報道為檢測T2DM或NAFLD的潛在生物標志物及治療靶點。有學者證實miR-128是一種與基因正選擇、調節人類能量消耗和控制代謝有關的miRNA,抑制miR-128-1能夠改善高脂飲食誘導的肥胖小鼠及瘦素基因編碼缺陷的肥胖小鼠的糖耐量和胰島素敏感性,使白色脂肪棕色化且可以減輕棕色脂肪、肝臟中的脂肪細胞的堆積、減輕炎癥反應[7]。沉默信息調節因子1(sirtuin1,SIRT1)/AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)信號通路是肝臟中與正向脂質調節相關的主要細胞能量代謝開關,SIRT1與AMPK相互調節,共享許多分子機制。SIRT1是炎癥情況下的保護因子[8],Shi等 [9]研究證實,SIRT1是miR-128-3p在糖尿病傷口愈合中的靶基因;其可參與高糖引發的內皮功能障礙[10]。miR-128-3p的過表達會抑制SIRT1 mRNA的表達,使肝細胞空泡變性和肝細胞壞死明顯加重,丙二醛(MDA)水平升高,超氧化物歧化酶(SOD)水平降低[8]。越來越多的證據支持miRNA與脂肪肝之間存在關聯,但目前關于miR-128-3p對T2DM發生NAFLD及肝纖維化影響的研究較少,本研究旨在闡明 miR-128-3p 與 NAFLD 發生的關系和可能機制。
1 資料與方法
1.1 研究對象 選取2022年9月—2023年8月于安徽中醫藥大學第一附屬醫院就診的T2DM合并NAFLD患者(合并NAFLD組)40例,另外選取T2DM患者(T2DM組)40例為對照組。依據NAFLD纖維化評分(NAFLD fibrosis score,NFS)分為 T2DM 合并進行性肝纖維化組(NFSgt;0.676,16 例)和 T2DM 未合并進行性肝纖維化組(NFS≤0.676,64 例)。納入標準:(1)T2DM 的診斷根據《中國2型糖尿病防治指南(2020年版)》[11];(2)NAFLD的診斷根據《非酒精性脂肪性肝病防治指南(2018 年更新版)》[12]。排除標準:(1)糖尿病急性并發癥;(2)特殊類型的糖尿病;(3)急性心腦血管疾病;(4)合并下肢或其他部位的急性感染;(5)腫瘤或其他免疫缺陷疾病等;(6)肝腎功能的嚴重受損。
1.2 研究方法
1.2.1 一般臨床資料、實驗室指標和彩超 納入患者均記錄了年齡、性別、身高、體質量,并計算了BMI。生化檢測項目包括空腹血糖(FBG)、糖化血紅蛋白(HbA1c)、空腹胰島素(FINS)、空腹 C 肽(FCP)、TG、TC、HDL-C、LDL-C、ALT、AST、GGT、ALP、LDH、腺苷脫氨酶(ADA)、纖維連接蛋白(FN)、同型半胱氨酸(HCY)、SOD、視黃醇結合蛋白(RBP)、胱抑素 C(cysC)以及餐后血糖(PPG)等。以FCP計算的改良的穩態模型用于評估胰島素抵抗指數(HOMA-IR),公式為:HOMA-IR=1.5+FBG(mmol/L)×FCP(pmol/L)/2 800[13]。同時計算 NFS 評分,公式為:NFS=?1.675+0.037×年齡+0.094×BMI+1.13×FBG 調節受損/糖尿病(是=l,否=0)+0.99×AST/ALT-0.013×PLT(×10 9 /L)-0.66×Alb(g/L)[14]。NAFLD通過腹部彩超診斷,由醫院彩超室醫生完成。
1.2.2 miR-128-3p、SIRT1、AMPK mRNA 表達水平的檢測 采用定量實時聚合酶鏈反應(quantitative real-time PCR,Q-PCR)分析外周血 miR-128-3p、SIRT1、AMPK 的mRNA表達水平,采集分離外周血單核細胞(PBMC),提取總RNA反轉錄合成cDNA,使用SYBRPremix Ex Taq Ⅱ(TaKaRa)進行PCR擴增。反應條件包括95 ℃ 15 s,然后是40個循環,分為兩步:95 ℃ 5 s和60 ℃ 35 s。引物序列見表1。
1.2.3 Western Blot 檢測外周血 SIRT1、AMPK 的蛋白表達 在PBMC中加入RIPA裂解緩沖液(中國江蘇碧云天生物技術有限公司),1 688×g離心15 min,BCA試劑盒(上海申能博弈儀器有限公司)檢測蛋白質濃度。樣品加入10% SDS-PAGE凝膠中電泳后并轉膜至PVDF膜。5%脫脂奶封閉2 h,加入一抗(1∶1 000)4 ℃過夜,TBST洗膜后加入二抗(1∶5 000)室溫孵育1 h后顯影,使用Amersham Imager成像系統讀出條帶,并進行灰度值分析。
1.3 統計學方法 應用SPSS 22.0統計軟件進行數據分析。符合正態分布的計量資料以 x ˉ ±s表示,兩組間比較采用成組t檢驗;偏態分布的計量資料以M(P 25 ~P 75 )表示,兩組間比較采用Mann-Whitney U檢驗。計數資料兩組間比較采用χ 2 檢驗。NAFLD及進展性肝纖維化的危險因素采用Logistic回歸分析,最佳截斷水平采用受試者操作特征曲線(ROC曲線)分析,并計算ROC曲線下面積(AUC)。 P lt;0.05為差異有統計學意義。
2 結果
2.1 T2DM組與合并NAFLD組的臨床資料 合并NAFLD組的平均年齡57.50(47.75~62.75)歲,其中男24例,女16例;T2DM組的中位年齡55.00(46.50~64.25)歲,其中男25例,女15例,兩組在年齡和性別上差異均無統計學意義(P值均gt;0.05),具有可比性。合并NAFLD組的BMI、FBG、HBA1c、FINS、FCP、ALT、AST、GGT、ALP、FN、TG、總三碘甲狀腺原氨酸(TT3)和HOMA-IR均高于T2DM組(P值均lt;0.05),而NFS、HDL-C則低于T2DM組(P值均lt;0.05)(表2)。
2.2 T2DM合并與未合并進行性肝纖維化組的臨床資料及 miR-128-3p mRNA 表達水平 T2DM 合并進行性肝纖維化組的患者在年齡、SOD、FT3、TT3和 miR-128-3p水平上高于 T2DM未合并進行性肝纖維化組(P 值均lt;0.05)(表3)。
2.3 T2DM組與合并NAFLD組miR-128-3p、SIRT1、AMPK的mRNA表達水平 合并NAFLD組miR-128-3p mRNA表達水平顯著高于T2DM組(Plt;0.001),而SIRT1、AMPK的mRNA表達水平則顯著低于T2DM組(P值均lt;0.001)(表4)。
2.4 T2DM 組與合并 NAFLD 組外周血 SIRT1、AMPK、p-AMPK 蛋 白 的 表 達 水 平 與 T2DM 組 相 比 ,合 并NAFLD 組外周血 PBMC 中 SIRT1、AMPK、p-AMPK 蛋白表達水平均顯著降低(P值均lt;0.05)(圖1)。
2.5 NAFLD 的多因素 Logistic 回歸分析 以是否發生NAFLD作為因變量(否=0,是=1),以miR-128-3p的相對表達量為自變量,進行多因素回歸分析,在校正 BMI、HBA1c、FCP、ALT、ALP、TG、TT3 等因素后,miR-128-3p和ALT的OR值分別為8.221和1.164,為NAFLD發生的獨立危險因素(P值均lt;0.05)(表5)。
2.6 進行性肝纖維化的多因素 Logistic 回歸分析 以是否發生進行性肝纖維化作為因變量(否=0,是=1),以miR-128-3p的相對表達量為自變量,進行多因素回歸分析,校正年齡、SOD、FT3、FT4等因素后,miR-128-3p、年齡和SOD的OR值分別為1.493、1.185和0.937,為進行性肝纖維化的獨立危險因素(P值均lt;0.05)(表6)。
2.7 miR-128-3p 水平對 T2DM 發生 NAFLD 的預測作用為評估 miR-128-3p的預測性能,構建 ROC 曲線并計算AUC,結果顯示miR-128-3p的AUC為0.890(95%CI:0.829~0.950,Plt;0.05),最佳截斷值為13.165,敏感度為89.3%,特異度為72.7%(圖2)。
3 討論
NAFLD 和 T2DM 處于流行病學和糖尿病病理生理學的交叉點,疾病的共存產生協同效應,導致更嚴重的肝功能衰竭和心血管疾病風險的增加[15-16]。NAFLD最近被學者們提議重新命名為代謝功能障礙相關脂肪性肝病(metabolic dysfunction-associated steatotic liver disease,MASLD)[17],所以需要積極預防和應對這種負擔。Mantovani等[18]發現,對于T2DM患者,動態心電圖結果顯示,合并NAFLD及其脂肪肝病變的嚴重程度與室上性心律失常和室性心律失常的風險增加密切相關。
一項雙向雙樣本孟德爾隨機化研究結果表明,肝脂肪積聚與T2DM之間存在雙向因果關系[19]。Ismail等[20]研究發現T2DM合并NAFLD患者更可能發展為NASH,并且單純依靠肝酶診斷肝纖維化具有局限性。miRNA調節許多細胞過程,包括細胞增殖、老化、代謝、神經模式、凋亡、炎癥過程和免疫反應等[21-24],目前從miRNA角度探索脂肪肝形成的潛在機制尚不清楚。
本研究中NAFLD組患者具有更高的BMI,血糖相對更高,ALT、AST、GGT、ALP、FN雖然在正常范圍內,但均明顯高于未合并NAFLD組,這與Sun等[25]的研究結果一致;NAFLD組合并有高脂血癥的情況也更明顯,這也與Hirano等[26]研究結果相同,與T2DM組相比,合并脂肪肝組的TG水平更高,HDL-C水平更低,并且該研究指出,當排除降脂藥物使用者時,由高甘油三酯血癥和胰島素抵抗產生的小而密低密度脂蛋白可以更有力地識別脂肪肝。Bi等[27]認為,FT3、TT3和TSH水平升高與MASLD風險增加有關;但也有研究指出,在新診斷的甲狀腺功能正常的T2DM患者中,調整了BMI和HOMA-IR后,甲狀腺激素、甲狀腺激素敏感性指數和MAFLD之間未發現顯著相關性[28]。本研究中NAFLD組的甲狀腺激素水平與T2DM組相比無差異。
T2DM 合并 NAFLD 組 miR-128-3p mRNA 的表達水平較T2DM組升高,在合并肝纖維化組中的表達水平也高于未合并肝纖維化組;SIRT1、AMPK mRNA及蛋白的表達水平在合并 NAFLD 組中降低,提示合并 NAFLD 組SIRT1/AMPK通路的功能被抑制。miR-128-1被認為是一種控制能量消耗的潛在節儉miRNA,會導致肥胖、葡萄糖代謝受損和胰島素抵抗[7];較高的 miR-128-1-5p 和HOMA-IR水平與空腹胰島素濃度相關,且與BMI、腰圍和全身總脂肪質量呈較高程度相關[29]。SIRT1在脂質代謝和能量穩態的細胞及系統調節中發揮關鍵作用,與肝脂質積累、氧化應激、炎癥有很強的相關性[30]。SIRT1/AMPK通路的激活是一種循環放大機制,p-AMPK能夠抑制脂肪酸合酶和甾醇調節元件結合蛋白等基因的活性,這些基因在肝臟或脂肪組織的脂肪酸合成中發揮作用[31]。而SIRT1是miRNA-128-3p的靶點,Zhao等 [8]研究指出,miRNA-128-3p可以通過靶向SIRT1促進氧化應激而加重阿霉素導致的肝損傷,也可以靶向 SIRT1 調節TNF-α 引發的骨髓間充質干細胞炎癥反應[32]。因此,miRNA-128-3p在T2DM合并NAFLD患者中表達的增多,可能通過下調了SIRT1/AMPK通路,使肝脂質積聚,參與了NAFLD的發生。多因素Logistic回歸分析結果表明,在 T2DM 中發生 NAFLD 及肝纖維化的風險均會隨著miR-128-3p表達量的升高而明顯增加,并且通過ROC曲線分析發現,miR-128-3p可作為預測NAFLD發病風險的血清學參考指標(AUC=0.890)。這與諸多研究證據相吻合,如Samy等[33]研究提示miR-128的表達水平在NAFLD中上調,其可被認為是早期NAFLD無創診斷和NASH進展的潛在生物標志物。
本研究仍有一些局限性,首先,相對較小的樣本量限制了研究結果在更廣泛的人群中的普適性,未來有必要納入更多觀察者,包括健康體檢者的更大規模的研究,以證實這些觀察結果并增強其概括性。此外,各種治療慢性并發癥的藥物以及調脂藥物的使用對miR-128表達的影響,以及分析方法的差別,未來還需要進一步地驗證。同時,本研究未明確miR-128-3p參與脂肪肝發生的具體調控途徑,下一步可進行動物模型實驗對此進行深入研究。
倫理學聲明:本研究于2021年3月8日通過安徽中醫藥大學第一附屬醫院倫理委員會審批,批號:2020AH-14。
所有受試者均簽署知情同意書。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:李居一負責擬定數據收集,統計學分析和撰寫論文;張媛媛負責數據收集和繪制圖表;倪英群負責論文修改;劉懷珍負責擬定寫作思路,指導文章撰寫并定稿。
參考文獻:
[1] LI L, LIU DW, YAN HY, et al. Obesity is an independent risk factor for non-alcoholic fatty liver disease: Evidence from a meta-analysis of 21 cohort studies[J]. Obes Rev, 2016, 17(6): 510-519. DOI: 10.1111/obr.12407.
[2] WORETA TA, van NATTA ML, LAZO M, et al. Validation of the accu?racy of the FAST? score for detecting patients with at-risk nonalco?holic steatohepatitis (NASH) in a North American cohort and com?parison to other non-invasive algorithms[J]. PLoS One, 2022, 17(4):e0266859. DOI: 10.1371/journal.pone.0266859.
[3] CHO EEL, ANG CZ, QUEK J, et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: An updated systematic review and meta-analysis[J]. Gut, 2023, 72(11): 2138-2148. DOI: 10.1136/gutjnl-2023-330110.
[4] SANYAL AJ, van NATTA ML, CLARK J, et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease[J]. N Engl J Med, 2021, 385(17): 1559-1569. DOI: 10.1056/NEJMoa2029349.
[5] ALON L, CORICA B, RAPARELLI V, et al. Risk of cardiovascular events in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Prev Cardiol, 2022, 29(6): 938-946. DOI: 10.1093/eurjpc/zwab212.
[6] BISACCIA G, RICCI F, KHANJI MY, et al. Cardiovascular morbidity and mortality related to non-alcoholic fatty liver disease: A system?atic review and meta-analysis[J]. Curr Probl Cardiol, 2023, 48(6):101643. DOI: 10.1016/j.cpcardiol.2023.101643.
[7] WANG L, SINNOTT-ARMSTRONG N, WAGSCHAL A, et al. A Mi?croRNA linking human positive selection and metabolic disorders[J].Cell, 2020, 183(3): 684-701. e14. DOI: 10.1016/j.cell.2020.09.017.
[8] ZHAO XR, JIN Y, LI L, et al. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1[J]. Pharmacol Res, 2019, 146: 104276. DOI: 10.1016/j.phrs.2019.104276.
[9] SHI RF, JIN YP, HU WW, et al. Exosomes derived from mmu_circ_0000250-modified adipose-derived mesenchymal stem cells promote wound healing in diabetic mice by inducing miR-128-3p/SIRT1-medi?ated autophagy[J]. Am J Physiol Cell Physiol, 2020, 318(5): C848-C856. DOI: 10.1152/ajpcell.00041.2020.
[10] HAN JN, HAO WJ, MA YP, et al. MiR-128-3p promotes the progres?sion of deep venous thrombosis through binding SIRT1[J]. Phlebol?ogy, 2023, 38(8): 540-549. DOI: 10.1177/02683555231190268.
[11] Diabetes Society of Chinese Medical Association. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020edition)[J]. Chin J Diabetes, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210307-00135.中華醫學會糖尿病學分會. 中國2型糖尿病防治指南(2020年版)[J].中華糖尿病雜志, 2021, 13(4): 315-409. DOI: 10.3760/cma.j.cn115791-20210307-00135.
[12] National Workshop on Fatty Liver and Alcoholic Liver Disease, Chi?nese Society of Hepatology, Chinese Medical Association, Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.中華醫學會肝病學分會脂肪肝和酒精性肝病學組, 中國醫師協會脂肪性肝病專家委員會. 非酒精性脂肪性肝病防治指南(2018年更新版)[J].臨床肝膽病雜志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
[13] WANG XS, JIANG LJ, SHAO XN. Association analysis of insulin resistance and osteoporosis risk in Chinese patients with T2DM[J]. Ther Clin Risk Manag, 2021, 17: 909-916. DOI: 10.2147/TCRM.S328510.
[14] ANGULO P, HUI JM, MARCHESINI G, et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD[J]. Hepatology, 2007, 45(4): 846-854. DOI: 10.1002/hep.21496.
[15] TARGHER G, COREY KE, BYRNE CD, et al. The complex link be?tween NAFLD and type 2 diabetes mellitus—Mechanisms and treat?ments[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 599-612.DOI: 10.1038/s41575-021-00448-y.
[16] STEFAN N, CUSI K. A global view of the interplay between non-alco?holic fatty liver disease and diabetes[J]. Lancet Diabetes Endocri?nol, 2022, 10(4): 284-296. DOI: 10.1016/S2213-8587(22)00003-1.
[17] SONG SJ, LAI JCT, WONG GLH, et al. Can we use old NAFLD data under the new MASLD definition?[J]. J Hepatol, 2024, 80(2): e54-e56. DOI: 10.1016/j.jhep.2023.07.021.
[18] MANTOVANI A, CSERMELY A, TAVERNA A, et al. Association be?tween metabolic dysfunction-associated fatty liver disease and su?praventricular and ventricular tachyarrhythmias in patients with type2 diabetes[J]. Diabetes Metab, 2023, 49(2): 101416. DOI: 10.1016/j.diabet.2022.101416.
[19] NI XT, TONG C, HALENGBIEKE A, et al. Association between nonal?coholic fatty liver disease and type 2 diabetes: A bidirectional two-sample Mendelian randomization study[J]. Diabetes Res Clin Pract,2023, 206: 110993. DOI: 10.1016/j.diabres.2023.110993.
[20] ISMAIL MH, AL ARGAN R, ELAMIN Y, et al. Automated fibrosis-4index: Simplifying non-alcoholic fatty liver disease for diabetolo?gists[J]. Medicina (Kaunas), 2024, 60(8): 1278. DOI: 10.3390/medicina60081278.
[21] O’CONNELL RM, RAO DS, BALTIMORE D. MicroRNA regulation of inflammatory responses[J]. Annu Rev Immunol, 2012, 30: 295-312.DOI: 10.1146/annurev-immunol-020711-075013.
[22] UDDIN A, CHAKRABORTY S. Role of miRNAs in lung cancer[J]. J Cell Physiol, 2018. DOI: 10.1002/jcp.26607. [Online ahead of print]
[23] YANG JN, JIANG TL, ZHU FB, et al. Research progress in effect of miRNA on podocyte injury in diabetic nephropathy and its mecha?nism[J]. J Jilin Univ(Med Edit), 2023, 49(6): 1677-1682. DOI: 10.13481/j.1671-587X.20230637.楊佳楠, 姜同連, 朱福彬, 等. miRNA在糖尿病腎病足細胞損傷中作用及其機制的研究進展[J]. 吉林大學學報(醫學版), 2023, 49(6): 1677-1682. DOI: 10.13481/j.1671-587X.20230637.
[24] WEI HF, NI ZQ, WEI YH, et al. Effects of miR-126 over-expression and ADAM9 gene silencing on biological behavior of gastric cancer SGC-7901 cells and their mechanisms[J]. J Jilin Univ(Med Edit),2024, 50(2): 310-319. DOI: 10.13481/j.1671-587X.20240203.魏海峰, 倪志強, 魏雁虹, 等. MiR-126過表達和ADAM9基因沉默對胃癌SGC-7901細胞生物學行為的影響及其機制[J]. 吉林大學學報(醫學版), 2024, 50(2): 310-319. DOI: 10.13481/j.1671-587X.20240203.
[25] SUN T, WANG C, HUO L, et al. Serum cortistatin level in type 2diabetes mellitus and its relationship with nonalcoholic fatty liver disease[J]. Int J Gen Med, 2023, 16: 631-639. DOI: 10.2147/IJGM.S396315.
[26] HIRANO T, SATOH N, ITO Y. Specific increase in small dense low-density lipoprotein-cholesterol levels beyond triglycerides in patients with diabetes: Implications for cardiovascular risk of MAFLD[J]. J Atheroscler Thromb, 2024, 31(1): 36-47. DOI: 10.5551/jat.64271.
[27] BI TB. Relationship between thyroid hormone levels and metabolic dysfunction associated steatotic liver disease in patients with type 2diabetes: A clinical study[J]. Medicine (Baltimore), 2024, 103(26):e38643. DOI: 10.1097/MD.0000000000038643.
[28] ZHANG XD, CHEN YM, YE HY, et al. Correlation between thyroid function, sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease in euthyroid subjects with newly diag?nosed type 2 diabetes[J]. Endocrine, 2023, 80(2): 366-379. DOI:10.1007/s12020-022-03279-2.
[29] HEIANZA Y, XUE QC, ROOD J, et al. Circulating thrifty microRNA is related to insulin sensitivity, adiposity, and energy metabolism in adults with overweight and obesity: The POUNDS lost trial[J]. Am J Clin Nutr, 2023, 117(1): 121-129. DOI: 10.1016/j.ajcnut.2022.10.001.
[30] CHANG E. Vitamin D mitigates hepatic fat accumulation and in?flammation and increases SIRT1/AMPK expression in AML-12hepatocytes[J]. Molecules, 2024, 29(6): 1401. DOI: 10.3390/mol?ecules29061401.
[31] XIAO Q, ZHANG SJ, YANG C, et al. Ginsenoside Rg1 ameliorates palmitic acid-induced hepatic steatosis and inflammation in HepG2cells via the AMPK/NF-κB pathway[J]. Int J Endocrinol, 2019, 2019:7514802. DOI: 10.1155/2019/7514802.
[32] WU LZ, ZHANG GR, GUO CB, et al. MiR-128-3p mediates TNF-α-in?duced inflammatory responses by regulating Sirt1 expression in bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2020, 521(1): 98-105. DOI: 10.1016/j.bbrc.2019.10.083.
[33] SAMY AM, KANDEIL MA, SABRY D, et al. Exosomal miR-122, miR-128, miR-200, miR-298, and miR-342 as novel diagnostic biomarkers in NAFL/NASH: Impact of LPS/TLR-4/FoxO3 pathway[J]. Arch Pharm(Weinheim), 2024, 357(4): e2300631. DOI: 10.1002/ardp.202300631.
收稿日期:2024-07-23;錄用日期:2024-09-19
本文編輯:王瑩
引證本文:LI JY, NI YQ, ZHANG YY, et al. Diagnostic value of miR-128-3p, SIRT1, and AMPK in patients with type 2 diabetes mellitus comorbid with nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2025, 41(3): 453-460.
李居一, 倪英群, 張媛媛, 等. 微RNA-128-3p、沉默信息調節因子1(SIRT1)和AMP活化蛋白激酶(AMPK)對2型糖尿病合并非酒精性脂肪性肝病的診斷價值[J]. 臨床肝膽病雜志, 2025, 41(3): 453-460.