





















摘要:Clar覆蓋多項式是表征分子圖共軛體系電子結構的一種方法。通過研究平面二部圖的Clar覆蓋多項式,可以深入探討相關分子圖的共振理論及其性質。基于平面二部圖的Clar覆蓋多項式的相關定理,利用生成函數的方法計算平面二部圖的Clar覆蓋多項式;推導出一類特殊圖的Clar覆蓋多項式的遞推關系,并利用生成函數的方法計算兩類Cata型平面二部圖的Clar覆蓋多項式的顯式表達式。根據平面二部圖的Clar覆蓋多項式,可以了解化學分子的電子結構,預測其化學性質和反應行為,并設計新的分子結構。
關鍵詞:平面二部圖;Clar覆蓋多項式;遞推關系;顯式表達式
中圖分類號:O157.5 文獻標志碼:A
本文引用格式:劉瑩,王廣富,高新宇. 平面二部圖的Clar覆蓋多項式[J]. 華東交通大學學報,2025,42(1):120-126.
The Clar Covering Polynomials of Plane Bipartite Graphs
Liu Ying1, Wang Guangfu2, Gao Xinyu1
(1. School of Science, East China Jiaotong University, Nanchang 330013, China; 2. School of Mathematics and
Information Scienes, Yantai University, Yantai 264000, China)
Abstract: The Clar covering polynomial of molecular graphs is a method to characterize the electronic structure of conjugated systems. By studying the Clar covering polynomials of plane bipartite graphs, the resonance theory of related molecular graphs and their properties can be thoroughly investigated. Based on the theorem related to Clar covering polynomials of plane bipartite graphs, the method of generating functions is utilized to compute Clar covering polynomials of plane bipartite graphs. Recurrence relationship for Clar covering polynomials of a special class of graphs are derived. In turn, explicit expressions the Clar covering polynomials of two classes of catacondensed plane bipartite graphs are computed using the generating function method. On the Clar covering polynomials of plane bipartite graphs, it is possible to understand the electronic structure of chemical molecules, predict their chemical properties and reaction behavior, and design new molecular structures.
Key words: plane bipartite graphs; the Clar covering polynomial; recurrence relations; explicit expressions
Citation format: LIU Y, WANG G F, GAO X Y. The Clar covering polynomials of plane bipartite graphs[J]. Journal of East China Jiaotong University, 2025, 42(1): 120-126.
化學圖論作為圖論的一個重要分支,在過去幾十年中受到了廣泛關注。化學圖論中的模型用圖結構表示分子,用頂點表示原子,用邊表示原子間的化學鍵。通過研究模型中的一些指數,可以更方便地理解化合物的性質[1-3]。其中,Kekulé結構和Clar結構可用于預測各種化合物的化學和物理性質,在化合物的相關理論中起著核心作用。用[K(G)]表示圖[G]中的Kekulé結構數目,圖[G]的完美匹配是覆蓋圖[G]中所有頂點的獨立邊的集合。自1865年Kekulé首次提出Kekulé結構的概念以來,各類圖的Kekulé結構數得到了廣泛研究[4-5]。
為了比較分子間的共振穩定性,在Herndon-Hosoya模型中,首次提出了(廣義)Clar結構的概念[6]。近二十年來,許多學者研究了各類圖的Clar結構及其相關性質[7-15]。……