999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于先驗聚類的機電設備環境參數異常檢測算法

2025-03-14 00:00:00邢鵬李新娥
現代電子技術 2025年6期
關鍵詞:檢測

摘" 要: 傳統的聚類異常數據檢測算法在處理高維度、大數據量且異常值分布雜亂的機電設備環境參數時,存在聚類效果差和檢測效率低的問題。為此,在原有異常檢測算法的基礎上提出一種基于先驗聚類的機電設備環境參數異常檢測算法。該算法改用歷史數據構建先驗聚類,確保聚類構建不會受太多異常環境參數所影響;在選取聚類中心時引入密集度的概念,以確保聚類中心的可靠性,并在選取聚類中心過程中去除已選聚類中心周圍的數據點,防止選取的聚類中心集中在某一區域,以此提升聚類效果。進行異常檢測時,依次將待檢測數據放入先驗聚類中進行匹配,一旦測試數據無法匹配任何一個已知聚類,則將其標記為異常數據。實驗結果表明:所提算法在機電設備環境參數的異常檢測方面具有檢測率高、誤報率低的特點,在2 000例數據異常檢測中,其檢測準確率達到了97.5%,優于DBSCAN算法的97%以及基礎K?means算法的86%;同時,誤檢率低至0.010 6,優于DBSCAN算法的0.023 9和基礎K?means算法的0.022 8。改進后的模型較基礎K?means算法和DBSCAN算法在機電設備環境參數異常檢測中檢測效果更佳,在機電設備環境異常數據檢測上具有良好的性能。

關鍵詞: 機電設備; 環境參數; 異常數據檢測; 先驗聚類;" K?means算法; 密集度; 聚類匹配

中圖分類號: TN915.08?34; TP301" " " " " " " " 文獻標識碼: A" " " " " " " " " " "文章編號: 1004?373X(2025)06?0078?07

Prior clustering based environmental parameter anomaly detection algorithm of electromechanical equipment

XING Peng, LI Xine

(State Key Laboratory of Electronic Measurement Technology, North University of China, Taiyuan 030051, China)

Abstract: The traditional clustering anomaly data detection algorithm has the problem of poor clustering effect and low detection efficiency when dealing with the environmental parameters of electromechanical equipment with high dimension, large data amount and chaotic distribution of outliers. Therefore, on the basis of the traditional anomaly detection algorithm, a prior clustering based environmental parameter anomaly detection algorithm of electromechanical equipment is proposed. In this algorithm, the historical data is used to construct prior clustering to ensure that the cluster construction cannot be affected by too many abnormal environmental parameters. The concept of density is introduced to ensure the reliability of cluster centers when selecting cluster centers, and the data points around the selected cluster centers are removed in the process of selecting cluster centers to prevent the selected cluster centers from being concentrated in a certain area, so as to improve the clustering effect. In the process of anomaly detection, the data to be detected are put into the prior clustering for matching. Once the testing data cannot match any of the known clusters, it is marked as abnormal data. The experimental results show that the proposed algorithm has the characteristics of high detection rate and low 1 positive rate in the abnormal detection of electromechanical equipment environmental parameters. In the abnormal detection of 2 000 cases of data, the detection accuracy rate can reach 97.5%, which is better than 97% of DBSCAN algorithm and 86% of basic K?means algorithm. Its 1 detection rate is as low as 0.010 6, which is better than 0.023 9 of DBSCAN algorithm and 0.022 8 of basic K?means algorithm. In comparison with basic K?means algorithm and DBSCAN algorithm, the improved model has better detection effect in the environmental parameters anomaly detection of electromechanical equipment, and has good performance in the detection of environmental abnormal data of electromechanical equipment.

Keywords: electromechanical equipment; environmental parameters; anomaly data detection; priori clustering; K?means algorithm; degree of density; cluster matching

0" 引" 言

隨著微電子、MEMS技術及無線通信技術的不斷發展,無線傳感器網絡(WSN)憑借其節點微型化、低成本及靈活部署的優勢,目前已廣泛應用于機電設備的環境參數檢測中[1]。……

登錄APP查看全文

猜你喜歡
檢測
QC 檢測
小波變換在PCB缺陷檢測中的應用
主站蜘蛛池模板: 久草青青在线视频| 国产91精选在线观看| 亚洲无码高清免费视频亚洲| 亚洲爱婷婷色69堂| 欧美亚洲网| 成人福利在线观看| 亚洲综合精品第一页| 呦女亚洲一区精品| 亚洲一区第一页| 色一情一乱一伦一区二区三区小说 | 国产毛片基地| 成人在线观看不卡| 国产女人综合久久精品视| 国产传媒一区二区三区四区五区| 98超碰在线观看| 少妇精品网站| 欧美日韩亚洲综合在线观看| 国产导航在线| 国产亚洲一区二区三区在线| 欧美在线视频不卡| 国产精品短篇二区| 无码中字出轨中文人妻中文中| 性喷潮久久久久久久久| 国产免费久久精品99re不卡| 国产精品尹人在线观看| 久久综合久久鬼| 亚洲国产成人精品青青草原| 一级黄色网站在线免费看| 91探花国产综合在线精品| 久久精品国产999大香线焦| 99伊人精品| 亚洲国内精品自在自线官| www.精品国产| 亚洲色欲色欲www网| 无码丝袜人妻| 欧美国产视频| 国产aaaaa一级毛片| 亚洲国产精品久久久久秋霞影院| 一本大道香蕉久中文在线播放| 国产欧美日韩在线在线不卡视频| 久久伊人操| 欧美午夜视频在线| 国产网站免费看| WWW丫丫国产成人精品| 国产成人精品一区二区免费看京| 亚洲欧美日韩动漫| 99er这里只有精品| 国产女人水多毛片18| 国产精品污视频| 国产一在线观看| 亚洲精品中文字幕午夜| 青青青伊人色综合久久| 免费网站成人亚洲| 97免费在线观看视频| 亚洲男人的天堂久久香蕉| 久草性视频| 伊人成人在线视频| 午夜成人在线视频| 小说 亚洲 无码 精品| 99精品国产高清一区二区| 久久99国产乱子伦精品免| 久久久久人妻一区精品色奶水| 亚洲国产综合精品中文第一| 精品人妻一区二区三区蜜桃AⅤ | 日韩一区二区三免费高清| 免费一级全黄少妇性色生活片| 国产精品久久久久鬼色| 呦女亚洲一区精品| 亚洲一区二区三区国产精品| 蜜芽一区二区国产精品| 在线精品自拍| 理论片一区| 一级在线毛片| 亚洲精品无码av中文字幕| 一区二区日韩国产精久久| 亚洲综合色在线| 国内毛片视频| 国产激情无码一区二区免费| 三区在线视频| 亚洲一级毛片在线观播放| 国产精品免费久久久久影院无码| 国产自产视频一区二区三区|