


















摘" 要: 無線通信技術的飛速發展以及包含相關功能產品的廣泛使用,使得環境電磁場呈現復雜的變化特性,且城市電磁環境狀況日益惡化,故進行電磁輻射的分析與預測對于潛在風險預警與控制至關重要。文中對北京市典型商業區核心街道連續時段的寬帶電磁輻射進行了測量,并對其進行了短時傅里葉變換分析。分析結果顯示,電磁輻射時變規律與人們的作息活動具有相關性,且受部分時段無線設備密集使用的影響,呈現出強烈的低頻周期性和高頻波動性,而這些特性會導致單一的時序建模方法預測效果變差。為此,提出了一種結合小波分解(WD)與長短時記憶(LSTM)模型的混合預測方法。該方法根據電磁輻射時頻特性,將其分解為主要周期分量和細節分量進行分層預測,以適應復雜城市電磁環境狀況。基于測量數據,將所提方法與其他典型時序預測模型進行對比,結果表明,該方法的預測準確度更高,并具有更強的異常值適應性與穩定性。
關鍵詞: 寬帶電磁輻射; 時間序列; 小波分解; 長短時記憶模型; 時頻特性; 分層預測
中圖分類號: TN98?34" " " " " " " " " " " " " " " "文獻標識碼: A" " " " " " " " nbsp; " " 文章編號: 1004?373X(2025)06?0009?07
Method for wideband electromagnetic radiation time series modeling
prediction based on WD?LSTM
YANG Chen, SONG Xinwei, YUE Yuntao
(School of Intelligence Science and Technology, Beijing University of Civil Engineering and Architecture, Beijing 100044, China)
Abstract: The rapid development of wireless communication technology and the wide use of products containing related functions make the environmental electromagnetic field present complex changing characteristics, and the urban electromagnetic environment is deteriorating day by day. Therefore, the analysis and prediction of electromagnetic radiation is of great importance for potential risk warning and control. The broadband electromagnetic radiation in the core street of typical business district of Beijing is measured and analyzed by means of the short time Fourier transform (STFT). The analysis results show that the time?varying rule of electromagnetic radiation is correlated with people's rest and rest activities, and it presents a strong low?frequency periodicity and high?frequency volatility due to the intensive use of wireless devices in some periods, which will lead to the poor prediction effect of a single time?series modeling method. On this basis, a hybrid prediction method combining Wavelet decomposition (WD) and long short?term memory (LSTM) model is proposed. The method is based on the time?frequency characteristics of electromagnetic radiation, which is decomposed into main period components and detail components for the hierarchical prediction to adapt to the complex urban electromagnetic environment conditions. The proposed method is compared with other typical time?series prediction models based on measured data. The results show that the proposed method has higher prediction accuracy and stronger outlier adaptability and stability.
Keywords: electromagnetic radiation; time series; wavelet decomposition; long short?term memory; time?frequency characteristics; hierarchical prediction
0" 引" 言
隨著無線通信技術的高速發展,特別是5G應用的推廣,包含無線通信功能的產品呈爆發式增長,導致城市電磁環境狀況日益惡化。環境中的電磁輻射通過熱效應和累積效應對人體產生負面影響,并可引發病變[1]。國際非電離輻射防護委員會(ICNIRP)于1998年發布了電磁輻射控制指南,并于2003年、2009年和2020年[2]進行了修訂,包括我國在內的諸多國家參照上述指南對電磁輻射水平制定了控制標準[3]。……