






摘" " 要:【目的】探究VdERD6L15在刺葡萄果實生長發(fā)育中的功能,從湘刺1號中克隆VdERD6L15基因及其啟動子,進行基因功能研究和啟動子活性分析。【方法】克隆VdERD6L15基因CDS序列,并對CDS進行生物信息學分析;構(gòu)建VdERD6L15表達載體,并通過瞬時轉(zhuǎn)化煙草確定VdERD6L15基因編碼蛋白的亞細胞定位;同時,通過在己糖缺陷型酵母菌株EBY.VW4000中異源表達VdERD6L15探究其功能;此外,通過啟動子截短試驗確定VdERD6L15啟動子的核心區(qū)域。【結(jié)果】成功克隆刺葡萄VdERD6L15基因編碼序列,該編碼序列長1461 bp,可編碼486個氨基酸,具有膜蛋白特征,屬于單糖轉(zhuǎn)運蛋白家族。亞細胞定位試驗確認VdERD6L15蛋白主要定位于液泡膜上。通過在酵母菌株EBY.VW4000中進行異源表達,驗證了VdERD6L15具有轉(zhuǎn)運葡萄糖的能力。利用PlantCARE數(shù)據(jù)庫對VdERD6L15啟動子順式作用元件進行分析,發(fā)現(xiàn)其主要包含光響應元件、干旱脅迫和激素響應元件。通過GUS染色分析,進一步確定候選基因VdERD6L15啟動子的關(guān)鍵調(diào)控區(qū)域位于-500 bp到-1000 bp之間。【結(jié)論】VdERD6L15是一個定位在液泡膜上的糖轉(zhuǎn)運蛋白,具有轉(zhuǎn)運葡萄糖的功能;VdERD6L15啟動子的核心元件位于ATG上游500~1000 bp之間。
關(guān)鍵詞:刺葡萄;VdERD6L15;單糖轉(zhuǎn)運蛋白;亞細胞定位;啟動子活性
中圖分類號:S663.1 文獻標志碼:A 文章編號:1009-9980(2024)09-1770-11
Cloning and functional analysis of the VdERD6L15 gene in Vitis davidii
LIU Jie1, YANG Shengdi1, ZENG Yating1, BAI Miao1, YANG Guoshun1, LI Shuangjiang1*
(College of Horticulture, Hunan Agricultural University/Hunan Engineering and Technology Research Center for Grapes, Changsha 410128, Hunan, China)
Abstract: 【Objective 】Vitis davidii Fo?x. is a key wild grape germplasm resource in southern China, the sugars in the V. davidii berry are mainly accumulated in the form of glucose and fructose in the vacuole during the ripening period, and this process is mainly regulated by sugar transporter proteins. The Early-Response to Dehydration six-like (ERD6L) is a subfamily of Monosaccharide Transporters (MSTs), which has been proved as a key regulator in soluble sugar homeostasis. In this study, to investigate the role of VdERD6L15 gene in the growth and development of V. davidii berries, the coding sequence (CDS) and promoter of VdERD6L15 gene were cloned from Xiangci No. 1, and its function and promoter activity were further analyzed. 【Methods】 The Pearson correlation coefficients and FDR values of the expression data of VdERD6LI5 gene and the soluble sugar content were calculated using the R packages GGally and ggplot2. The CDS of the VdERD6LI5 gene was cloned by reverse transcription-polymerase chain reaction (RT-PCR), and the sequence was biologically analyzed by ExPasY, TMHMM2.0, and SWISS-MODEL website. After constructing the VdERD6L15 related expression vector, tobacco was transformed to determine the subcellular localization of VdERD6L15, heterologous expression of VdERD6L15 was observed in yeast strain EBY.VW4000 to determine its function, and the core region of VdERD6L15 promoter was determined by GUS staining. 【Results】 Based on the Pearson correlation analysis of VdERD6L15 gene expression and sugar content, it was found that the expression of VdERD6LI5 was high in the early stage of berry development and low in the later stage, which was significantly and negatively correlated with the soluble sugar accumulation in the berry of V. davidii. The cDNA from the root tissues of V. davidii was used as a template, primers were designed by Oligo7 website, and the PCR amplification was performed. Sequence analysis showed that the length of the CDS of the VdERD6L15 gene was 1461 bp in length, encoding 486 amino acids and belonging to the Monosaccharide Transporter (MST) family. Analysis by ExPASy online website predicted that the protein encoded by VdERD6L15 had a relative molecular weight of 52 614.73, theoretical isoelectric point of 8.34, fat coefficient of 118.91, and average coefficient of hydrophilicity of 0.628, and it was a class of unstable protein. The results of TMHMM online software analysis indicated that VdERD6L15 may contain 12 transmembrane structural domains, and it was hypothesized that VdERD6L15 was a membrane protein. With SOPMA online software to predict the secondary structure of the VdERD6L15 protein, the results showed that the protein was mainly composed of α-helix 49.18%, β-turn 3.10%, extended strand 18.11% and random coil 26.54%. The prediction of the tertiary structure of this protein was carried out by SWISS-MODEL online software. Observation by Confocal laser scanning microscope revealed that the GFP-VdERD6L15 protein was a membrane protein and had a typical vesicular membrane invagination structure, whereas RFP-SYP122 labeled cellular membranes did not have invaginations, indicating that VdERD6L15 was localized to the tonoplast. The heterologous expression of the VdERD6L15 gene in hexose-deficient yeast strain EBY.VW4000 preliminarily found that the yeast strain transformed with pDR196 1 load could grow normally on maltose medium, and failed to grow normally on glucose, fructose and sucrose medium. The yeast strain transformed with pDR196-VdERD6L15 grew well on glucose-containing medium, while growth was obviously inhibited on fructose and sucrose medium, confirming that VdERD6L15 was involved in glucose transport. PlantCARE website was used to analyze and predict the cis-acting elements in the promoter of VdERD6L15, the result showed that the promoter contained mainly light response components, drought stress and hormone response components. The results by GUS staining experiments showed that the P1 (-3000 bp), P2 (-2200 bp), P3 (-1500 bp) and P4 (-1000 bp) transformed tobacco leaves in the experimental group could be stained normally, and only tobacco leaves transfected with P5 (-500 bp) could not be stained normally, which further confirmed that the core region on the promoter of the VdERD6L15 was located between -500 bp to -1000 bp. 【Conclusion】 In this study, the CDS and promoter of VdERD6L15 gene were cloned and its function was analyzed, and it was preliminarily found that VdERD6L15 was a sugar transporter located on the tonoplast and harbored the glucose transportation function. Through promoter deletion analysis of the VdERD6L15, it was found that the core cis-acting element of the VdERD6L15 promoter was located between 500 bp and 1000 bp upstream of the ATG.
Key words: Vitis davidii; VdERD6L15; Monosaccharide transporters; Subcellular localization; Promoter activity
刺葡萄(Vitis davidii Fo?x.)屬于葡萄科葡萄屬東亞種群的一個種,被認定為中國南方地區(qū)重要的野生葡萄種質(zhì)資源[1],該物種的地理分布主要集中在湖南[2]、福建[3]等地。湘刺1號作為湖南農(nóng)業(yè)大學葡萄團隊選育的刺葡萄新品種,已在湖南省懷化市中方縣等地區(qū)成功種植,其果皮呈紫黑色,富含原花青素、花色苷及黃酮醇等多種生物活性成分[4]。這些成分為刺葡萄的鮮食和釀酒提供優(yōu)質(zhì)原料[5]。
可溶性糖含量不僅是衡量果實品質(zhì)的重要指標,也是影響水果經(jīng)濟效益和市場競爭力的關(guān)鍵指標。葡萄作為典型的己糖積累型水果作物[3],其成熟期糖分主要以葡萄糖和果糖的形式積累于液泡內(nèi),此過程主要受到單糖轉(zhuǎn)運蛋白的調(diào)控[6]。單糖轉(zhuǎn)運蛋白主要包括液泡膜糖轉(zhuǎn)運蛋白(TST)、早期響應干旱類似蛋白(ERD6L)、液泡葡萄糖轉(zhuǎn)運蛋白(VGT)、己糖轉(zhuǎn)運蛋白(STP)、質(zhì)體葡萄糖轉(zhuǎn)運蛋白(PGlCT)、肌醇轉(zhuǎn)運蛋白(INT)及糖醇轉(zhuǎn)運蛋白(PMT)。ERD6L(early response to dehydration six like)是定位在液泡膜上的糖轉(zhuǎn)運蛋白[7],Kiyosue等[8]首次在擬南芥中發(fā)現(xiàn)第一個ERD6基因。迄今,已在擬南芥中鑒定出多個ERD6L蛋白家族成員,其中Poschet等[9]通過研究發(fā)現(xiàn)AtERD6L6基因突變體中液泡葡萄糖含量顯著增加,推斷AtERD6L6可能參與從液泡到細胞質(zhì)的葡萄糖轉(zhuǎn)運。有趣的是,在蘋果中過表達MdERD6L-1導致大量葡萄糖流入胞質(zhì)中,使得MdTST1和MdTST2的表達量上調(diào),從而增加液泡中葡萄糖、果糖、蔗糖的含量[10-11]。在葡萄中,Breia等[12]發(fā)現(xiàn)VvERD6L13編碼的蛋白質(zhì)定位于細胞的質(zhì)膜上,能將質(zhì)外體中的糖類物質(zhì)轉(zhuǎn)運至葡萄果實細胞中。此外,ERD6L直系同源基因在柑橘[13]、梨[14]等水果作物中的表達與果實糖分積累之間的密切相關(guān)性也逐步被研究證實。上述表明水果作物中的ERD6L與果實糖的積累密切相關(guān),研究其調(diào)控果實發(fā)育過程中可溶性糖的分子機制,對理解水果作物的糖分積累調(diào)控機制及開展品質(zhì)改良具有重要的理論意義和應用價值。
已有研究發(fā)現(xiàn),葡萄中存在18個ERD6L家族成員,而目前僅對VvERD6L13完成了功能驗證[12],其他ERD6L功能未知。本研究中,基于前期研究基礎(chǔ),發(fā)現(xiàn)VdERD6L15在果實早期表達且與刺葡萄果實糖的積累呈負相關(guān),探究其是否參與刺葡萄果實細胞中糖的轉(zhuǎn)運以及其在果實發(fā)育早期發(fā)揮何種生物學功能對刺葡萄果實品質(zhì)改良具有重要意義。
1 材料和方法
1.1 試驗材料
試驗材料為刺葡萄湘刺1號品種,保存于湖南農(nóng)業(yè)大學長安教學基地。從花后13 d開始每隔7 d采集1次,共采集18個時期的果實,將采集后的果實用液氮速凍研磨成粉末,保存于-80 ℃冰箱中備用。本氏煙草種植于25 ℃培養(yǎng)室中。
1.2 湘刺1號果實總RNA提取、cDNA合成
使用南京諾唯贊公司植物快速RNA提取試劑盒(FastPure Universal Plant Total RNA Isolation Kit)提取湘刺1號果實的總RNA,通過微量分光光度計(Nano-530)測定RNA濃度,使用TaKaRa公司反轉(zhuǎn)錄試劑盒(PrimeScript? RT reagent Kit with gDNA Eraser)進行反轉(zhuǎn)錄得到cDNA,存放于-20 ℃冰箱中備用。
1.3 刺葡萄不同發(fā)育時期中VdERD6L15基因的表達分析
根據(jù)課題組前期研究基礎(chǔ),提取刺葡萄VdERD6LI5基因在果實發(fā)育時期的FPKM及糖(葡萄糖、果糖、蔗糖)含量數(shù)據(jù),繪制折線圖(https://www.chiplot.online/),使用R包GGally和ggplot2計算VdERD6LI5基因的表達數(shù)據(jù)和糖(葡萄糖、果糖、蔗糖)含量皮爾遜相關(guān)系數(shù)及FDR值,并進行可視化處理。
1.4 刺葡萄不同發(fā)育時期可溶性糖含量測定方法
將采集的刺葡萄果實用液氮進行快速冷凍研磨處理,稱取3 g處理后的樣品并向其中加入80%乙醇提取液,35 ℃提取20 min,并每隔5 min混勻1次,將混合物在6500 r·min-1的條件下離心15 min,收集上清液。重復提取3次后,將提取得到的上清液合并,并使用超純水定容至20.0 mL。上清液經(jīng)0.45 μm水相濾膜過濾后置于1.5 mL進樣瓶中,用于高效液相色譜(HPLC)測定葡萄糖、果糖、蔗糖的含量。
1.5 VdERD6L15基因及啟動子引物設(shè)計
在葡萄基因組數(shù)據(jù)庫(http://grapegenomics.com)下載VdERD6L15基因序列(Vitvi04g01302),利用Oligo7軟件設(shè)計VdERD6L15基因編碼區(qū)(CDS)特異性引物VdERD6L15-F1、VdERD6L15-R1、VdERD6L15-F2、VdERD6L15-R2,采用Primer primer5.0軟件從翻譯起始位點ATG上游3000、2200、1500、1000、500 bp設(shè)計特異性引物(表1)。
1.6 VdERD6L15基因克隆及表達載體構(gòu)建
將提取的刺葡萄根系組織中的RNA逆轉(zhuǎn)錄為cDNA并作為模板,用Oligo 7軟件設(shè)計特異性引物擴增得到VdERD6L15基因CDS序列(表1),PCR產(chǎn)物經(jīng)1%的瓊脂糖凝膠電泳后用膠回收試劑盒(TSINGKE TSP602-200 Trelief ? DNA Gel Extraction Kit)純化回收,利用Gateway系統(tǒng)(Thermo Fisher Scientific Gateway? LR Clonase? Ⅱ)構(gòu)建35S:GFP-VdERD6L15載體,并用熱激法轉(zhuǎn)入大腸桿菌DH5α,將陽性單菌落送至生工生物工程(長沙)有限公司進行測序。糖轉(zhuǎn)運蛋白在酵母中異源功能驗證的載體為酵母表達載體PDR196,帶有-Ura篩選標記。酵母表達載體pDR196通過限制性內(nèi)切酶Eco RⅠ(New England Biolabs B6004s)進行酶切并進行膠回收處理,使用Tsingke公司的In-Fusion? HD Cloning Kit進行無縫克隆,并用熱激法轉(zhuǎn)入DH5α大腸桿菌,涂板過夜,挑取陽性克隆測序比對完全正確后進行質(zhì)粒提取。
1.7 VdERD6L15生物信息學分析
通過NCBI數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/)查詢黑比諾VvERD6L15、蘋果MdERDL6及擬南芥AtERDL6的氨基酸序列,并采用TBtools軟件進行多重序列比對;使用ExPasY網(wǎng)站(https://web.expasy.org/protparam/)預測VdERD6L15蛋白的理化性質(zhì);使用TMHMM2.0網(wǎng)站(https://services.healthtech.dtu.dk/services/TMHMM-2.0)對VdERD6L15蛋白跨膜螺旋結(jié)構(gòu)進行預測;采用SWISS-MODEL在線網(wǎng)站(https://swissmodel.expasy.org/)預測VdERD6L15蛋白的二、三級結(jié)構(gòu)。
1.8 VdERD6L15蛋白亞細胞定位
亞細胞定位試驗參照Xie等[15]的方法并稍加改進。將測序正確的質(zhì)粒通過電轉(zhuǎn)法轉(zhuǎn)入農(nóng)桿菌EHA105,以定位于細胞膜的載體RFP-SYP122作為對照[16],將GFP-VdERD6L15與RFP-SYP122菌液重懸并混合均勻,使用1 mL一次性注射器吸取重懸液注射于生長健康的本氏煙草葉片背面。光照培養(yǎng)72 h后,使用激光共聚焦顯微鏡(Zeiss LSM710)觀察煙草葉片中GFP融合蛋白的分布,并保存圖片,GFP激發(fā)光波長為488 nm,RFP激發(fā)光波長為562 nm。
1.9 VdERD6L15基因酵母中異源表達
酵母異源表達試驗參照毛常清[17]的方法操作并稍加改進。將測序比對完全正確的質(zhì)粒轉(zhuǎn)入到只能在麥芽糖培養(yǎng)基上正常生長的己糖缺陷型酵母菌株EBY.VW4000中,以空載體pDR196作為陰性對照。培養(yǎng)3 d后挑取單克隆進行PCR鑒定,選取陽性單克隆菌液,按每次1∶10體積比稀釋菌液,使菌液終體積比分別為:原液、1∶10、1∶100和1∶1000,將原液和3個比例的稀釋菌液各取5 μL分別在SC/-Ura/Mal、SC/-Ura/Glc、SC/-Ura/Fru、SC/-Ura/Suc固體培養(yǎng)基上進行點樣,放入30 ℃培養(yǎng)箱,倒置培養(yǎng)3 d,通過觀察不同糖源的培養(yǎng)基上己糖缺陷型酵母菌株EBY.VW4000的生長情況,判斷VdERD6L15的功能。
1.10 VdERD6L15啟動子克隆及表達載體構(gòu)建
從葡萄基因組數(shù)據(jù)庫下載VdERD6L15基因組序列,分析獲得其上游啟動子序列,將提取刺葡萄組培苗葉片組織的gDNA作為模板,用Primer primer5.0軟件設(shè)計特異性引物并進行擴增(表1),擴增長度分別為3000、2200、1500、1000、500 bp,PCR產(chǎn)物經(jīng)1%的瓊脂糖凝膠電泳后進行膠回收(TSINGKE TSP602-200 Trelief ? DNA Gel Extraction Kit)。利用Gateway系統(tǒng)(Thermo Fisher Scientific Gateway? LR Clonase? Ⅱ)將擴增片段構(gòu)建到以GUS基因為報告基因的植物表達載體pKGWS7,0rfa中并轉(zhuǎn)化到大腸桿菌DH5α中,挑選單菌落進行陽性鑒定,將陽性單菌落送至生工生物工程(長沙)有限公司進行測序。使用PlantCARE(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)預測VdERD6L15啟動子順式作用元件的功能和位置。
1.11 GUS染色
GUS染色試驗參照楊靜靜[18]的方法操作并稍加改進。GUS染色液的配置(200 mL):NaH2PO4 1.56 g+Na2HPO4 3.58 g+K4Fe(CN)6 0.169 g+K3Fe(CN)6 0.132 g+EDTA 0.372 g+TritonX-100 200 μL+X-Gluc 0.2 g,4 ℃避光保存。將測序正確的質(zhì)粒通過電轉(zhuǎn)法轉(zhuǎn)入農(nóng)桿菌EHA105后,挑取含有重組質(zhì)粒proVdERD6L15:GFP-GUS的農(nóng)桿菌于LB液體培養(yǎng)基中,搖菌至OD600=0.6~0.8,棄上清液加入侵染液,用注射器抽取1 mL菌液注射于長勢較好且一致的本氏煙草葉片中。注射菌液3 d后,將煙草葉片進行1 cm打孔并置于燒杯中,加入染色液,37 ℃培養(yǎng)24 h。先后分別用50%、70%的乙醇漂洗樣品,每次漂洗10 min,隨后加入100%的乙醇溶液浸泡,每6 h換1次溶液,觀察染色情況并拍照。
2 結(jié)果與分析
2.1 刺葡萄果實發(fā)育時期VdERD6L15基因表達及糖含量的相關(guān)性分析
為檢測整個刺葡萄果實發(fā)育過程中VdERD6LI5基因的表達情況,從花后第7天開始每隔7 d采集一次直至成熟(共19個采樣節(jié)點)。通過分析VdERD6LI5基因在刺葡萄果實發(fā)育期的FPKM,發(fā)現(xiàn)VdERD6LI5在果實發(fā)育早期表達量高,在后期表達量低(圖1-A)。對刺葡萄果實采樣并進行轉(zhuǎn)錄組測序和可溶性糖含量的測定(圖1-B),基于VdERD6L15的基因表達和糖含量的皮爾遜相關(guān)性分析,發(fā)現(xiàn)其與刺葡萄果實中的可溶性糖(葡萄糖、果糖和蔗糖)積累呈顯著負相關(guān)(-0.652、-0.642和-0.712)。
2.2 VdERD6L15基因克隆
為探究VdERD6L15基因在刺葡萄果實發(fā)育中的作用,以刺葡萄果實組織中的cDNA作為模板,用特異引物VdERD6L15-F1和VdERD6L15-R1進行PCR擴增,擴增得到片段與預期大小一致(圖2-A),經(jīng)測序發(fā)現(xiàn)VdERD6L15的編碼序列區(qū)域長為1461 bp,編碼486個氨基酸。如圖2-B所示,通過對VdERD6L15與黑比諾VvERD6L15、蘋果MdERDL6及擬南芥AtERDL6進行氨基酸多重序列比對,發(fā)現(xiàn)VdERD6L15與黑比諾VvERD6L15、蘋果MdERDL6及擬南芥AtERDL6的同源率分別為100%、82%、78%,均屬于單糖轉(zhuǎn)運蛋白家族(monosaccharide transporters,MSTs)蛋白。
2.3 VdERD6L15蛋白生物信息學分析
通過ExPASy在線網(wǎng)站分析,發(fā)現(xiàn)VdERD6L15編碼的蛋白含有468個氨基酸,分子式為C2413H3839N601O673S18,相對分子質(zhì)量為52 614.73,理論等電點(pI)為8.34,脂肪系數(shù)為118.91,親水性平均系數(shù)為0.628,是一個不穩(wěn)定類蛋白(不穩(wěn)定性指數(shù)為42.08)。使用TMHMM 2.0網(wǎng)站對VdERD6L15蛋白跨膜結(jié)構(gòu)域進行預測,發(fā)現(xiàn)其可能包含12個跨膜結(jié)構(gòu)域,推測VdERD6L15是一個膜蛋白。通過分析VdERD6L15蛋白二級結(jié)構(gòu)發(fā)現(xiàn)其由49.18%的α-螺旋、3.10%的β-折疊、18.11%的延伸鏈和26.54%的隨機卷曲構(gòu)成(圖3-A)。利用SWISS-MODEL軟件對VdERD6L15蛋白三級結(jié)構(gòu)進行同源建模,如圖3-B所示。
2.4 VdERD6L15蛋白的亞細胞定位分析
為探究VdERD6L15的細胞定位,構(gòu)建GFP-VdERD6L15載體并轉(zhuǎn)化到EHA105農(nóng)桿菌中,將活化后含有GFP-VdERD6L15的農(nóng)桿菌菌液與含有細胞膜定位的載體RFP-SYP122農(nóng)桿菌菌液混合均勻注射到本氏煙草葉片中,培養(yǎng)3 d后,在激光共聚焦顯微鏡下觀察熒光分布情況。如圖4所示,通過激光共聚焦顯微鏡觀察發(fā)現(xiàn)GFP-VdERD6L15蛋白為膜蛋白,其定位于膜且具有典型的液泡膜內(nèi)陷結(jié)構(gòu)(如圖中白色箭頭所示),而RFP-SYP122標記的細胞膜不具有內(nèi)陷,表明GFP-VdERD6L15主要定位于液泡膜上。
2.5 VdERD6L15酵母異源表達
為探究VdERD6L15是否具有糖轉(zhuǎn)運活性,對在己糖轉(zhuǎn)運蛋白缺陷型酵母菌株EBY.VW4000中異源表達的VdERD6L15進行研究。將含有pDR196-VdERD6L15質(zhì)粒的己糖缺陷型酵母菌株點種于含有不同糖源的培養(yǎng)基上,以轉(zhuǎn)化pDR196空載的己糖缺陷型酵母菌株作為陰性對照,觀察酵母生長情況。如圖5所示,培養(yǎng)3 d后,轉(zhuǎn)化pDR196空載的陰性對照己糖缺陷型酵母菌株在麥芽糖培養(yǎng)基上可以正常生長,在葡萄糖、果糖及蔗糖培養(yǎng)基上都不能夠正常生長;pDR196-VdERD6L15的己糖缺陷型酵母菌株在含有葡萄糖的培養(yǎng)基上生長良好,而在果糖、蔗糖培養(yǎng)基上生長明顯受到抑制,表明VdERD6L15在酵母中具有一定的葡萄糖轉(zhuǎn)運活性。
2.6 VdERD6L15啟動子順式作用元件預測及活性分析
使用PlantCARE網(wǎng)站對VdERD6L15啟動子進行預測分析,發(fā)現(xiàn)VdERD6L15啟動子區(qū)域包含了大量順式作用元件(圖6),如光響應元件L-box、Box4,MeJA反應的順式作用元件CGTCA-motif,參與干旱誘導元件MBS等,推測VdERD6L15基因表達可能受光調(diào)控。通過GUS染色試驗分析,發(fā)現(xiàn)對照組的煙草葉片無染色,而試驗組P1(-3000 bp)、P2(-2200 bp)、P3(-1500 bp)及P4(-1000 bp)煙草葉片均可正常染色,且顏色隨片段長度的截斷而變淺(圖6),表明4個啟動子缺失體都能正常表達,而P5(-500 bp)煙草葉片不可正常染色,由此進一步明確VdERD6L15啟動子核心區(qū)域位于-500 bp到-1000 bp之間。
3 討 論
在果實發(fā)育過程中,糖分的積累是決定果實品質(zhì)和市場價值的關(guān)鍵因素之一。迄今為止,在葡萄[19-21]、蘋果[22-23]、梨[24]、菠蘿[25]等水果作物中先后揭示糖轉(zhuǎn)運蛋白與果實中糖分積累之間存在著緊密的相關(guān)性。其中,屬于單糖轉(zhuǎn)運蛋白家族的ERD6L在果實糖的積累中也發(fā)揮著重要功能。筆者在本研究中通過分析刺葡萄果實發(fā)育時期VdERDL6L15的表達量,并關(guān)聯(lián)分析果實發(fā)育時期可溶性糖的積累規(guī)律,發(fā)現(xiàn)VdERDL6L15在果實早期表達且與刺葡萄果實糖的積累呈負相關(guān)。為探究VdERDL6L15在葡萄果實發(fā)育中的作用,筆者在本研究中首次成功克隆VdERDL6L15的CDS序列,并對其編碼的氨基酸序列進行了初步的生物信息學分析。通過氨基酸多重序列比對,發(fā)現(xiàn)VdERD6L15與黑比諾VvERD6L15、蘋果MdERDL6及擬南芥AtERDL6具有高度同源。已有研究發(fā)現(xiàn),MdERDL6及AtERDL6編碼蛋白定位于液泡膜[9,26-27],在果實糖的積累中扮演著重要角色,由此推測與它們同源的VdERD6L15可能具有相似生物學功能。本研究中,通過亞細胞定位研究發(fā)現(xiàn)VdERD6L15也定位于液泡膜中,在己糖轉(zhuǎn)運蛋白缺陷型酵母菌株EBY.VW4000中對VdERD6L15異源表達,初步明確了VdERD6L15具有葡萄糖轉(zhuǎn)運活性。這一發(fā)現(xiàn)與之前對蘋果MdERDL6-1的試驗結(jié)果一致[11]。綜上,筆者在本研究中初步確定VdERD6L15定位于液泡膜中,具有轉(zhuǎn)運葡萄糖的功能。
目前,已有研究發(fā)現(xiàn)MdERDL6-1在蘋果果實發(fā)育后期表達量與果實中糖的積累呈顯著正相關(guān),其可將果實細胞液泡中的葡萄糖轉(zhuǎn)運到細胞質(zhì)中,激活液泡膜上糖轉(zhuǎn)運蛋白編碼基因MdTST1的表達,進而促使果實細胞中糖的積累[26]。然而,筆者在本研究中發(fā)現(xiàn)VdERD6L15在坐果期早期表達量高,與葡萄果實中糖的積累呈負相關(guān),其在果實發(fā)育早期將液泡中的葡萄糖轉(zhuǎn)移到細胞質(zhì)中以發(fā)揮何種生物學功能尚不明確。在果實發(fā)育早期,果實快速膨大,果實中大部分可溶性糖通過轉(zhuǎn)運代謝后用于果實細胞生長發(fā)育[28-29]。基于此,推測果實發(fā)育早期VdERD6L15轉(zhuǎn)運的葡萄糖,可在細胞質(zhì)中分解代謝成ATP和碳源,用于葡萄果實生長發(fā)育,但關(guān)于VdERD6L15是如何調(diào)控刺葡萄果實發(fā)育早期細胞內(nèi)可溶性糖的動態(tài)平衡進而影響果實發(fā)育的仍有待進一步探究。
啟動子作為基因表達調(diào)控的關(guān)鍵序列,包含了大量不同功能的順式調(diào)控元件[31],這些元件在基因轉(zhuǎn)錄調(diào)控中扮演著至關(guān)重要的角色,因此對啟動子中的順式作用元件進行研究對揭示基因功能具有重要意義[31-32]。筆者在本研究中借助PlantCARE數(shù)據(jù)庫對VdERD6L15基因ATG上游3000 bp啟動子序列進行了分析,發(fā)現(xiàn)其啟動子區(qū)域包含多種響應元件,如ABA響應元件、MeJA反應的順式作用元件、MYB結(jié)合位點參與干旱誘導響應元件、光響應元件等。通過對VdERD6L15啟動子進行5′端缺失克隆,并以5段不同長度缺失體為目的片段構(gòu)建表達載體,進行煙草瞬時轉(zhuǎn)化。通過GUS染色試驗發(fā)現(xiàn)僅啟動子缺失體P5建立的瞬時表達體系的煙草葉片沒有染上藍色,表明P5片段沒有啟動子活性,從而初步判斷VdERD6L15基因啟動子的核心元件的位置在P4和P5之間(?500 bp~?1000 bp)。進一步分析P4和P5序列的順式作用元件,發(fā)現(xiàn)序列中包含L-box、G-box等光響應元件,推測VdERD6L15通過響應光而參與刺葡萄果實細胞中糖的轉(zhuǎn)運。目前在蘋果[33]、香蕉[34]、番茄[35]等水果作物中也先后發(fā)現(xiàn)光照會影響果實中糖的積累。但由于啟動子與順式作用元件之間調(diào)控機制復雜且多樣[36],VdERD6L15表達是否受光調(diào)控進而參與刺葡萄果實細胞中糖的轉(zhuǎn)運和果實的發(fā)育仍需進一步研究。
4 結(jié) 論
筆者在本研究中首次克隆了刺葡萄VdERD6L15并對其功能進行了分析,結(jié)合前人研究基礎(chǔ),初步發(fā)現(xiàn)VdERD6L15是一個定位在液泡膜上的糖轉(zhuǎn)運蛋白,具有轉(zhuǎn)運葡萄糖的功能;通過對VdERD6L15啟動子不同長度的5′端缺失克隆及活性分析,發(fā)現(xiàn)其核心元件位置位于ATG上游500 bp到1000 bp之間,以上研究可為解析VdERD6L15在刺葡萄果實生長發(fā)育過程中的功能提供一定的理論基礎(chǔ)。
參考文獻References:
[1] 黎炎夏,羅飛雄,許延帥,李雙江,陳文婷,譚君,王美軍,徐豐,楊國順,白描. 刺葡萄新品種湘刺3號的選育[J]. 果樹學報,2024,41(4):781-785.
LI Yanxia,LUO Feixiong,XU Yanshuai,LI Shuangjiang,CHEN Wenting,TAN Jun,WANG Meijun,XU Feng,YANG Guoshun,BAI Miao. Breeding report of a new spine grape cultivar Xiangci No. 3[J]. Journal of Fruit Science,2024,41(4):781-785.
[2] 石雪暉,楊國順,熊興耀,劉昆玉,鐘曉紅,王先榮,倪建軍,郭光銀. 湖南省刺葡萄種質(zhì)資源的研究與利用[J]. 湖南農(nóng)業(yè)科學,2010(19):1-4.
SHI Xuehui,YANG Guoshun,XIONG Xingyao,LIU Kunyu,ZHONG Xiaohong,WANG Xianrong,NI Jianjun,GUO Guangyin. Research and utilization status quo of germplasm resources of Vitis davidii Foёx. in Hunan[J]. Hunan Agricultural Sciences,2010(19):1-4.
[3] 李佳秀,張春嶺,劉慧,陳大磊,劉杰超,焦中高. 葡萄汁中糖酸組成分析及在摻假鑒別中的應用[J]. 果樹學報,2019,36(11):1566-1577.
LI Jiaxiu,ZHANG Chunling,LIU Hui,CHEN Dalei,LIU Jiechao,JIAO Zhonggao. Profiles of soluble sugars and organic acids in grape juice and their application for authentication[J]. Journal of Fruit Science,2019,36(11):1566-1577.
[4] 楊梅,潘永杰,楊國順,石雪暉,劉昆玉,白描,羅飛雄. 刺葡萄新品種湘刺1號的選育[J]. 果樹學報,2023,40(9):2001-2005.
YANG Mei,PAN Yongjie,YANG Guoshun,SHI Xuehui,LIU Kunyu,BAI Miao,LUO Feixiong. A new spine grape cultivar Xiangci No. 1 (Vitis davidii Fo?x.)[J]. Journal of Fruit Science,2023,40(9):2001-2005.
[5] 王靜,周廣勝. 中國毛葡萄和刺葡萄分布的氣候適宜性[J]. 應用生態(tài)學報,2020,31(1):97-103.
WANG Jing,ZHOU Guangsheng. Climatic suitability for the distribution of Vitis heyneana and V. davidii in China[J]. Chinese Journal of Applied Ecology,2020,31(1):97-103.
[6] SHIRAISHI M,F(xiàn)UJISHIMA H,CHIJIWA H. Evaluation of table grape genetic resources for sugar,organic acid,and amino acid composition of berries[J]. Euphytica,2010,174(1):1-13.
[7] 祝令成. 蘋果液泡葡萄糖外排蛋白MdERDL6調(diào)控糖積累的機制研究[D]. 楊凌:西北農(nóng)林科技大學,2022.
ZHU Lingcheng. Mechanism study on an apple tonoplast glucose exporter MdERDL6 in regulating sugar accumulation[D]. Yangling:Northwest A amp; F University,2022.
[8] KIYOSUE T,ABE H,YAMAGUCHI-SHINOZAKI K,SHINOZAKI K. ERD6,a cDNA clone for an early dehydration-induced gene of Arabidopsis,encodes a putative sugar transporter[J]. Biochimica et Biophysica Acta,1998,1370(2):187-191.
[9] POSCHET G,HANNICH B,RAAB S,JUNGKUNZ I,KLEMENS P A W,KRUEGER S,WIC S,NEUHAUS H E,BüTTNER M. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds[J]. Plant Physiology,2011,157(4):1664-1676.
[10] WEI X Y,LIU F L,CHEN C,MA F W,LI M J. The Malus domestica sugar transporter gene family:Identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Frontiers in Plant Science,2014,5:569.
[11] ZHU L C,LI B Y,WU L M,LI H X,WANG Z Y,WEI X Y,MA B Q,ZHANG Y F,MA F W,RUAN Y L,LI M J. MdERDL6-mediated glucose efflux to the cytosol promotes sugar accumulation in the vacuole through up-regulating TSTs in apple and tomato[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(1):e2022788118.
[12] BREIA R,CONDE A,CONDE C,F(xiàn)ORTES A M,GRANELL A,GERóS H. VvERD6l13 is a grapevine sucrose transporter highly up-regulated in response to infection by Botrytis cinerea and Erysiphe necator[J]. Plant Physiology and Biochemistry,2020,154:508-516.
[13] ZHENG Q M,TANG Z,XU Q,DENG X X. Isolation,phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis)[J]. Plant Cell,Tissue and Organ Culture,2014,119(3):609-624.
[14] LI J M,ZHENG D M,LI L T,QIAO X,WEI S W,BAI B,ZHANG S L,WU J. Genome-wide function,evolutionary characterization and expression analysis of sugar transporter family genes in pear (Pyrus bretschneideri Rehd.)[J]. Plant amp; Cell Physiology,2015,56(9):1721-1737.
[15] XIE X B,LI S,ZHANG R F,ZHAO J,CHEN Y C,ZHAO Q,YAO Y X,YOU C X,ZHANG X S,HAO Y J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant,Cell amp; Environment,2012,35(11):1884-1897.
[16] VERWEIJ W,SPELT C E,BLIEK M,DE VRIES M,WIT N,F(xiàn)ARACO M,KOES R,QUATTROCCHIO F M. Functionally similar WRKY proteins regulate vacuolar acidification in Petunia and hair development in Arabidopsis[J]. The Plant Cell,2016,28(3):786-803.
[17] 毛常清. 玉米糖轉(zhuǎn)運蛋白基因的鑒定、系統(tǒng)發(fā)育和表達分析[D]. 雅安:四川農(nóng)業(yè)大學,2019.
MAO Changqing. Identification,Phylogenetic and expression analysis of sugar transporter gene in maize[D]. Ya’an:Sichuan Agricultural University,2019.
[18] 楊靜靜. 蘋果果糖激酶基因MdFRK2在調(diào)控糖代謝中的功能研究[D]. 楊凌:西北農(nóng)林科技大學,2019.
YANG Jingjing. Function study of apple fructokinase gene MdFRK2 in regulating sugar metabolism[D]. Yangling:Northwest A amp; F University,2019.
[19] BAI Q,CHEN X X,ZHENG Z Z,F(xiàn)ENG J J,ZHANG Y J,SHEN Y Y,HUANG Y. Vacuolar Phosphate Transporter1 (VPT1) may transport sugar in response to soluble sugar status of grape fruits[J]. Horticulture Research,2022,10(2):uhac260.
[20] CHONG J L,PIRON M C,MEYER S,MERDINOGLU D,BERTSCH C,MESTRE P. The SWEET family of sugar transporters in grapevine:VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. Journal of Experimental Botany,2014,65(22):6589-6601.
[21] CAI Y M,TU W R,ZU Y Y,JING Y,XU Z M,LU J,ZHANG Y L. Overexpression of a grapevine sucrose transporter (VvSUC27) in tobacco improves plant growth rate in the presence of sucrose in vitro[J]. Frontiers in Plant Science,2017,8:1069.
[22] FAN R C,PENG C C,XU Y H,WANG X F,LI Y,SHANG Y,DU S Y,ZHAO R,ZHANG X Y,ZHANG L Y,ZHANG D P. Apple sucrose transporter SUT1 and sorbitol transporter SOT6 interact with cytochrome b5 to regulate their affinity for substrate sugars[J]. Plant Physiology,2009,150(4):1880-1901.
[23] PENG Q,CAI Y M,LAI E H,NAKAMURA M,LIAO L,ZHENG B B,OGUTU C,CHERONO S,HAN Y P. The sucrose transporter MdSUT4.1 participates in the regulation of fruit sugar accumulation in apple[J]. BMC Plant Biology,2020,20(1):191.
[24] CHENG R,CHENG Y S,Lü J H,CHEN J Q,WANG Y Z,ZHANG S L,ZHANG H P. The gene PbTMT4 from pear (Pyrus bretschneideri) mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit[J]. Physiologia Plantarum,2018,164(3):307-319.
[25] FAKHER B,ASHRAF M A,WANG L L,WANG X M,ZHENG P,ASLAM M,QIN Y. Pineapple SWEET10 is a glucose transporter[J]. Horticulture Research,2023,10(10):uhad175.
[26] ZHU L C,LI Y Z,WANG C C,WANG Z Q,CAO W J,SU J,PENG Y J,LI B Y,MA B Q,MA F W,RUAN Y L,LI M J. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato[J]. Nature Plants,2023,9(6):951-964.
[27] KLEMENS P A W,PATZKE K,TRENTMANN O,POSCHET G,BüTTNER M,SCHULZ A,MARTEN I,HEDRICH R,NEUHAUS H E. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination[J]. New Phytologist,2014,202(1):188-197.
[28] 蘇靜,祝令成,劉茜,彭云靜,馬百全,馬鋒旺,李明軍. 果實糖代謝與含量調(diào)控的研究進展[J]. 果樹學報,2022,39(2):266-279.
SU Jing,ZHU Lingcheng,LIU Xi,PENG Yunjing,MA Baiquan,MA Fengwang,LI Mingjun. Research progress on sugar metabolism and concentration regulation in fruit[J]. Journal of Fruit Science,2022,39(2):266-279.
[29] 田曉成,祝令成,鄒暉,李白云,馬鋒旺,李明軍. 果實可溶性糖的積累模式及其調(diào)控研究進展[J]. 園藝學報,2023,50(4):885-895.
TIAN Xiaocheng,ZHU Lingcheng,ZOU Hui,LI Baiyun,MA Fengwang,LI Mingjun. Research progress on accumulation pattern and regulation of soluble sugar in fruit[J]. Acta Horticulturae Sinica,2023,50(4):885-895.
[30] 張春曉,王文棋,蔣湘寧,陳雪梅. 植物基因啟動子研究進展[J]. 遺傳學報,2004,31(12):1455-1464.
ZHANG Chunxiao,WANG Wenqi,JIANG Xiangning,CHEN Xuemei. Review on plant gene promoters[J]. Acta Genetica Sinica,2004,31(12):1455-1464.
[31] POTENZA C,ALEMAN L,SENGUPTA-GOPALAN C. Targeting transgene expression in research,agricultural,and environmental applications:Promoters used in plant transformation[J]. In Vitro Cellular amp; Developmental Biology - Plant,2004,40(1):1-22.
[32] 楊曉娜,趙昶靈,李云,李會容,蘇麗,周燕瓊. 啟動子序列克隆和功能分析方法的研究進展[J]. 云南農(nóng)業(yè)大學學報(自然科學版),2010,25(2):283-290.
YANG Xiaona,ZHAO Changling,LI Yun,LI Huirong,SU Li,ZHOU Yanqiong. Research advances in the methods of cloning and function-analyzing of promoters[J]. Journal of Yunnan Agricultural University (Natural Science),2010,25(2):283-290.
[33] MEI Z X,LI Z Q,LU X,ZHANG S H,LIU W J,ZOU Q,YU L,F(xiàn)ANG H C,ZHANG Z Y,MAO Z Q,CHEN X S,WANG N. Supplementation of natural light duration promotes accumulation of sugar and anthocyanins in apple (Malus domestica Borkh.) fruit[J]. Environmental and Experimental Botany,2023,205:105133.
[34] HUANG J Y,XU F Y,ZHOU W B. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit[J]. Journal of the Science of Food and Agriculture,2018,98(14):5486-5493.
[35] THWE A A,KASEMSAP P,VERCAMBRE G,GAY F,PHATTARALERPHONG J,GAUTIER H. Impact of red and blue nets on physiological and morphological traits,fruit yield and quality of tomato (Solanum lycopersicum Mill.)[J]. Scientia Horticulturae,2020,264:109185.
[36] VAN DER DOES D,LEON-REYES A,KOORNNEEF A,VAN VERK M C,RODENBURG N,PAUWELS L,GOOSSENS A,K?RBES A P,MEMELINK J,RITSEMA T,VAN WEES S C M,PIETERSE C M J. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59[J]. The Plant Cell,2013,25(2):744-761.
基金項目:國家重點研發(fā)計劃項目(2023YFD1200100);國家自然科學基金項目(32202531);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項目(CARS-29-Zp-9)
作者簡介:劉潔,女,在讀碩士研究生,主要從事果樹品質(zhì)性狀形成調(diào)控研究。E-mail:2243853617@qq.com
*通信作者Author for correspondence. E-mail:lishuangjiang0000@163.com