













摘要:針對(duì)大數(shù)值孔徑顯微成像技術(shù)對(duì)物鏡位移臺(tái)提出的長(zhǎng)行程、高精度和大負(fù)載的要求,提出了一種非線性魯棒運(yùn)動(dòng)控制策略以實(shí)現(xiàn)物鏡位移臺(tái)的精密運(yùn)動(dòng)。設(shè)計(jì)了大數(shù)值孔徑顯微鏡的光路系統(tǒng)、虛擬樣機(jī)以及由滾珠絲杠驅(qū)動(dòng)的物鏡位移臺(tái),采用雙螺母預(yù)緊的方式消除滾珠絲杠傳動(dòng)間隙。將自適應(yīng)技術(shù)引入非奇異終端滑模控制,實(shí)現(xiàn)系統(tǒng)狀態(tài)的有限時(shí)間收斂,提高系統(tǒng)魯棒性。針對(duì)滾珠絲杠傳動(dòng)機(jī)構(gòu)內(nèi)部的非線性摩擦效應(yīng),采用時(shí)延估計(jì)技術(shù)實(shí)現(xiàn)摩擦力的在線估計(jì)和實(shí)時(shí)補(bǔ)償,將時(shí)延估計(jì)技術(shù)和自適應(yīng)非奇異終端滑模控制相結(jié)合獲得無模型控制特性。通過Lyapunov理論證明了閉環(huán)系統(tǒng)的穩(wěn)定性。搭建了一個(gè)高分辨率的光學(xué)顯微鏡,實(shí)現(xiàn)物鏡位移臺(tái)的精密運(yùn)動(dòng),采集到小鼠心肌細(xì)胞的顯微圖像,證明了所提算法的有效性。
關(guān)鍵詞:自適應(yīng)有限時(shí)間控制;高分辨率光學(xué)顯微鏡;時(shí)延估計(jì);非奇異終端滑模
中圖分類號(hào):TH742
DOI:10.3969/j.issn.1004-132X.2024.09.019
High-resolution Microscope Motion Control Based on Adaptive Finite-time Control Strategy
YU Shengdong LI Xiaopeng YANG Sipeng2 WU Hongyuan HU Wenke CAI Bofan MA Jinyu3
1.College of Mechanical and Electrical Engineering,Wenzhou University,Wenzhou,Zhejiang,325000
2.Wenzhou Institute,University of Chinese Academy of Sciences(Wenzhou Institute of Biomaterials and Engineering),Wenzhou,Zhejiang,325000
3.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics, Nanjing,210016
Abstract: A nonlinear robust motion control strategy was proposed to achieve precise movement of objective motion carrier in context of large numerical aperture microscopy imaging technology, which required a long stroke, high precision, and large load capabilities. An optical path system and a virtual prototype of a large numerical aperture microscope were designed. In addition, a ball-screw-driven objective motion carrier was designed, and the backlash of ball-screw was eliminated by double nut preloading method. To achieve finite-time convergence of system state and improve system robustness, an adaptive technology was employed in nonsingular terminal sliding mode control. Furthermore, to address nonlinear friction effect in ball-screw transmission mechanisms, TDE technology was employed to realize online estimation and real-time compensation of friction forces. TDE technology and adaptive nonsingular terminal sliding mode control were adopted to achieve model-free control characteristics. The stability of closed-loop system was proved by Lyapunov theory. Consequently, a high-resolution optical microscope was developed to achieve precise movement of objective motion carrier, and microscopic images of mouse cardiac muscle cells were acquired to demonstrate the effectiveness of the proposed algorithm.
Key words: adaptive finite-time control; high-resolution optical microscopy; time delay estimation(TDE); nonsingular terminal sliding mode
0 引言
高分辨率光學(xué)顯微鏡在生物醫(yī)學(xué)研究中發(fā)揮了重要作用[1],可為微觀世界中的細(xì)胞、亞細(xì)胞等生物組織提供高清晰度、高對(duì)比度和高分辨率的顯微圖像[2]。大數(shù)值孔徑顯微成像技術(shù)的誕生[3]推動(dòng)了生物光學(xué)顯微鏡向蛋白質(zhì)分子成像領(lǐng)域發(fā)展[4],并對(duì)物鏡的運(yùn)動(dòng)精度提出了更高要求。物鏡運(yùn)動(dòng)平臺(tái)(objective motion carrier,OMC)用于驅(qū)動(dòng)焦平面精確定位,實(shí)現(xiàn)聚焦成像,在大數(shù)值孔徑成像技術(shù)中,OMC需要高精度、長(zhǎng)行程、大負(fù)載,甚至能夠驅(qū)動(dòng)物鏡轉(zhuǎn)盤運(yùn)動(dòng)[5]。
在微納運(yùn)動(dòng)領(lǐng)域,疊堆壓電陶瓷利用逆壓電效應(yīng)產(chǎn)生納米級(jí)定位精度[6],但運(yùn)動(dòng)行程通常小于100 μm[7],無法滿足OMC的行程要求。壓電馬達(dá)利用壓電黏滑驅(qū)動(dòng)原理工作[8],在垂直方向上的負(fù)載能力有限[9]。步進(jìn)電機(jī)由于相數(shù)、轉(zhuǎn)子齒數(shù)的限制,按照步距角轉(zhuǎn)動(dòng),運(yùn)動(dòng)精度較低[10]。將高分辨率的伺服電機(jī)和滾珠絲杠傳動(dòng)機(jī)構(gòu)結(jié)合,能夠滿足行程和負(fù)載的要求[11]。通過雙螺母預(yù)緊消除滾珠絲杠的傳動(dòng)間隙[12],配置納米級(jí)分辨率的光柵傳感器實(shí)現(xiàn)閉環(huán)反饋,可提高運(yùn)動(dòng)精度。
但是,雙螺母預(yù)緊加劇了滾珠絲杠和螺母之間的非線性摩擦效應(yīng)[13],導(dǎo)致OMC在超低速聚焦微調(diào)時(shí)出現(xiàn)爬行、穩(wěn)態(tài)時(shí)有較大的靜差或極限環(huán)振蕩現(xiàn)象[14]。因此,需設(shè)計(jì)一種有效的非線性魯棒運(yùn)動(dòng)控制策略抑制非線性摩擦效應(yīng)及各種干擾對(duì)運(yùn)動(dòng)精度的影響。
傳統(tǒng)的PID控制在工業(yè)生產(chǎn)上獲得廣泛應(yīng)用[15],但是這種線性控制器在面對(duì)強(qiáng)非線性的摩擦效應(yīng)時(shí),存在魯棒性不足的缺陷。最優(yōu)控制、神經(jīng)網(wǎng)絡(luò)控制等涉及復(fù)雜的數(shù)學(xué)最優(yōu)化問題的求解[16];模糊控制需要系統(tǒng)的先驗(yàn)知識(shí),建立模糊規(guī)則庫[17]。滑模控制通過引入滑動(dòng)模態(tài),使系統(tǒng)狀態(tài)迅速、準(zhǔn)確地滑動(dòng)到滑模面,實(shí)現(xiàn)快速響應(yīng),在面對(duì)非線性、參數(shù)不確定性和外部擾動(dòng)時(shí),具有魯棒性強(qiáng)、響應(yīng)速度快、易于實(shí)現(xiàn)的優(yōu)點(diǎn)[18]。
隨著滑模理論的發(fā)展,近年來發(fā)展起來的快速非奇異終端滑模(fast non-singular terminal sliding mode,F(xiàn)NTSM)[19]能夠消除系統(tǒng)抖振,通過在系統(tǒng)狀態(tài)空間中引入一個(gè)非奇異終端模態(tài),實(shí)現(xiàn)系統(tǒng)狀態(tài)的有限時(shí)間收斂[20]。但是,現(xiàn)有的FNTSM常用PD型滑模面,響應(yīng)慢。將PD型滑模面擴(kuò)展到PID型滑模面,以獲得更快的瞬態(tài)響應(yīng)和更小的穩(wěn)態(tài)誤差。另外,現(xiàn)有的FNTSM采用固定增益系數(shù),無法根據(jù)系統(tǒng)的當(dāng)前狀態(tài)實(shí)時(shí)提供最佳的增益系數(shù)。本文將自適應(yīng)更新機(jī)制引入FNTSM,從而形成AFNTSM(adaptive FNTSM)。
在OMC中,由于非線性摩擦效應(yīng)無法建立準(zhǔn)確的數(shù)學(xué)模型,從而使被控系統(tǒng)中存在強(qiáng)大的未知擾動(dòng),制約系統(tǒng)運(yùn)動(dòng)精度[21]。時(shí)延估計(jì)(time delay estimation,TDE)技術(shù)利用時(shí)延信息來估計(jì)系統(tǒng)未知?jiǎng)恿W(xué)模型及擾動(dòng)[7],因此將TDE技術(shù)用于實(shí)現(xiàn)對(duì)未知擾動(dòng)的在線估計(jì)和實(shí)時(shí)補(bǔ)償[22],提高控制器的工程應(yīng)用性。在OMC中,當(dāng)滾珠絲杠與螺母的相對(duì)運(yùn)動(dòng)方向發(fā)生變化時(shí),摩擦力方向瞬間改變,導(dǎo)致TDE技術(shù)產(chǎn)生較大的估計(jì)誤差。
本文提出將AFNTSM引入TDE技術(shù)中,形成AFNTSM-TDE控制器。AFNTSM能夠在TDE技術(shù)的估計(jì)誤差變大時(shí)保持足夠的魯棒性和運(yùn)動(dòng)精度,TDE技術(shù)為AFNTSM帶來無模型控制特性。基于Lyapunov原理證明了AFNTSM-TDE控制器的系統(tǒng)穩(wěn)定性和有限時(shí)間收斂特性,同時(shí)給出了系統(tǒng)穩(wěn)定的收斂區(qū)間和時(shí)間。最后,搭建一套高分辨率的生物光學(xué)顯微鏡,完成OMC的魯棒精密運(yùn)動(dòng)控制及對(duì)心肌細(xì)胞的顯微成像實(shí)驗(yàn),驗(yàn)證所提方法的有效性。
1 系統(tǒng)描述
1.1 高分辨率光學(xué)顯微鏡的結(jié)構(gòu)設(shè)計(jì)
基于大數(shù)值孔徑成像技術(shù)搭建高分辨光學(xué)顯微鏡光路系統(tǒng),如圖1所示,該光路系統(tǒng)主要包括LED光源、sCMOS(scientific complementary metal oxide semiconductor)相機(jī)、透鏡、物鏡和OMC。系統(tǒng)兼容兩種照明方式,一種是LED光源從上方經(jīng)準(zhǔn)直透鏡照射于樣品;另一種是左側(cè)LED光源發(fā)出的光經(jīng)透鏡1準(zhǔn)直后,被透鏡2聚焦在物鏡的后焦面,通過物鏡后照射于樣品,對(duì)樣品進(jìn)行全方位照明。大數(shù)值孔徑成像技術(shù)采用高放大倍率的物鏡,焦深縮短為微米級(jí)別,樣品須位于焦平面處,以獲得清晰的顯微成像。
因此,在高分辨率光學(xué)顯微鏡中,OMC驅(qū)動(dòng)物鏡精確運(yùn)動(dòng)是實(shí)現(xiàn)高質(zhì)量圖像采集的關(guān)鍵。
如圖2所示,OMC的機(jī)械結(jié)構(gòu)包括高分辨率伺服電機(jī)、滾珠絲杠、滑臺(tái)、交叉滾子導(dǎo)軌、光柵傳感器和光電傳感器等部件。其中伺服電機(jī)通過滾珠絲杠驅(qū)動(dòng)滑臺(tái)沿垂直方向運(yùn)動(dòng),滑臺(tái)與基座通過交叉滾子導(dǎo)軌配合,保證直線運(yùn)動(dòng)的精度和平穩(wěn)性。物鏡的位移信號(hào)由光柵傳感器采集,讀數(shù)頭輸出TTL數(shù)字電平信號(hào)到魯棒控制器,構(gòu)成閉環(huán)反饋。光電傳感器作為滑臺(tái)的限位裝置,避免滑臺(tái)與支架發(fā)生碰撞,起電氣保護(hù)作用。
圖3為OMC的運(yùn)動(dòng)簡(jiǎn)圖,揭示OMC內(nèi)部的運(yùn)動(dòng)傳遞關(guān)系,用于構(gòu)建OMC的動(dòng)力學(xué)模型。
1.2 OMC的動(dòng)力學(xué)模型
根據(jù)牛頓-歐拉公式建立OMC的動(dòng)力學(xué)模型:
3 數(shù)值模擬實(shí)驗(yàn)
在本節(jié)中,將通過數(shù)值模擬實(shí)驗(yàn)分析所提控制器的性能。影響滾珠絲杠傳動(dòng)精度的主要因素是LuGre摩擦和間隙。為確保數(shù)值模擬的有效性,將LuGre摩擦效應(yīng)和間隙添加到OMC的動(dòng)力學(xué)模型中,構(gòu)建更符合真實(shí)物理特性的被控對(duì)象。
3.1 LuGre摩擦模型
采用LuGre摩擦模型[26]構(gòu)建非線性摩擦力:
3.2 數(shù)值模擬實(shí)驗(yàn)
在數(shù)值模擬實(shí)驗(yàn)中,控制器驅(qū)動(dòng)OMC跟蹤一個(gè)振幅為1 mm、周期為4 s的正弦參考信號(hào),表達(dá)式如下:
鑒于PID控制器在工業(yè)領(lǐng)域的廣泛應(yīng)用,本研究通過跟蹤正弦軌跡,對(duì)PID、PDSM-TDE、PIDSM-TDE和APIDSM-TDE控制器進(jìn)行比較。圖5和圖6分別展示了位移誤差曲線和滑模面曲線。實(shí)驗(yàn)結(jié)果表明,這些控制器都能夠準(zhǔn)確地跟蹤正弦參考信號(hào),但PID控制器表現(xiàn)出最大的跟蹤誤差,ME為483 nm,RMSE為349 nm,見表1。APIDSM-TDE控制器表現(xiàn)出最高的跟蹤精度,ME為54 nm,RMSE為17 nm。PIDSM-TDE和APIDSM-TDE控制器對(duì)比可知,將自適應(yīng)算法引入滑模面中可以顯著減小位移誤差的波動(dòng)。
在2,4,6,8 s時(shí),位移方向的改變導(dǎo)致系統(tǒng)集總未知項(xiàng)突然增加,如圖7所示,并發(fā)現(xiàn)LuGre摩擦存在滯后效應(yīng),PID控制器無法處理這種非線性干擾。圖8顯示TDE輸出曲線與系統(tǒng)集總未知項(xiàng)高度相似。圖9中的TDE誤差曲線在一個(gè)較小的范圍內(nèi)波動(dòng)。可見,PDSM-TDE、PIDSM-TDE和APIDSM-TDE可以通過TDE實(shí)時(shí)估計(jì)系統(tǒng)集總未知項(xiàng)。
然而,系統(tǒng)集總未知項(xiàng)的突變可能對(duì)TDE技術(shù)構(gòu)成挑戰(zhàn),因?yàn)門DE技術(shù)更適用于估計(jì)平穩(wěn)、緩慢變化的未知信號(hào)。在PDSM-TDE、PIDSM-TDE和APIDSM-TDE控制器中,TDE的估計(jì)誤差曲線保持高度一致。這一現(xiàn)象表明TDE技術(shù)的性能不受魯棒性的影響,并且TDE技術(shù)可以獨(dú)立地發(fā)揮出色效果。
SMC的最大缺點(diǎn)是抖振。引入FNTSM型趨近律后,PDSM-TDE、PIDSM-TDE和APIDSM-TDE的控制律曲線是光滑、連續(xù)、無抖動(dòng)的。圖7中的系統(tǒng)集總未知項(xiàng)曲線、圖8中的TDE曲線和圖10中的控制律曲線高度相似,這也反映了控制器中TDE技術(shù)的重要性和支配地位。盡管滑模項(xiàng)所占的比重非常小,但在微納運(yùn)動(dòng)控制領(lǐng)域,控制方法必須兼具高精度和魯棒性。
圖11顯示APIDSM-TDE可以動(dòng)態(tài)響應(yīng)滑模曲面的變化或集總未知項(xiàng),自動(dòng)調(diào)整增益,實(shí)現(xiàn)自適應(yīng)控制。當(dāng)控制性能較差時(shí),增益增加;當(dāng)控制性能較好時(shí),增益迅速減小,在當(dāng)前控制性能的基礎(chǔ)上改善整體性能。
在數(shù)值模擬實(shí)驗(yàn)中,OMC輸出位移信號(hào),通過RED在線估計(jì)速度和加速度信號(hào)。從圖12中的速度曲線看出,RED迅速收斂到期望的速度。從圖13中的加速度曲線可以看出,位移方向的變化和摩擦效應(yīng)的疊加導(dǎo)致加速度波動(dòng)。盡管加速度波動(dòng),RED依然能夠快速實(shí)現(xiàn)加速度的收斂。
從數(shù)值模擬實(shí)驗(yàn)的角度看,RED能有效實(shí)現(xiàn)全狀態(tài)估計(jì)。
4 小鼠心肌細(xì)胞的顯微成像實(shí)驗(yàn)
所研制的OMC包括執(zhí)行器和傳感器。OMC的執(zhí)行器是一臺(tái)功率100W的伺服電機(jī),型號(hào)HK-KT13WJ,驅(qū)動(dòng)器型號(hào)MR-J5-10A,由三菱電機(jī)制造。光柵傳感器分辨力為100 nm,由Renishaw plc制造。采用了1mm導(dǎo)程的滾珠絲杠以獲取更大的推力,OMC的負(fù)載能力達(dá)到90N。基于xPC Target內(nèi)核開發(fā)了OMC的硬件在環(huán)實(shí)驗(yàn)系統(tǒng)[23],采用了宿主機(jī)-目標(biāo)機(jī)架構(gòu)。目標(biāo)機(jī)配備DOS操作系統(tǒng)和一顆主頻為3.10 GHz的i5-10500H CPU。控制策略運(yùn)行于宿主機(jī)[27],通過以太網(wǎng)電纜連接xPC Target系統(tǒng)。控制策略編譯后生成在目標(biāo)機(jī)上執(zhí)行的代碼[28]。圖14顯示了OMC硬件在環(huán)控制流程圖。
搭建圖15所示的高分辨率顯微鏡,顯微鏡主體安裝于氣浮平臺(tái)上,以隔離潛在的振動(dòng)干擾。顯微鏡框架由304不銹鋼制造,防止銹蝕。顯微鏡所用物鏡具有60倍放大倍率,由Olympus制造,型號(hào)Uplfln。使用的sCMOS相機(jī)由Excelitas制造,型號(hào)是Edge4.2 M,具有2048×2048活動(dòng)像素。本實(shí)驗(yàn)室設(shè)計(jì)了用于操作顯微鏡的軟件系統(tǒng),具備運(yùn)動(dòng)控制、圖像對(duì)比度調(diào)整和圖像保存等功能。在顯微成像實(shí)驗(yàn)中,OMC跟蹤梯形速度曲線,物鏡的定位精度為200 nm。小鼠心肌細(xì)胞的微觀成像照片如圖16所示。為了獲得小鼠心肌細(xì)胞的顯微圖像,OMC驅(qū)動(dòng)焦平面運(yùn)動(dòng)并準(zhǔn)確定位于小鼠心肌細(xì)胞,實(shí)現(xiàn)圖像動(dòng)態(tài)采集。從圖16a到圖16d展示了通過OMC調(diào)整物鏡焦平面來獲得清晰圖像的效果。
5 結(jié)論
本文提出了一種新穎的自適應(yīng)PID型滑模面-時(shí)延估計(jì)(APIDSM-TDE)控制方法,實(shí)現(xiàn)了物鏡運(yùn)動(dòng)平臺(tái)的魯棒精密運(yùn)動(dòng)控制。該方法使用TDE技術(shù)來獲取集總未知項(xiàng),用于在線估計(jì)和實(shí)時(shí)補(bǔ)償系統(tǒng)動(dòng)態(tài)。APIDSM-TDE控制策略無需被控對(duì)象的先驗(yàn)知識(shí),易于工程應(yīng)用。此外,將傳統(tǒng)的PD型滑模面改進(jìn)為自適應(yīng)PID型滑模面,以提高控制器的性能。當(dāng)干擾增加和控制性能惡化時(shí),所提出的自適應(yīng)PID滑模面可以及時(shí)、準(zhǔn)確地整定控制增益,保證控制精度;還引入了FNTSM趨近律,以消除抖動(dòng)并實(shí)現(xiàn)誤差有限時(shí)間收斂。通過Lyapunov穩(wěn)定性理論分析了APIDSM-TDE閉環(huán)系統(tǒng)的穩(wěn)定性。此外,通過數(shù)值模擬實(shí)驗(yàn)和硬件在環(huán)控制證明了所提出的控制方法的有效性和先進(jìn)性。搭建了一個(gè)超高分辨率明場(chǎng)顯微鏡,用于小鼠心肌細(xì)胞的顯微成像實(shí)驗(yàn),獲得了令人滿意的成像結(jié)果,表明所開發(fā)的控制器能夠滿足小鼠心肌細(xì)胞的顯微成像。
參考文獻(xiàn):
[1]OMAR M, AGUIRRE J, NTZIACHRISTOS V. Optoacoustic Mesoscopy for Biomedicine[J]. Nature Biomedical Engineering, 2019, 3(5):354-370.
[2]BULLEN A. Microscopic Imaging Techniques for Drug Discovery[J]. Nature Reviews Drug Discovery, 2008, 7(1):54-67.
[3]CHEN Jin, CHU Hongchen, LAI Yun, et al. Highly Efficient Achromatic Subdiffraction Focusing Lens in the Near Field with Large Numerical Aperture[J]. Photonics Research, 2021, 9(10):2088.
[4]M’SAAD O, BEWERSDORF J. Light Microscopy of Proteins in Their Ultrastructural Context[J]. Nature Communications, 2020, 11(1):3850.
[5]KANG Ming, RA’DI Y, FARFAN D, et al. Efficient Focusing with Large Numerical Aperture Using a Hybrid Metalens[J]. Physical Review Applied, 2020, 13(4):044016.
[6]MA Jinyu, XIE Mingyang, CHEN Puhui, et al. Motion Tracking of a Piezo-driven Cell Puncture Mechanism Using Enhanced Sliding Mode Control with Neural Network[J]. Control Engineering Practice, 2023, 134:105487.
[7]YU Shengdong, MA Jinyu, WU Hongtao, et al. Robust Precision Motion Control of Piezoelectric Actuators Using Fast Nonsingular Terminal Sliding Mode with Time Delay Estimation[J]. Measurement and Control, 2019, 52(1/2):11-19.
[8]XU Z, SUN W, LI X, et al. A Stick-slip Piezoelectric Actuator with High Assembly Interchangeability[J]. International Journal of Mechanical Sciences, 2022, 233:107662.
[9]QIAO Guangda, NING Peng, XIA Xiao, et al. Achieving Smooth Motion for Piezoelectric Stick-slip Actuator with the Inertial Block Structure[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4):3948-3958.
[10]FANG Li, ZHOU Hong, HU Wenshan, et al. Design of Wireless Individual-drive System for Variable-reluctance Stepping Motor[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(4):2141-2145.
[11]WANG Nan, LIN Weiyang. Robust Tracking Control of AC Servo System Including a Ball Screw[J]. Neurocomputing, 2016, 179(C):110-117.
[12]LIU Jun, FENG Hutian, ZHOU Changguang. Static Load Distribution and Axial Static Contact Stiffness of a Preloaded Double-nut Ball Screw Considering Geometric Errors[J]. Mechanism and Machine Theory, 2022, 167:104460.
[13]OH K J, CAO Lei, CHUNG S C. Explicit Modeling and Investigation of Friction Torques in Double-nut Ball Screws for the Precision Design of Ball Screw Feed Drives[J]. Tribology International, 2020, 141:105841.
[14]趙希梅, 王超, 金鴻雁. 基于NDO的永磁同步電動(dòng)機(jī)自適應(yīng)分?jǐn)?shù)階滑模控制[J]. 中國(guó)機(jī)械工程, 2023, 34(9):1093-1099.
ZHAO Ximei, WANG Chao, JIN Hongyan. Adaptive Fractional Order Sliding Mode Control for PMSMS Based on NDO[J]. China Mechanical Engineering, 2023, 34(9):1093-1099.
[15]WANG Jun, LI Moudao, JIANG Weibin, et al. A Design of FPGA-based Neural Network PID Controller for Motion Control System[J]. Sensors, 2022, 22(3):889.
[16]VILLARRUBIA G, de PAZ J F, CHAMOSO P, et al. Artificial Neural Networks Used in Optimization Problems[J]. Neurocomputing, 2018, 272:10-16.
[17]NGUYEN A T, TANIGUCHI T, ECIOLAZA L, et al. Fuzzy Control Systems:Past, Present and Future[J]. IEEE Computational Intelligence Magazine, 2019, 14(1):56-68.
[18]YU Shengdong, XIE Mingyang, WU Hongtao, et al. Composite Proportional-integral Sliding Mode Control with Feedforward Control for Cell Puncture Mechanism with Piezoelectric Actuation[J]. ISA Transactions, 2022, 124:427-435.
[19]LU En, LI Wei, YANG Xuefeng, et al. Anti-disturbance Speed Control of Low-speed High-torque PMSM Based on Second-order Non-singular Terminal Sliding Mode Load Observer[J]. ISA Transactions, 2019, 88:142-152.
[20]YU Shengdong, WU Hongtao, XIE Mingyang, et al. Precise Robust Motion Control of Cell Puncture Mechanism Driven by Piezoelectric Actuators with Fractional-order Nonsingular Terminal Sliding Mode Control[J]. Bio-Design and Manufacturing, 2020, 3(4):410-426.
[21]余勝東, 馬金玉, 陳大路, 等. 一類含未知非線性遲滯的智能壓電作動(dòng)器魯棒有限時(shí)間運(yùn)動(dòng)控制[J]. 機(jī)械科學(xué)與技術(shù), 2018, 37(8):1183-1189.
YU Shengdong, MA Jinyu, CHEN Dalu, et al. Robust Finite-time Motion Control for a Class of Smart Piezoelectric Actuators with Unknown Nonlinear Hysteresis[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(8):1183-1189.
[22]雷榮華, 陳力. 空間機(jī)器人執(zhí)行器部分失效故障的終端滑模容錯(cuò)控制[J]. 中國(guó)機(jī)械工程, 2019, 30(8):947-953.
LEI Ronghua, CHEN Li. Terminal Sliding Mode Fault-tolerant Control for Space Robots under Partial Loss of Actuator Effectiveness[J]. China Mechanical Engineering, 2019, 30(8):947-953.
[23]YU Shengdong, XIE Mingyang, MA Jinyu, et al. Precise Robust Motion Tracking of a Piezoactuated Micropuncture Mechanismwith Sliding Mode Control[J]. Journal of the Franklin Institute, 2021, 358(8):4410-4434.
[24]BAEK J, KWON W, KIM B, et al. A Widely Adaptive Time-delayed Control and Its Application to Robot Manipulators[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7):5332-5342.
[25]LEVANT A. Higher-order Sliding Modes, Differentiation and Output-feedback Control[J]. International Journal of Control, 2003, 76(9/10):924-941.
[26]JOHANASTROM K, CANUDAS-DE-WIT C. Revisiting the LuGre Friction Model[J]. IEEE Control Systems Magazine, 2008, 28(6):101-114.
[27]XIONG Rui, DUAN Yanzhou, CAO Jiayi, et al. Battery and Ultracapacitor In-the-loop Approach to Validate a Real-time Power Management Method for an All-climate Electric Vehicle[J]. Applied Energy, 2018, 217:153-165.
[28]馬金玉, 余勝東, 康升征, 等. 基于壓電作動(dòng)器驅(qū)動(dòng)的微操作機(jī)構(gòu)設(shè)計(jì)與運(yùn)動(dòng)控制[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2021, 52(9):417-426.
MA Jinyu, YU Shengdong, KANG Shengzheng, et al. Design and Motion Control of Piezo-driven Puncture Micromanipulation Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9):417-426.
(編輯 王旻玥)
作者簡(jiǎn)介:
余勝東,男,1984年生,博士、副研究員。研究方向?yàn)槲⒓{運(yùn)動(dòng)控制、微納操作機(jī)器人設(shè)計(jì)。E-mail:shengdong@nuaa.edu.cn。
馬金玉(通信作者),女,1988年生,講師、博士研究生。研究方向?yàn)轸敯艟苓\(yùn)動(dòng)控制。E-mail:jinyuma@nuaa.edu.cn。
收稿日期:2023-10-29
基金項(xiàng)目:國(guó)家自然科學(xué)基金(31971290);溫州市重大研發(fā)計(jì)劃(ZGF2023056)