999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

大氣中氣態(tài)氨的采集分析及氮同位素源解析綜述

2024-12-14 00:00:00劉剛
關(guān)鍵詞:大氣

摘要氨是大氣中生成PM2.5的主要前驅(qū)物之一.為了用同位素方法更精確地識別大氣中氨的來源,減輕城市大氣PM2.5污染,對近年來國內(nèi)外有關(guān)氣態(tài)氨的采樣與濃度分析方法、氮同位素比值測定和估算方法、不同來源氨的氮同位素組成及同位素分餾、大氣中氨的氮同位素組成及分餾、大氣顆粒物和降水中NH+4的氮同位素組成,以及大氣中氨的源解析等研究現(xiàn)狀進(jìn)行了分析.據(jù)此為未來的研究工作提出了若干建議:被動(dòng)采樣法會(huì)引起NH3的氮同位素分餾,采樣前應(yīng)確定最低采樣質(zhì)量;需加強(qiáng)對生物質(zhì)燃燒、天然土壤、海洋、污水處理廠、植物及其他潛在排放源氨的氮同位素組成研究;要進(jìn)一步研究不同排放源氨的氮同位素組成變化機(jī)理;應(yīng)以更高的時(shí)間分辨率同時(shí)測定氣態(tài)NH3和顆粒態(tài)NH+4的質(zhì)量濃度和氮同位素組成,以探討顆粒態(tài)NH+4生成過程中氮的同位素分餾機(jī)理;需更加深入地研究不同大氣污染狀況和氣象條件下氣態(tài)氨的氮同位素分餾機(jī)理.

關(guān)鍵詞大氣;氨;氮同位素;源解析

中圖分類號X513

文獻(xiàn)標(biāo)志碼A

0 引言

銨鹽是大氣中PM2.5的主要組分之一,灰霾天氣時(shí)其對PM2.5的質(zhì)量貢獻(xiàn)率達(dá)30%~77% [1].空氣中的氨氣與二氧化氮、二氧化硫等酸性氣體反應(yīng)可生成相應(yīng)的銨鹽.據(jù)估算,2006年中國的氨排放量約為98 億kg[2].減少污染源向大氣中排放氨氣,能夠降低顆粒態(tài)銨鹽的濃度,進(jìn)而改善城市的環(huán)境空氣質(zhì)量.大氣中的氨有多種來源,牲畜養(yǎng)殖和氮肥施用等農(nóng)業(yè)活動(dòng)是最大的人為排放源[3].此外,人類糞便、化石燃料和生物質(zhì)的燃燒過程、天然土壤、海洋等也均向大氣中排放氨[4-6],但在不同地區(qū)各種排放源對大氣氨的貢獻(xiàn)是有差別的[7-9].總體而言,不同來源氨的氮同位素比值(δ15N)存在明顯的差別[4,10-12].利用大氣中氨的氮同位素組成進(jìn)行源解析,是目前追蹤其來源的較為有效的方法[13-18].Pan 等[19]對大氣氨濃度的觀測現(xiàn)狀、被動(dòng)采樣器的氨采樣效率及其氮同位素測定值的偏差進(jìn)行了綜述,并將之前用被動(dòng)采樣器所采集大氣氨的氮同位素測定值進(jìn)行校正后,重新對北京的大氣氨進(jìn)行源解析,指出由于普遍使用不同品牌的被動(dòng)采樣器采樣,并且對測定值不加校正地使用,會(huì)導(dǎo)致大氣氨濃度觀測結(jié)果和源解析結(jié)果產(chǎn)生較大的偏差.為了更準(zhǔn)確地識別氨的來源,本文對大氣氨的采樣方法、濃度和氮同位素分析方法、δ15N值估算方法、不同來源氨的氮同位素組成及同位素分餾、大氣中氨的氮同位素組成及同位素分餾、大氣中NH+4的氮同位素組成、大氣中氨氣的源解析等方面的研究現(xiàn)狀進(jìn)行綜述,并就有關(guān)問題開展進(jìn)一步研究提出了若干建議.

1 樣品采集和分析

1.1 采樣方法

大氣中氨氣的濃度很低,在中國典型農(nóng)業(yè)區(qū)大氣中氨氣的質(zhì)量濃度為1~ 23.9 μg·m-3[20],在廈門市空氣中的平均質(zhì)量濃度為7.9 μg·m-3[21],在西安市夏季空氣中的平均質(zhì)量濃度為38.0 μg·m-3[22].為了采集足夠數(shù)量的氨氣以滿足氮同位素比值測定的需要,主要使用被動(dòng)采樣器進(jìn)行數(shù)天時(shí)間的采樣.目前有多個(gè)品牌的被動(dòng)采樣器可供選用,它們具有相似的采樣原理[11,18,20].適應(yīng)型低成本高吸收被動(dòng)采樣器(ALPHA)為一只一端開口的圓形聚乙烯瓶(高26 mm、直徑27 mm).該瓶內(nèi)裝有2~3張濾膜.第1張為聚四氟乙烯膜,用以除去空氣中的顆粒物和擴(kuò)散氨氣.另外2張為石英濾膜(直徑25 mm).濾膜上均浸漬了質(zhì)量分?jǐn)?shù)為2%的磷酸甲醇溶液,用以吸收氨氣,使之與磷酸反應(yīng)生成銨離子.Ogawa被動(dòng)采樣器為一支長3 cm、直徑為2 cm的圓柱形聚合物管.該采樣器一端配有1個(gè)擴(kuò)散蓋,其后安裝了1張不銹鋼篩網(wǎng)和1~3張浸漬了磷酸的石英濾膜(直徑14 mm).采樣器中安裝吸收膜的多少,取決于所要采集空氣中氨氣的濃度.兩種被動(dòng)采樣器的結(jié)構(gòu)如圖1所示.

用主動(dòng)采樣法采集氨氣時(shí)有兩種采樣器可供選用.一種是多噴嘴階式撞擊采樣器(MCIs),另一種是化學(xué)蜂窩物種分類筒式采樣器(CCSCs)[23].MCIs內(nèi)裝4級濾膜.當(dāng)空氣以20 L/min的速率被抽入并穿過時(shí)就可采集其中的顆粒物和氨氣.MCIs的第1級裝有一個(gè)PM2.5撞擊器,并用一張石英濾膜(Φ=47 mm)收集空氣動(dòng)力學(xué)直徑大于2.5 μm的顆粒物.第2級也是一張石英濾膜(Φ=47 mm),用于捕獲PM2.5.第3級是一張浸漬了碳酸鈉溶液的纖維素濾膜(Φ=47 mm),用于吸收HNO3、HNO2、HCl、SO2等酸性氣體.第4級是一張浸漬了檸檬酸的纖維素濾膜,用于收集氨氣.CCSCs是一種玻璃材質(zhì)的蜂窩狀采樣管-濾膜采樣系統(tǒng).抽入的空氣(10 L/min)首先穿過涂有聚四氟乙烯的不銹鋼P(yáng)M2.5撞擊器,氣流中粒徑大于2.5 μm的粗顆粒物被除去.空氣流中的酸性氣體和氨氣然后分別被涂漬了碳酸鈉溶液和檸檬酸溶液的兩個(gè)蜂窩狀采樣管收集.氣流中剩余的顆粒物穿過采樣管后被收集在下方的尼龍濾膜(Φ=47 mm)上.在尼龍濾膜之后再加裝一張涂漬了檸檬酸溶液的纖維素濾膜,以收集從之前所采顆粒物上揮發(fā)的氨氣,或者因前面的采樣管飽和而穿透的氨氣.兩種主動(dòng)采樣器的結(jié)構(gòu)如圖2所示.

這兩種采樣器均可同時(shí)采集氣態(tài)NH3和顆粒態(tài)NH+4.用MCIs和CCSCs同時(shí)采集機(jī)動(dòng)車隧道內(nèi)的空氣樣品,分析結(jié)果表明二者之間的氨氣濃度測定值沒有明顯的差別,但MCIs對應(yīng)的δ15N-NH3值(6.3±1.6‰)比CCSCs的值(4.8±2.3‰)稍大.這一微小差別(1.5±2.8‰)可能是由于采樣期間CCSCs內(nèi)的采樣管達(dá)到飽和狀態(tài),使氣態(tài)NH3和顆粒態(tài)NH+4混淆造成的.

1.2 濃度分析方法

用上述方法完成采樣后,從采樣器中用塑料鑷子取出收集氨氣的濾膜或蜂窩狀采樣管,置于10 mL聚氯乙烯等有機(jī)材質(zhì)的試管中.加入5 mL去離子水(18.2 MΩ·cm),用力振搖,使之與水充分接觸.將試管放入超聲振蕩器中振蕩提取30 min后離心(3 000 r/min)2 min,將上清液用孔徑為0.45 μm的親水濾膜過濾,以測定銨離子的濃度.

目前多用離子色譜法測定上述水溶液中銨離子的濃度,進(jìn)而計(jì)算所采集的NH+4質(zhì)量.該測定方法是一種成熟方法.不同廠商生產(chǎn)的離子色譜儀配置不同的陽離子分析色譜柱,其對應(yīng)的淋洗液類型也不盡相同.實(shí)際測定時(shí)離子色譜柱和電導(dǎo)檢測器保持室溫,進(jìn)樣10或20 μL.首先分析不同濃度的NH+4標(biāo)準(zhǔn)溶液,以其濃度為橫坐標(biāo)、色譜峰面積為縱坐標(biāo),繪制標(biāo)準(zhǔn)曲線,建立線性回歸方程,其線性回歸系數(shù)r應(yīng)大于0.999.然后再測定銨離子提取水溶液樣品.以離子色譜峰的保留時(shí)間定性,以外標(biāo)法定量.提取液的體積乘以銨離子的濃度即為所采每個(gè)樣品中NH+4的總質(zhì)量.

對于被動(dòng)采樣法而言,根據(jù)采樣時(shí)間、NH+4的總質(zhì)量,以及被動(dòng)采樣器廠商提供的換算系數(shù)等參數(shù)和計(jì)算公式,就可求得所采空氣中氨氣的濃度.以被動(dòng)采樣器Analyst為例,可按下式計(jì)算空氣中氣態(tài)NH3的質(zhì)量濃度:

與DELTA等主動(dòng)采樣器相比,用ALPHA、Analyst、Radiello等被動(dòng)采樣器采集大氣中的氨氣,所測NH3的質(zhì)量濃度要低4%~27.5% [24-25].具體偏低程度因被動(dòng)采樣器品牌而異.導(dǎo)致測定結(jié)果偏低的原因可能是在當(dāng)時(shí)的采樣環(huán)境條件下質(zhì)量換算系數(shù)不準(zhǔn)確.

對于主動(dòng)采樣法來說,根據(jù)上述所測定NH+4的總質(zhì)量可換算得到氣態(tài)NH3的總質(zhì)量,再根據(jù)采樣時(shí)間和抽氣速率,即可求得所采空氣中氨氣的質(zhì)量濃度.

1.3 氮同位素分析方法

大氣中氣態(tài)NH3的氮同位素比值測定方法與顆粒態(tài)NH+4的完全相同.將由上述氨采樣方法采集轉(zhuǎn)化而來的NH+4溶于去離子水中,按前述方法提取、凈化后取適量樣品水溶液,用次溴酸鹽在pH值為12的堿性條件下將大約40 nmol NH+4氧化為NO-2.反應(yīng)30 min后加入0.4 mL亞砷酸鈉溶液(0.4 mol)以除去剩余的次溴酸鹽.用羥胺或疊氮化鈉在強(qiáng)酸性條件下將NO-2定量地轉(zhuǎn)化為N2O.用吹掃-捕集系統(tǒng)把水溶液中的N2O濃縮富集,用載氣送入穩(wěn)定同位素質(zhì)譜計(jì)測定其氮同位素比值.每次測定至少需要60 nmol N2O[13,26-27].測定結(jié)果以相對于空氣中N2的千分比值表示:

δ15N=[(15N/14N)樣品/(15N/14N)標(biāo)準(zhǔn)-1]×1 000.

用被動(dòng)采樣器(ALPHA、Analyst、Radiello)采集北京市區(qū)夏季大氣中的氨氣,雖然其δ15N測定值之間不存在顯著的差別,但均明顯低于用主動(dòng)采樣器所采樣品的測定結(jié)果.其原因是在采樣過程中NH3分子因擴(kuò)散而發(fā)生了明顯的氮同位素分餾[25].如果用被動(dòng)采樣器采集的NH3少于70 μg,則其δ15N測定值比實(shí)際結(jié)果要低10‰~15‰[28].

1.4 δ15N值估算方法

除了上述直接測量方法之外,還可用間接的方法估算大氣中初始?xì)鈶B(tài)氨的δ15N值.例如,可以在測定雨水中NH+4含量及其δ15N值的基礎(chǔ)上,根據(jù)瑞利(Rayleigh)模型估算氨氣的δ15N值[16].另外,還可以根據(jù)充分混合封閉系統(tǒng)中同位素質(zhì)量平衡模型,按下式估算氣態(tài)氨的δ15N值[29]:

2 不同來源氨氣的氮同位素組成及其同位素分餾

2.1 不同來源氨氣的氮同位素組成

不同來源氨的δ15N值之間普遍存在差異.家畜糞尿(-56‰~-9‰)和化肥(-48‰~-36‰)所排放氨的δ15N值要低于發(fā)電廠(-14.6‰~-11.3‰)、機(jī)動(dòng)車(-4.6‰~-2.2‰)和海洋(-10.2‰~-2.2‰)[10].中國隧道內(nèi)機(jī)動(dòng)車排放氨的δ15N值更低(-17.8‰~-9.6‰),城市生活垃圾和人糞尿排放氨的δ15N平均值分別為-37.8‰~-29.1‰、-38.4‰~-35.6‰[11,30].生物質(zhì)燃燒所排放氨的δ15N平均值(+12.0‰)比前述污染源明顯偏高[12].在太湖地區(qū)由化肥、養(yǎng)豬場和奶牛場排放氨的δ15N值分別為-30.8‰~-3.3‰、-35.1‰~-10.5‰、-24.7‰~-11.3‰[31].垃圾填埋場排放氨的δ15N值為-25.4‰[21].顯然,大多數(shù)污染源所排放氨的δ15N值均具有較大的變動(dòng)范圍.

2.2 不同來源氨氣的氮同位素分餾

不同排放源在氨氣的排放過程中總是要發(fā)生動(dòng)力學(xué)氮同位素分餾或者平衡氮同位素分餾,從而使同種來源氣態(tài)氨的氮同位素組成存在一定的差別.從家畜糞便中排放的氨氣,在冬夏兩季之間存在明顯的同位素分餾.其δ15N值的變化范圍分別為-45‰~0‰、-22‰~5‰[32].在硫酸銨水溶液中NH3和NH+4之間會(huì)發(fā)生平衡同位素分餾.在23 ℃、50" ℃和70 ℃時(shí)分別達(dá)45.4‰、37.7‰和33.5‰[33].氨從硫酸銨水溶液中高效脫氣時(shí)主要發(fā)生動(dòng)力學(xué)同位素分餾,其在2 ℃和21 ℃的氮同位素分餾系數(shù)分別為0.989 8和0.991 8[34].在低效脫氣條件下發(fā)生的氮同位素效應(yīng)則介于動(dòng)力學(xué)同位素分餾和平衡同位素分餾之間.氨從水溶液中揮發(fā)時(shí)的氮同位素分餾系數(shù)還受pH值的影響.當(dāng)水溶液的pH值分別為8.5和9.2時(shí),相應(yīng)的分餾系數(shù)分別為1.019和1.030[35].農(nóng)田空氣中氨的δ15N值也有一定的變化[36].農(nóng)田施用尿素后揮發(fā)氨的δ15N值為-46.0‰~-4.7‰,且隨著尿素施用量的增加而變小[37].此外,土壤的pH值及其NH+4含量,以及氨揮發(fā)速率,均顯著影響揮發(fā)氨的δ15N值.

2.3 大氣中氨的氮同位素分餾

氨氣進(jìn)入大氣后要經(jīng)歷一系列物理過程和化學(xué)過程.在此過程中也會(huì)發(fā)生動(dòng)力學(xué)氮同位素分餾或者平衡氮同位素分餾,從而改變了自身及其反應(yīng)產(chǎn)物的氮同位素組成.這些過程可以是氣相、液相和固相之間的平衡反應(yīng)[4]:

理論計(jì)算[38-39]和實(shí)驗(yàn)結(jié)果[33,40]均表明確實(shí)存在上述氮同位素交換反應(yīng),其結(jié)果使溶解態(tài)和固態(tài)NHx(NH3或NH+4)的15N/14N值大于氣態(tài)NH3.大氣中氣態(tài)NH3和雨水中NH+4之間的氮同位素分餾系數(shù)估算值為10.4‰±4.3‰[16].在氣態(tài)氨和酸發(fā)生單向中和反應(yīng)的非平衡條件下,NH3與NH+4之間發(fā)生的氮同位素分餾是動(dòng)力學(xué)分餾,結(jié)果導(dǎo)致溶解態(tài)和固態(tài)的NH+4均富集15N[41].前人同樣發(fā)現(xiàn)固相或液相NH+4比氣相NH3富集15N[42-45].顯然,氣態(tài)NH3和顆粒態(tài)NH+4之間氮同位素組成的差異很大程度上取決于影響氣體-顆粒物轉(zhuǎn)化的大氣條件.這些因素使定量應(yīng)用NH3或NH+4的氮同位素組成進(jìn)行NH3的源解析變得更加復(fù)雜.

3 大氣中NH+4的氮同位素組成

3.1 顆粒物中NH+4的氮同位素組成

大氣顆粒物中NH+4的氮同位素組成受到NH3排放源類型和氣象條件等因素的影響,具有較大的變化范圍(-37.1‰~+17.8‰).北京市區(qū)顆粒態(tài)NH+4的氮同位素組成在刮北風(fēng)時(shí)偏輕(-33.8‰),在刮南風(fēng)時(shí)偏重(0~+12.0‰) [13];在非灰霾天氣時(shí)偏輕(-37.1‰~-21.7‰),在灰霾天氣時(shí)偏重(-13.1‰~+5.8‰)[41].在京津冀地區(qū)的城市大氣顆粒物中,清潔天氣的NH+4富集15N,其δ15N值為+14.6‰±2.5‰,而灰霾天氣的NH+4則相對虧損15N,其δ15N值為+7.8‰±4.2‰[46].廣州市灰霾天氣顆粒態(tài)NH+4的δ15N值變化很大(-6.1‰~+17.8‰)[14].這與當(dāng)?shù)卮髿庵蠳H3的多來源及其貢獻(xiàn)變化有直接的關(guān)系.在大西洋上空的細(xì)模態(tài)粒子(空氣動(dòng)力學(xué)直徑lt;1 μm)中,高緯度地區(qū)的NH+4具有比溫帶和熱帶更小的δ15N值[47].

任何類型污染源所排放的NH3及所生成NH+4的δ15N值大小順序均是NH3(氣)lt; NH+4(液)lt;NH+4(固),而且NH+4(固)和NH3(氣)的δ15N值之差與溫度顯著負(fù)相關(guān)[15].空氣中顆粒態(tài)NH+4比氣態(tài)NH3富集15N,實(shí)驗(yàn)結(jié)果表明,在25 ℃時(shí)其富集因子達(dá)+33‰[48],而Felix等[18]對該因子在25 ℃時(shí)的理論推算結(jié)果為+34‰,兩者十分接近.

3.2 降水中NH+4的氮同位素組成

大氣降水中NH+4的氮同位素組成隨著季節(jié)和空間而發(fā)生明顯的變化,也具有較大的波動(dòng)范圍(-28.7‰~+35.2‰).重慶農(nóng)村和市區(qū)降水中NH+4的δ15N月平均值變化區(qū)間為-16.4‰~+35.2‰[26].貴陽雨水中NH+4的δ15N值變化范圍為-28.7‰~+6.6‰,平均為-10.6‰[49].在中國東北林區(qū)降水中,NH+4的δ15N值在-24.6‰~+16.2‰間變化,且夏季值(平均-2.3‰)大于冬季值(平均-16.4‰)[29].在湛江雨季降水中NH+4的δ15N值大于旱季[50].

4 大氣中氨的氮同位素組成

大氣中氣態(tài)氨的氮同位素組成也因時(shí)因地而異,其δ15N值變化范圍為-42.4‰~+7.1‰.利用雨水中NH+4的氮同位素比值估算得到貴陽大氣中初始氨的δ15N平均值為-16.8‰[16].以氣溶膠中NH+4的δ15N測定值估算得到北京市區(qū)大氣中初始NH3的δ15N值在非霾日和霾日分別為-35‰、-14.3‰~-22.8‰ [17],其差別大的原因是這兩種天氣的NH3首要排放源分別是農(nóng)業(yè)源和化石燃料源.直接采集北京市區(qū)大氣NH3后測得的δ15N值為-26.8‰~-17.2‰[51],該值與前述霾日的估算值較為接近.美國大氣中NH3的δ15N值在-42.4‰~+7.1‰之間變化,其平均值為-15.1± 9.7‰.農(nóng)業(yè)區(qū)NH3的δ15N值偏低且具有季節(jié)性變化,而在非農(nóng)業(yè)區(qū)該值較高且無季節(jié)性變化[18].在美國柯柏斯克里斯提的城市空氣中,NH3的δ15N平均值為-19.1±12.7‰[52].

5 大氣中氨氣的源解析

通常根據(jù)大氣中NH3的δ15N測定值或換算值,利用“IsoSource”“MixSIAR”“IsoError”等同位素混合模型估算不同排放源對總氨的貢獻(xiàn).只要將各主要排放源氣態(tài)NH3的δ15N值輸入混合模型中,通過反復(fù)迭代即可估算出各自的貢獻(xiàn).該類模型的計(jì)算依據(jù)是同位素質(zhì)量平衡原理,其計(jì)算公式如下:

式中:δ15N-NH3(大氣)和δ15N-NH3(i)分別表示大氣中和排放源i所排放氣態(tài)氨的δ15N值,fi表示排放源i對大氣氣態(tài)氨的貢獻(xiàn),fi的總和為1.

不同城市大氣中氨的主要排放源不盡相同.利用氣溶膠中NH+4的δ15N值進(jìn)行源解析,結(jié)果表明北京市區(qū)灰霾天氣時(shí)的大氣氨主要來源于化石燃料燃燒過程(90%)[13,41],而非灰霾天氣只有67%的氨來自此類排放源[46].在2014年亞太經(jīng)濟(jì)合作峰會(huì)期間北京空氣中的氨分別來源于機(jī)動(dòng)車(8.8%)、生活垃圾(24.9%)、豬場(14.3%)和尿素(52.0%)[11].廣州灰霾天氣的大氣氨中有5%~80%來自非化石燃料燃燒源[14].貴陽大氣中的氨分別來自動(dòng)物廢棄物(22%)和化肥(22%)的揮發(fā)、機(jī)動(dòng)車尾氣(19%)、煤(19%)和生物質(zhì)燃燒(17%)[49].非農(nóng)業(yè)源和農(nóng)業(yè)源均是上海市大氣中氨的重要來源[53].在太湖地區(qū)的大氣中,75%以上的氨來源于化肥揮發(fā)和家畜的排泄物[31].廈門市大氣中70%的氨來源于和化石燃料有關(guān)聯(lián)的排放[21].西安市夏冬兩季空氣中的氨分別有66.4%和62.5%來自非農(nóng)業(yè)排放源[22].美國柯柏斯克里斯提市大氣中的氨分別來自非農(nóng)業(yè)源(55%±6%)和農(nóng)業(yè)源(45%±6%)[52].

6 展望

通過以上現(xiàn)有研究成果可知,被動(dòng)采樣法會(huì)引起氨氣的氮同位素分餾.因此,在用被動(dòng)采樣器采集空氣樣品前,需要進(jìn)行室內(nèi)模擬采樣試驗(yàn),以確定合理的氨氣最低采樣量.如果條件允許,最好用主動(dòng)采樣器采樣.

目前關(guān)于大氣中氣態(tài)氨排放源的氮同位素組成研究仍然有限,未來需要加強(qiáng)對生物質(zhì)燃燒、天然土壤、海洋、污水處理廠、植物以及其他潛在來源氨的氮同位素組成研究.

應(yīng)強(qiáng)化不同排放源氨的氮同位素組成變化機(jī)理研究,以縮小同類型排放源的δ15N值變化范圍.尤其要進(jìn)一步研究pH值、濕度和溫度等因素對土壤中化肥來源氨的δ15N值影響.

要更深入地研究不同大氣污染狀況和氣象條件下氣態(tài)氨的氮同位素分餾機(jī)理.

大氣中NH3和NH+4具有不同的壽命,在同一地點(diǎn)的空氣中二者來源可能不同.應(yīng)以更高的時(shí)間分辨率同時(shí)測定氣態(tài)NH3和顆粒態(tài)NH+4的質(zhì)量濃度和氮同位素組成,以探討顆粒態(tài)NH+4生成過程中氮的同位素分餾機(jī)理.

參考文獻(xiàn)References

[1]Huang R J,Zhang Y,Bozzetti C,et al.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-222

[2] Huang X,Song Y,Li M M,et al.A high-resolution ammonia emission inventory in China[J].Global Biogeochemical Cycles,2012,26(1):GB1030

[3] Boyle E.Nitrogen pollution knows no bounds[J].Science,2017,356(6339):700-701

[4] Elliott E M,Yu Z J,Cole A S,et al.Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J].Science of the Total Environment,2019,662:393-403

[5] Stratton J J,Ham J,Borch T.Ammonia emissions from subalpine forest and mountain grassland soils in Rocky Mountain National Park[J].Journal of Environmental Quality,2018,47(4):778-785

[6] Li Y Y,Huang L H,Zhang H,et al.Assessment of ammonia volatilization losses and nitrogen utilization during the rice growing season in alkaline salt-affected soils[J].Sustainability,2017,9(1):132

[7] Miller D J,Sun K,Tao L,et al.Ammonia and methane dairy emission plumes in the San Joaquin Valley of California from individual feedlot to regional scales[J].Journal of Geophysical Research:Atmospheres,2015,120(18):9718-9738

[8] Sarwar G,Corsi R L,Kinney K A,et al.Measurements of ammonia emissions from oak and pine forests and development of a non-industrial ammonia emissions inventory in Texas[J].Atmospheric Environment,2005,39(37):7137-7153

[9] Walker J T,Jones M R,Bash J O,et al.Processes of ammonia air-surface exchange in a fertilized Zea mays canopy[J].Biogeosciences,2013,10(2):981-998

[10] Felix J D,Elliott E M,Gish T J,et al.Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach[J].Rapid Communications in Mass Spectrometry,2013,27(20):2239-2246

[11] Chang Y H,Liu X J,Deng C R,et al.Source apportionment of atmospheric ammonia before,during,and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures[J].Atmospheric Chemistry and Physics,2016,16(18):11635-11647

[12] Kawashima H,Kurahashi T.Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at Yurihonjo,Japan:implications for nitrogen sources[J].Atmospheric Environment,2011,45(35):6309-6316

[13] Pan Y P,Tian S L,Liu D W,et al.Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere[J].Environmental Pollution,2018,238:942-947

[14] Liu J W,Ding P,Zong Z,et al.Evidence of rural and suburban sources of urban haze formation in China:a case study from the Pearl River delta region[J].Journal of Geophysical Research:Atmospheres,2018,123(9):4712-4726

[15] Savard M M,Cole A,Smirnoff A,et al.δ15N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources-isotopic inheritance and fractionation[J].Atmospheric Environment,2017,162:11-22

[16] Xiao H W,Xiao H Y,Long A M,et al.δ15N-NH+4 variations of rainwater:application of the Rayleigh model[J].Atmospheric Research,2015,157:49-55

[17] Pan Y P,Tian S L,Liu D W,et al.Source apportionment of aerosol ammonium in an ammonia-rich atmosphere:an isotopic study of summer clean and hazy days in urban Beijing[J].Journal of Geophysical Research:Atmospheres,2018,123(10):5681-5689

[18] Felix J D,Elliott E M,Gay D A.Spatial and temporal patterns of nitrogen isotopic composition of ammonia at US ammonia monitoring network sites[J].Atmospheric Environment,2017,150:434-442

[19] Pan Y P,Gu M N,He Y X,et al.Revisiting the concentration observations and source apportionment of atmospheric ammonia[J].Advances in Atmospheric Sciences,2020,37(9):933-938

[20] Pan Y P,Tian S L,Zhao Y H,et al.Identifying ammonia hotspots in China using a national observation network[J].Environmental Science & Technology,2018,52(7):3926-3934

[21] Wu S P,Zhu H,Liu Z,et al.Nitrogen isotope composition of ammonium in PM2.5 in the Xiamen,China:impact of non-agricultural ammonia[J].Environmental Science and Pollution Research International,2019,26(25):25596-25608

[22] Wu C,Wang G H,Li J,et al.Non-agricultural sources dominate the atmospheric NH3 in Xi’an,a megacity in the semi-arid region of China[J].Science of the Total Environment,2020,722:137756

[23] Song L L,Walters W W,Pan Y P,et al.15N natural abundance of vehicular exhaust ammonia,quantified by active sampling techniques[J].Atmospheric Environment,2021,255:118430

[24] Puchalski M A,Sather M E,Walker J T,et al.Passive ammonia monitoring in the United States:comparing three different sampling devices[J].Journal of Environmental Monitoring:JEM,2011,13(11):3156-3167

[25] Pan Y P,Gu M N,Song L L,et al.Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia[J].Atmospheric Research,2020,243:105018

[26] Leng Q M,Cui J,Zhou F W,et al.Wet-only deposition of atmospheric inorganic nitrogen and associated isotopic characteristics in a typical mountain area,southwestern China[J].Science of the Total Environment,2018,616/617:55-63

[27] Smirnoff A,Savard M M,Vet R,et al.Nitrogen and triple oxygen isotopes in near-road air samples using chemical conversion and thermal decomposition[J].Rapid Communications in Mass Spectrometry,2012,26(23):2791-2804

[28] Kawashima H,Ogata R,Gunji T.Laboratory-based validation of a passive sampler for determination of the nitrogen stable isotope ratio of ammonia gas[J].Atmospheric Environment,2021,245:118009

[29] Huang S N,Elliott E M,F(xiàn)elix J D,et al.Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning[J].Environmental Pollution,2019,247:541-549

[30] Shao S C,Zhang Y L,Chang Y H,et al.Online characterization of a large but overlooked human excreta source of ammonia in China’s urban atmosphere[J].Atmospheric Environment,2020,230:117459

[31] Ti C P,Gao B,Luo Y X,et al.Isotopic characterization of NHx-N in deposition and major emission sources[J].Biogeochemistry,2018,138(1):85-102

[32] Buzek F,Cejkova B,Hellebrandova L,et al.Isotope composition of NH3,NOx and SO2 air pollution in the Moravia-Silesian region,Czech Republic[J].Atmospheric Pollution Research,2017,8(2):221-232

[33] Li L,Lollar B S,Li H,et al.Ammonium stability and nitrogen isotope fractionations for NH+4-NH3(aq)-NH3(gas) systems at 20-70 ℃ and pH of 2-13:applications to habitability and nitrogen cycling in low-temperature hydrothermal systems[J].Geochimica et Cosmochimica Acta,2012,84:280-296

[34] Deng Y Y,Li Y Z,Li L.Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 ℃[J].Geochimica et Cosmochimica Acta,2018,226:182-191

[35] Cejudo E,Schiff S L.Nitrogen isotope fractionation factors (α) measured and estimated from the volatilisation of ammonia from water at pH 9.2 and pH 8.5[J].Isotopes in Environmental and Health Studies,2018,54(6):642-655

[36] Felix J D,Elliott E M,Gish T,et al.Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios[J].Atmospheric Environment,2014,95:563-570

[37] Ti C P,Ma S T,Peng L Y,et al.Changes of δ15N values during the volatilization process after applying urea on soil[J].Environmental Pollution,2021,270:116204

[38] Urey H C.The thermodynamic properties of isotopic substances[J].Journal of the Chemical Society,1947:562-581

[39] Walters W W,Chai J J,Hastings M G.Theoretical phase resolved ammonia-ammonium nitrogen equilibrium isotope exchange fractionations:applications for tracking atmospheric ammonia gas-to-particle conversion[J].ACS Earth and Space Chemistry,2019,3(1):79-89

[40] Kirshenbaum I,Smith J S,Crowell T,et al.Separation of the nitrogen isotopes by the exchange reaction between ammonia and solutions of ammonium nitrate[J].The Journal of Chemical Physics,1947,15(7):440-446

[41] Pan Y P,Tian S L,Liu D W,et al.Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes:evidence from 15N-stable isotope in size-resolved aerosol ammonium[J].Environmental Science & Technology,2016,50(15):8049-8056

[42] Moore H.The isotopic composition of ammonia,nitrogen dioxide and nitrate in the atmosphere[J].Atmospheric Environment,1977,11(12):1239-1243

[43] Heaton T H E.15N/14N ratios of nitrate and ammonium in rain at Pretoria,South Africa[J].Atmospheric Environment,1987,21(4):843-852

[44] Savard M M,Cole A,Smirnoff A,et al.δ15N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources-isotopic inheritance and fractionation[J].Atmospheric Environment,2017,162:11-22

[45] Li L,He Y Y,Zhang Z,et al.Nitrogen isotope fractionations among gaseous and aqueous NH+4,NH3,N2,and metal-ammine complexes:theoretical calculations and applications[J].Geochimica et Cosmochimica Acta,2021,295:80-97

[46] Zhang Z Y,Zeng Y,Zheng N J,et al.Fossil fuel-related emissions were the major source of NH3 pollution in urban cities of northern China in the autumn of 2017[J].Environmental Pollution,2020,256:113428

[47] Lin C T,Jickells T D,Baker A R,et al.Aerosol isotopic ammonium signatures over the remote Atlantic Ocean[J].Atmospheric Environment,2016,133:165-169

[48] Heaton T H E,Spiro B,Robertson S M C.Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition[J].Oecologia,1997,109(4):600-607

[49] Liu X Y,Xiao H W,Xiao H Y,et al.Stable isotope analyses of precipitation nitrogen sources in Guiyang,southwestern China[J].Environmental Pollution,2017,230:486-494

[50] Chen F J,Lao Q B,Li Z Y,et al.Monthly variations of the nitrogen isotope of ammonium in wet deposition in a tropical city of south China[J].Aerosol and Air Quality Research,2020,20(5):1062-1069

[51] Bhattarai N,Wang S X,Xu Q C,et al.Sources of gaseous NH3 in urban Beijing from parallel sampling of NH3 and NH+4,their nitrogen isotope measurement and modeling[J].Science of the Total Environment,2020,747:141361

[52] Berner A H,F(xiàn)elix J D.Investigating ammonia emissions in a coastal urban airshed using stable isotope techniques[J].Science of the Total Environment,2020,707:134952

[53] Chang Y H,Zou Z,Zhang Y L,et al.Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity[J].Environmental Science & Technology,2019,53(4):1822-1833

Review on ammonia in ambient air:sampling,measurement and

source apportionment via nitrogen isotopes

Abstract Gaseous ammonia (NH3) is a key precursor in the formation of PM2.5 in the atmosphere.To enhance the precision of identifying NH3 sources through isotopic techniques and alleviate urban air PM2.5 pollution,this paper reviews recent researches on the following aspects:methods for sampling and quantifying gaseous NH3,techniques for determining or estimating its nitrogen isotope ratios,the nitrogen isotope compositions and fractionations of NH3 in air and emitted from diverse sources,the isotopic compositions of NH+4 in atmospheric particulate matter and rainfall,as well as the source apportionment of atmospheric NH3.Several recommendations for future research are accordingly proposed.The minimum amount of samples should be determined before collecting air samples with passive method considering nitrogen isotope fractionation of NH3.It is necessary to clarify the nitrogen isotope compositions of ammonia from biomass combustion,natural soils,oceans,sewage plants,vegetation,and other potential sources.The nitrogen isotopic variation mechanism for ammonia from diverse sources needs to be further investigated.Both mass concentrations and isotopic compositions of gaseous NH3 and particulate NH+4 should be measured simultaneously with higher temporal resolution to explore the mechanism of nitrogen isotope fractionation during the formation of particulate NH+4.Additionally,exploring the isotopic fractionation of gaseous NH3 under diverse meteorological conditions and air pollution status is recommended.

Key words air;ammonia (NH3);nitrogen isotope;source apportionment

猜你喜歡
大氣
大氣的呵護(hù)
軍事文摘(2023年10期)2023-06-09 09:15:06
首次發(fā)現(xiàn)系外行星大氣中存在CO2
科學(xué)(2022年5期)2022-12-29 09:48:56
宏偉大氣,氣勢與細(xì)膩兼?zhèn)?Vivid Audio Giya G3 S2
太赫茲大氣臨邊探測儀遙感中高層大氣風(fēng)仿真
有“心氣”才大氣
如何“看清”大氣中的二氧化碳
大氣穩(wěn)健的美式之風(fēng)Polk Audio Signature系列
稚拙率真 圓融大氣
中國篆刻(2017年3期)2017-05-17 06:20:46
大氣古樸揮灑自如
大氣、水之后,土十條來了
主站蜘蛛池模板: 日本少妇又色又爽又高潮| 日本午夜视频在线观看| 成人国产免费| 亚洲日韩高清无码| 午夜无码一区二区三区| 久久精品欧美一区二区| 亚洲欧美激情小说另类| 免费观看三级毛片| 91亚洲精品国产自在现线| 999国产精品永久免费视频精品久久| 亚洲精品另类| www中文字幕在线观看| 人妻21p大胆| 国产91精品调教在线播放| 一本大道AV人久久综合| 99精品高清在线播放| 成人无码一区二区三区视频在线观看 | 亚洲天堂777| 91成人免费观看| 精品福利一区二区免费视频| 国产女主播一区| 在线看片免费人成视久网下载| 伊人久久精品亚洲午夜| 亚洲欧洲日韩久久狠狠爱| 无码国产偷倩在线播放老年人| 在线观看视频一区二区| 无码日韩视频| 国产成人综合日韩精品无码首页| 最新痴汉在线无码AV| 日韩精品资源| 青青青视频91在线 | av午夜福利一片免费看| 国产91在线免费视频| 老司国产精品视频91| 久久综合伊人 六十路| 国产精品污污在线观看网站| 亚洲日韩高清无码| 久久亚洲黄色视频| 91无码人妻精品一区二区蜜桃| 国产成人精品男人的天堂下载| 亚洲AV免费一区二区三区| 国产日本欧美亚洲精品视| 五月天综合网亚洲综合天堂网| 精品一区二区三区自慰喷水| 亚洲性网站| 亚洲精品国产综合99久久夜夜嗨| 无码精品国产VA在线观看DVD| 99热这里只有精品在线播放| 999国产精品| 国产日韩欧美精品区性色| 亚洲a级在线观看| 欧美无专区| 欧美一区二区三区国产精品| 国产欧美日韩另类| 欧美天堂在线| 国产激爽大片在线播放| 欧美日韩精品一区二区视频| 国产成人av大片在线播放| 谁有在线观看日韩亚洲最新视频| 国产精品女同一区三区五区| 在线观看av永久| 午夜精品久久久久久久无码软件 | 成人夜夜嗨| 国产成人免费观看在线视频| 亚洲人成电影在线播放| 欧美在线一二区| a级毛片免费播放| 国产欧美日韩另类精彩视频| 亚洲天堂自拍| 精品伊人久久大香线蕉网站| 中文毛片无遮挡播放免费| 美女内射视频WWW网站午夜| 国产97视频在线| 最新精品国偷自产在线| 亚洲欧美成人综合| 99热这里只有精品在线观看| 欧美日韩免费观看| 久久精品欧美一区二区| 999精品色在线观看| aⅴ免费在线观看| 毛片一区二区在线看| 精品视频一区在线观看|