999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類指數(shù)型三種群差分生態(tài)系統(tǒng)的動(dòng)力學(xué)行為

2024-11-07 00:00:00王長(zhǎng)有楊濤陳華汪棲羽

摘要:種群動(dòng)力學(xué)作為生態(tài)系統(tǒng)的一個(gè)重要分支,日益受到廣大學(xué)者的關(guān)注。單種群及兩種群的差分生態(tài)系統(tǒng)的研究已取得一些重要成果,但對(duì)三種群生態(tài)差分系統(tǒng)的研究工作還未見發(fā)表。本文研究一類指數(shù)型三種群生物差分系統(tǒng)。首先,利用迭代方法及不等式技巧證明了該系統(tǒng)的每一個(gè)正解都是持久的和有界的;其次,利用不動(dòng)點(diǎn)理論證明了該系統(tǒng)正平衡點(diǎn)的存在性;最后,利用線性化理論、Rouche定理及李亞普諾夫穩(wěn)定性理論獲得了確保該生態(tài)系統(tǒng)正平衡點(diǎn)漸近穩(wěn)定的若干充分條件。所得結(jié)論推廣了參考文獻(xiàn)[20-24]中的相應(yīng)結(jié)果。

關(guān)鍵詞:生態(tài)系統(tǒng);有界性;持久性;平衡點(diǎn);穩(wěn)定性

中圖分類號(hào): O241.84 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-2443(2024)04-0306-08

引 言

數(shù)學(xué)模型已經(jīng)被廣泛研究,因?yàn)樗鼈兛梢悦枋錾飳W(xué)、生態(tài)學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)等領(lǐng)域的許多現(xiàn)實(shí)生活問題[1-3]。近年來,隨著生物技術(shù)的快速發(fā)展,生物數(shù)學(xué)模型受到了數(shù)學(xué)和生物工作者的廣泛關(guān)注[4-8]。差分方程作為一種重要的生物數(shù)學(xué)模型,可用于描述種群生物學(xué)中的真實(shí)情況[9-10]。最近,人們對(duì)指數(shù)型差分方程組進(jìn)行了充分的研究[11-13]。盡管差分方程的形式非常簡(jiǎn)單,但要徹底理解其解的動(dòng)力學(xué)行為是極其困難的[14-19]。有許多論文與指數(shù)型生態(tài)差分系統(tǒng)有關(guān),例如,El Metwally等[20]研究了以下單物種差分種群模型

根據(jù)(29), (30)和(17), 容易驗(yàn)證系統(tǒng)(28)滿足定理2.3的條件。所以,由定理2.3可知, 系統(tǒng)(28)的正平衡點(diǎn)[(x, y, z)] 對(duì)區(qū)域[(xi,yi,zi)?(0.3601,0.8577)×(0.4046,0.8333)×(0.2926,0.75),i=0.1]中的任何初值是全局漸近穩(wěn)定的。上述結(jié)果顯示在圖2~4中。

5 結(jié)論

本文研究了一類指數(shù)型三種群差分系統(tǒng)的動(dòng)力學(xué)行為。主要結(jié)果如下:

(1) 利用不等式性質(zhì)證明了生態(tài)系統(tǒng)(6)的每一個(gè)正解都是持久的和有界的;

(2) 利用不動(dòng)點(diǎn)定理,得到系統(tǒng)(6)至少存在一個(gè)正平衡點(diǎn);

(3) 利用線性化理論及Rouche定理,得到了確保系統(tǒng)(6)的正平衡點(diǎn)是局部漸近穩(wěn)定的充分條件;

(4) 利用李亞普諾夫穩(wěn)定性定理,得到了確保系統(tǒng)(6)的正平衡點(diǎn)是全局漸近穩(wěn)定的充分條件;

(5) 通過數(shù)值算法驗(yàn)證了所得理論結(jié)果的正確性。

所得結(jié)論推廣了參考文獻(xiàn)[20-24]中的相應(yīng)結(jié)果。另外,本文的方法可用于研究類似的多種群差分系統(tǒng)。

參考文獻(xiàn):

[1] BRAUER F,CHAVEZ CC. Mathematical Models in Population Biology and Epidemiology[M].New York:Springer Verlag, 2001:3-47.

[2] WANG C Y, WANG S. Oscillation of partial population model with diffusion and delay[J]. Applied Mathematics Letters, 2009, 22: 1793-1797.

[3] ELSAYEDE M, ALZAHRANI F, ABBAS I, et al. Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence[J]. Journal of Applied Analysis and Computation, 2020, 10: 282-296.

[4] WANG C Y, WANG S, YANG F P, et al. Global asymptotic stability of positive equilibrium of three-species Lotka-Volterra mutualism models with diffusion and delay effects[J]. Applied Mathematical Modelling, 2010, 34: 4278-4288.

[5] ZHANG Y J, WANG C Y. Stability analysis of n-species Lotka-Volterra almost periodic competition models with grazing rates and diffusions[J]. International Journal of Biomathematics, 2014, 7(2): Article ID: 1450011.

[6] WANG C Y, LI L R, ZHANG Q Y, et al. Dynamical behavior of a Lotka-Volterra competitive-competitive-cooperative model with feedback controls and time delays[J]. Journal of Biological Dynamics, 2019, 13: 43-68.

[7] VARGAS-DE-LEON C. Global stability of nonhomogeneous coexisting equilibrium state for the multispecies Lotka-Volterra mutualism models with diffusion[J]. Mathematical Methods in the Applied Sciences, 2022, 45: 2123-2131.

[8] CHEN X S, LUO D M. Dynamical analysis of an almost periodic multispecies mutualism system with impulsive effects and time delays[J]. Filomat, 2023, 37: 551-565.

[9] KOCIC V L, LADAS G. Global Behavior of NonLinear Difference Equations of Higher Order with Applications[M]. Dordrecht: Kluwer Academic Publishers, 1993:1-26.

[10] ELAYDI S. An Introduction to Difference Equations[M]. third ed, New York: Springer, 2005:10-38.

[11] PAPASCHINOPOLUOS G, SCHINAS C J. On the dynamics of two exponential type systems of difference equations[J]. Computational & Applied Mathematics, 2012, 64: 2326-2334.

[12] KHAN A Q, QURESHI M N. Behavior of an exponential system of difference equations[J]. Discrete Dynamics in Nature and Society, 2014, Article ID: 607281.

[13] KHAN A Q,NOORANI M S M, ALAYACHI H S. Global dynamics of higher-order exponential systems of difference equations[J]. Discrete Dynamics in Nature and Society, 2019, Article ID: 3825927.

[14] ELSAYED E M. Solutions of rational difference system of order two[J]. Mathematical and Computer Modelling, 2012, 55: 378-384.

[15] WANG C Y, FANG X J, LI R. On the solution for a system of two rational difference equations[J]. Journal of Computational Analysis and Applications, 2016, 20: 175-186.

[16] TASKARA N, TOLLU D T, TOUAFEK N, et al. A solvable system of difference equations[J]. Communications of the Korean Mathematical Society, 2020, 35: 301-319.

035781a44e85aa2e97927c9f2b468e548f4dc76535e48602d601bd44ca99c2f4

[17] WANG C Y, LI J H,. Dynamics of a high-order nonlinear fuzzy difference equation[J]. Journal of Applied Analysis and Computation, 2021, 11: 404-421.

[18] JIA L L , WANG C Y, ZHAO X J, et al. Dynamic behavior of a fractional-type fuzzy difference system[J].Symmetry, 2022, 14: Article ID:1337.

[19] JIA L L , ZHAO X J , WANG C Y ,et al. Dynamic behavior of a seven-order fuzzy difference system[J]. Journal of Applied Analysis and Computation, 2023, 13(2): 486-501.

[20] EL-METWALLY H,GROVE E A, LADAS G, et al. On the difference equation [xn+1=α+βxn-1e-xn][J]. Nonlinear Analysis: Theory Methods and Applications, 2001, 47: 4623- 4634.

[21] WANG W, FENG H. On the dynamics of positive solutions for the difference equation in a new population model[J]. Journal of Nonlinear Sciences and Applications, 2016, 9: 1748-1754.

[22] OZTURK I, BOZKURT F, OZEN S. On the difference equation[yn+1=(α+β e-yn)/][(γ+yn-1)][J].Applied Mathematics and Computation, 2006, 181: 1387-1393.

[23] PAPASCHINOPOLUOS G, RADIN M A, SCHINAS C J. Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form[J]. Applied Mathematics and Computation, 2012, 218: 5310-5318.

[24] THAI T H, DAI N A, ANH P T. Global dynamics of some system of second-order difference equations[J]. Electronic Research Archive, 2021, 29: 4159-4175.

[25] SEDAGHAT H. Nonlinear difference equations: theory with applications to social science models[M]. Dordrecht: Kluwer Academic Publishers, 2003:3-11.

[26] CAMOUZIS ,LADAS E G. Dynamics of third-order rational difference equations: with open problems and conjectures[M]. Boca Raton :Chapman and Hall/HRC,2007:3-28.

On the Dynamic Behavior of a Type of Exponential Three Populations Differential Ecosystem

WANG Chang-you 1, YANG Tao 1, CHEN Hua 2, WANG Qi-yu 1

(1. College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China;2. College of Marxism, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China)

Abstract: Population dynamics, as an important branch of ecosystems, is increasingly receiving attention from scholars. Significant achievements have been made in the study of differential ecosystems of single and two populations, but research on differential ecosystems of three populations has not yet been published. In this paper, we study a class of exponential 3 populations biological differential systems. Firstly, we use iterative methods and inequality techniques to prove that every positive solution of the system is persistent and bounded. Secondly, the existence of a positive equilibrium point of the system is proved, using fixed point theory. Finally, using linearization theory, Rouche theorem and Lyapunov stability theory, we provide sufficient conditions for the asymptotic stability of the positive equilibrium point of the ecosystem. The obtained conclusion extends the corresponding results in references [20-24].

Key words: ecosystem; boundedness; persistence; equilibrium point; stability

(責(zé)任編輯:馬乃玉)

主站蜘蛛池模板: 精品久久蜜桃| a级毛片一区二区免费视频| 国产主播喷水| 国产精欧美一区二区三区| 免费毛片在线| 国产性爱网站| 青青青视频蜜桃一区二区| 国产成人狂喷潮在线观看2345| 久久综合五月| 国内精品久久久久鸭| 亚洲国产精品日韩专区AV| 一级一毛片a级毛片| 精品视频在线观看你懂的一区| 波多野衣结在线精品二区| AⅤ色综合久久天堂AV色综合| 亚洲AV无码久久精品色欲| 亚洲精品在线影院| 99er这里只有精品| 毛片免费高清免费| 国产区91| 色首页AV在线| 嫩草国产在线| 久久久久亚洲精品成人网| 91免费观看视频| 91av成人日本不卡三区| 色丁丁毛片在线观看| 高清无码手机在线观看| 国产爽歪歪免费视频在线观看| 日韩精品专区免费无码aⅴ| 日韩在线影院| 人妻少妇久久久久久97人妻| 国内99精品激情视频精品| 99久久精品美女高潮喷水| 国产日韩欧美一区二区三区在线| AV天堂资源福利在线观看| 老司国产精品视频| 日韩欧美国产中文| 99精品一区二区免费视频| 婷婷六月天激情| 国产网友愉拍精品视频| 456亚洲人成高清在线| 色综合色国产热无码一| 欧美一级色视频| 国产成人亚洲精品无码电影| 欧美精品啪啪| 国产精品不卡永久免费| 国产综合在线观看视频| 五月婷婷综合色| 在线中文字幕日韩| 国产视频入口| 国产精品夜夜嗨视频免费视频| 97精品国产高清久久久久蜜芽| 日本午夜精品一本在线观看| 色婷婷国产精品视频| 欧美激情伊人| 久久精品免费国产大片| 亚洲国产综合精品一区| 国内丰满少妇猛烈精品播| 福利在线不卡| 久草国产在线观看| 在线免费观看AV| 一本综合久久| 99在线视频免费观看| 伊人久久影视| 亚洲第一国产综合| 无码专区在线观看| 亚洲中久无码永久在线观看软件 | 国产精品私拍在线爆乳| 影音先锋亚洲无码| 婷婷丁香色| 亚洲精品无码AV电影在线播放| 国产呦精品一区二区三区下载 | 又黄又爽视频好爽视频| 成人伊人色一区二区三区| 青青极品在线| 亚洲青涩在线| 波多野结衣AV无码久久一区| 国产真实乱人视频| 国产h视频免费观看| 亚洲欧美自拍中文| 亚洲欧美成人网| 日韩欧美国产精品|