999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

實時剪切波彈性成像量化可評估閉合性跟腱的術(shù)前硬度

2024-11-01 00:00:00楊文嫻王雨豪劉衛(wèi)勇
分子影像學(xué)雜志 2024年7期

摘要:目的" 探討剪切波彈性成像(SWE)對閉合性跟腱完全斷裂的硬度研究。方法" 選取2021年7月~2024年1月中國科學(xué)技術(shù)大學(xué)附屬第一醫(yī)院經(jīng)超聲診斷為閉合性跟腱完全斷裂患者53例,超聲測量跟腱斷裂的分離長度、斷裂處距離附著處長度及跟腱厚度,并測量跟腱斷裂近端、遠端及健側(cè)跟腱剪切波速(SWV),同時測量患側(cè)及健側(cè)比目魚肌SWV。結(jié)果" 53例閉合性跟腱完全斷裂患者,62.26%(33/53)跟腱斷裂發(fā)生于左側(cè),37.73%(20/53)跟腱斷裂發(fā)生于右側(cè)。患側(cè)跟腱斷裂厚度、健側(cè)跟腱厚度、斷裂處距離附著處長度及患側(cè)跟腱分離長度的側(cè)別比較均無統(tǒng)計學(xué)意義(Pgt;0.05);患側(cè)跟腱斷裂遠端與健側(cè)跟腱的厚度分別為8.36±3.07 mm、5.01±0.97 mm,差異有統(tǒng)計學(xué)意義(Plt;0.05),患側(cè)跟腱斷裂近端與健側(cè)跟腱的SWV、患側(cè)跟腱斷裂近端與患側(cè)跟腱斷裂遠端的SWV比較差異均有統(tǒng)計學(xué)意義(Plt;0.05),健側(cè)跟腱比目魚肌與患側(cè)斷裂跟腱比目魚肌的SWV比較差異無統(tǒng)計學(xué)意義(Pgt;0.05)。結(jié)論" 閉合性跟腱完全斷裂大多累及左側(cè)跟腱,患側(cè)跟腱的彈性變化發(fā)生在游離跟腱,并不累及比目魚肌近端的肌腱結(jié)構(gòu),SWE技術(shù)可用于定量評估患側(cè)跟腱的術(shù)前硬度。

關(guān)鍵詞:超聲;閉合性跟腱完全斷裂;剪切波速

Real-time shear wave elastography for measuring complete rupture of the closed Achilles tendon

YANG Wenxian1, WANG Yuhao2, LIU Weiyong1, 2

1Graduate School of Bengbu Medical University, Bengbu 233000, China; 2Department of Ultrasound, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230000, China

Abstract: Objective To explore the hardness study of shear wave elastography (SWE) on closed complete Achilles tendon rupture. Methods Fifty-three patients with closed complete Achilles tendon rupture diagnosed by ultrasound in the First Hospital of the University of Science and Technology of China from July 2021 to January 2024 were selected, and the separation length of the Achilles tendon rupture, the length of the rupture site from the attachment site and the thickness of the Achilles tendon were measured ultrasonographically, as well as the proximal and distal Achilles tendon rupture and the healthy Achilles tendon shear wave velocity (SWV), and the SWV of the flounder muscle of both the affected and the healthy side were measured simultaneously. Results The 53 cases of closed patients with complete Achilles tendon rupture, 62.26% (33/53) of the Achilles tendon ruptures occurred on the left side and 37.73% (20/53) of the Achilles tendon ruptures occurred on the right side. Side-by-side comparisons of the thickness of the ruptured Achilles tendon on the affected side, the thickness of the Achilles tendon on the healthy side, the length of the rupture from the attachment, and the length of the separation of the Achilles tendon on the affected side were not statistically significant (Pgt;0.05); the thicknesses of the distal part of the rupture of the Achilles tendon on the affected side and that of the Achilles tendon on the healthy side were 8.36±3.07 mm and 5.01±0.97 mm, respectively, with statistically significant differences (Plt;0.05), the thicknesses of the proximal part of the rupture of the Achilles tendon on the affected side and the Achilles tendon on the healthy side, the The differences in SWV between the proximal part of the affected Achilles tendon rupture and the proximal part of the affected Achilles tendon rupture and the distal part of the affected Achilles tendon rupture were statistically significant (Plt;0.05), and the differences in SWV between the healthy Achilles tendon flounder muscle and the affected ruptured Achilles tendon flounder muscle were not statistically significant (Pgt;0.05). Conclusion Closed complete rupture of the Achilles tendon mostly involves the left Achilles tendon, and the elastic changes of the affected Achilles tendon occur in the free Achilles tendon and do not involve the proximal tendon structures of the flounder muscle, and the SWE technique can be used to quantitatively assess the preoperative stiffness of the affected Achilles tendon.

Keywords: ultrasound; closed complete Achilles tendon rupture; shear wave velocity

跟腱斷裂是指跟腱在跟骨基底部、肌腱區(qū)域或肌肉肌腱連接處完全連續(xù)性中斷,發(fā)病率為11/10萬~37/10萬[1] ,以男性為主,位居肌腱斷裂發(fā)病率的第3位[2] 。近年來,跟腱斷裂發(fā)病率呈上升趨勢,這可能與人口老齡化、肥胖人群增多及飲食結(jié)構(gòu)改變有關(guān)。受到患者體格檢查時疼痛的限制,臨床上常難以充分評估閉合性跟腱斷裂的情況,而超聲可為跟腱斷裂情況提供豐富的診斷信息。閉合性跟腱完全斷裂術(shù)前超聲檢查除診斷跟腱斷裂外,還應(yīng)評估跟腱斷裂后的硬度改變。隨著超聲技術(shù)的發(fā)展,超聲彈性成像可對肌腱組織力學(xué)改變進行非侵入性評估,尤其是實時剪切波彈性成像(SWE)可通過測量感興趣區(qū)域(ROI)的楊氏模量值定量來評估肌腱生物學(xué)彈性[3] 。SWE能夠獲取剪切波在肌腱內(nèi)的傳播速度用來反應(yīng)其硬度,從而對閉合性跟腱完全斷裂的早期診斷具有很大的適用性[4] 。由于肌肉骨骼具有各向異性的特性,《二維剪切波彈性成像檢查肌骨組織操作規(guī)范指南》推薦SWE以剪切波速(SWV)(m/s)來表示,不宜采用楊氏模量或剪切模量表示[5]。動態(tài)SWE證明在評估閉合性跟腱完全斷裂時結(jié)果更為客觀,然而,也存在一些局限性,特別是ROI的大小和深度有限[7] 。研究表明[8] ,肌腱損傷后恢復(fù)情況與彈性值之間存呈正相關(guān),SWV越低則肌腱的力學(xué)性能和功能越差,愈合越慢。既往研究大多集中于健康人群跟腱硬度測量,或者斷裂的跟腱硬度測量[9] ,未將斷裂的跟腱斷端近端和遠端加以區(qū)分測量。本研究采用SWE技術(shù)對閉合性跟腱損傷的斷端近端及遠端、健側(cè)跟腱硬度進行定量分析,旨在為閉合性跟腱完全斷裂的術(shù)前評估提供指導(dǎo)依據(jù)。

1" 資料與方法

1.1" 一般資料

回顧性分析2021年7月~2024年1月中國科學(xué)技術(shù)大學(xué)附屬第一醫(yī)院經(jīng)超聲診斷為閉合性跟腱完全斷裂的患者53例,年齡19~75(37.16±9.59)歲,其中男性51例,女性2例。53例患者中62.26%(33/53)跟腱斷裂發(fā)生于左側(cè),37.73%(20/53)跟腱斷裂發(fā)生于右側(cè)。所有患者均經(jīng)手術(shù)證實。納入標準:符合“急性跟腱斷裂的循證醫(yī)學(xué)診療指南”中的相關(guān)診斷標準[10] ;經(jīng)手術(shù)證實為閉合性損傷;首次跟腱斷裂。排除標準:開放性跟腱斷裂;代謝性或內(nèi)分泌疾病導(dǎo)致斷裂者。本研究已通過中國科學(xué)技術(shù)大學(xué)附屬第一醫(yī)院(安徽省立醫(yī)院)倫理審核(審批號:202401281151000172845)。

1.2" 儀器與方法

使用Mindray Resona R9S型彩色超聲診斷儀,L14-5WU型線陣探頭,探頭頻率5~15 MHz,儀器配備剪切波彈性成像功能,檢查條件設(shè)置為肌肉骨骼檢查預(yù)設(shè)條件。

患者取俯臥位,雙足懸垂于檢查床外,在足踝及小腿背側(cè)中下1/4處涂抹適量的耦合劑,將超聲探頭輕輕置于足踝背側(cè),超聲探頭方向與小腿長軸方向平行。先檢查健側(cè)跟腱,跟腱聲像圖呈細線樣連續(xù)均勻平行的強回聲,輕微移動超聲探頭,待顯示跟腱最厚處后凍結(jié)圖像,于跟腱連于跟骨附著2~3 cm處測量跟腱厚度,測量3次,取平均值。然后切換至彈性成像模式,按下儀器面板上“Elasto”按鈕后,在儀器顯示屏觸“STQ彈性”條件,儀器自動彈出ROI,將ROI調(diào)節(jié)至5 mm×5 mm后,把ROI區(qū)置于跟腱中央,儀器屏幕上“M-STB Index”顯示5顆星后,按下“update”鍵,記錄“Median”值,測量3次,取平均值。將ROI置于健側(cè)跟腱后方的比目魚肌內(nèi),測量健側(cè)比目魚肌的SWV。然后再對患側(cè)跟腱進行測量,先將超聲探頭置于足踝背側(cè)近跟骨側(cè),先測量斷裂部位距離跟骨的長度,觀察跟腱斷端遠端二維超聲改變,對跟腱斷端遠端厚度及SWV進行測量。將超聲探頭向頭側(cè)平移,待跟腱斷裂部位顯示于屏幕中央后,觀察跟腱斷端聲像圖改變,并測量跟腱斷裂分離長度。再次將超聲探頭向頭側(cè)平移,待圖像即將離開跟腱斷裂部位后,停止探頭平移,待圖像穩(wěn)定后,觀察跟腱斷端近端二維超聲改變,并測量跟腱斷端近端厚度及SWV,之后將ROI移動至跟腱深部的比目魚肌內(nèi)并測量SWV值。

1.3nbsp; 統(tǒng)計學(xué)分析

采用SPSS27.0軟件進行統(tǒng)計分析,計數(shù)資料以n(%)表示,服從正態(tài)分布的計量資料以均數(shù)±標準差表示,兩組連續(xù)性變量的比較采用獨立樣本t檢驗,多組間比較采用單因素方差分析,根據(jù)是否方差齊性行LSD檢驗。以Plt;0.05為差異有統(tǒng)計學(xué)意義。

2" 結(jié)果

2.1" 健側(cè)跟腱及患側(cè)跟腱二維聲像圖表現(xiàn)

健側(cè)跟腱縱向聲像圖表現(xiàn)為平行的束狀結(jié)構(gòu),跟腱纖維呈細樣連續(xù)均勻的強回聲(圖1A)。跟腱完全斷裂時表現(xiàn)為肌腱纖維連續(xù)性中斷,斷端近端(圖1B)及遠端增厚(圖1C),回聲減低,斷端不平整,跟腱斷裂處被無回聲或低回聲的血腫充填(圖1D),伴周圍軟組織腫脹。患側(cè)斷裂跟腱分離長度13.60±8.67 mm,斷裂部位距離跟骨附著處47.71±11.09 mm。

2.2" 患側(cè)跟腱斷裂近端厚度、患側(cè)跟腱斷裂遠端厚度、健側(cè)跟腱的厚度、斷裂處距離附著處長度及患側(cè)跟腱分離長度的側(cè)別比較

患側(cè)跟腱斷裂近端厚度、患側(cè)跟腱斷裂遠端厚度、健側(cè)跟腱的厚度、斷裂處距離附著處長度及患側(cè)跟腱分離長度的側(cè)別差異均無統(tǒng)計學(xué)意義(Pgt;0.05,表1)。

2.3" 患側(cè)跟腱斷裂近端、患側(cè)跟腱斷裂遠端及健側(cè)跟腱厚度比較

53例患側(cè)跟腱斷裂近端、患側(cè)跟腱斷裂遠端及健側(cè)跟腱厚度分別為6.71±2.67、8.36±3.07、5.01±0.97 mm,差異有統(tǒng)計學(xué)意義(P=0.017)。兩兩比較顯示,患側(cè)跟腱斷裂近端與患側(cè)跟腱斷裂遠端的厚度、患側(cè)跟腱斷裂近端與健側(cè)跟腱的厚度的差異無統(tǒng)計學(xué)意義(P=0.229、0.077);患側(cè)跟腱斷裂遠端與健側(cè)跟腱的厚度的差異有統(tǒng)計學(xué)意義(8.36±3.07 mm vs 5.01±0.97 mm,P=0.005)。

2.4" 患側(cè)跟腱斷裂近端、患側(cè)跟腱斷裂遠端、健側(cè)跟腱、患側(cè)比目魚肌、健側(cè)比目魚肌的側(cè)別SWV比較

患側(cè)跟腱斷裂近端、患側(cè)跟腱斷裂遠端、健側(cè)跟腱、患側(cè)比目魚肌、健側(cè)比目魚肌的側(cè)別SWV的差異均無統(tǒng)計學(xué)意義(Pgt;0.05,表2)。

2.5" 患側(cè)跟腱斷裂近端、患側(cè)跟腱斷裂遠端與健側(cè)跟腱SWV比較及健側(cè)側(cè)比目魚肌與患側(cè)比目魚肌SWV比較

53例患側(cè)跟腱斷裂近端、患側(cè)跟腱斷裂遠端及健側(cè)跟腱SWV分別為3.11±1.11、3.99±1.13、4.06±1.38 m/s。患側(cè)跟腱斷裂近端、跟腱斷裂遠端與健側(cè)跟腱的SWV比較有統(tǒng)計學(xué)意義(P=0.001)。兩兩比較顯示,患側(cè)跟腱斷裂近端(圖2A)與患側(cè)跟腱斷裂遠端(圖2B)的SWV、患側(cè)跟腱斷裂近端與健側(cè)跟腱的SWV差異有統(tǒng)計學(xué)意義(3.11±1.11 m/s vs 3.99±1.13 m/s,Plt;0.001;3.11±1.11 m/s vs 4.06±1.38 m/s,P=0.003);患側(cè)跟腱斷裂遠端與健側(cè)跟腱的SWV差異無統(tǒng)計學(xué)意義(P=0.667);健側(cè)比目魚肌與患側(cè)比目魚肌的SWV差異無統(tǒng)計學(xué)意義(P=0.598)。

3" 討論

跟腱斷裂是一種常見的運動損傷,診斷主要依賴于臨床體格檢查,但受到患者疼痛及軟組織腫脹的影響,體格檢查常常出現(xiàn)假陰性診斷,單純依賴臨床檢查誤診率高達20%~30%[11] 。超聲因無創(chuàng)、無輻射及便捷等優(yōu)勢,已成為跟腱斷裂首選的影像學(xué)檢查方法。傳統(tǒng)的二維超聲評估跟腱斷裂時無法深入了解跟腱的特性,其結(jié)果與預(yù)后跟腱的功能恢復(fù)沒有明顯的相關(guān)性。相比之下,SWE已被證實是肌腱[12] 和肌肉[13] 較為可靠的定量技術(shù),在預(yù)測跟腱結(jié)構(gòu)變化方面比肌骨超聲更敏感,且具有更良好的可靠性和可重復(fù)性[14] ,甚至被運用于檢測斷裂跟腱的定量特性以及監(jiān)測其治療效果[15-17] 。由于跟腱內(nèi)部缺乏血供,損傷后容易引起多種并發(fā)癥并且不易修復(fù)和愈合[18] ,且跟腱斷裂后跟腱的僵硬度影響到跟腱治療后患者恢復(fù)程度,所以術(shù)前評估患側(cè)跟腱斷裂的硬度尤為重要。

跟腱斷裂的男女比例為2:1~19:1[19] ,本研究中患者共53例,其中男性51例,女性2例,男性跟腱斷裂的發(fā)生率明顯高于女性,既往研究[20] 也證實了這一觀點,可能原因是參與運動的男性多于女性[29] ,另外可能是性別生理差異,女性分泌的雌激素可以促進膠質(zhì)蛋白的合成,維持跟腱的緊張狀態(tài),從而降低跟腱損傷的發(fā)生率。本研究中跟腱斷裂位于左側(cè)的發(fā)生率為62.26%(33/53),位于右側(cè)的發(fā)生率為37.73%(20/53),與大多數(shù)人為右腿優(yōu)勢有關(guān),肌肉的發(fā)達程度可以提高身體的穩(wěn)定性和支持性,有助于減輕肌腱的負擔(dān),從而降低右側(cè)跟腱斷裂的發(fā)生率,與既往研究[21] 結(jié)果相符。

一般來說,患側(cè)跟腱的SWV低于健側(cè)跟腱[22] 。由于個體間SWV值的多樣性且缺乏一般的參考值,到目前為止還未有普遍適用的健側(cè)跟腱參考值,但是可以通過每位患者兩側(cè)個體內(nèi)比較作為個體的“參考標準”。既往研究表明,跟腱斷裂后健側(cè)與患側(cè)的剪切模量無差異[23] ,但目前關(guān)于跟腱側(cè)別損傷引起厚度及SWV的比較尚未見報道,可能是由于SWE技術(shù)在測量跟腱硬度時有量程限制。本研究結(jié)果顯示,跟腱斷裂位于左側(cè)或右側(cè),測得的厚度、SWV、患側(cè)跟腱分離長度、距離跟骨附著處長度及比目魚肌SWV差異均無統(tǒng)計學(xué)意義,表明跟腱側(cè)別損傷引起的厚度及SWV與患側(cè)跟腱分離長度、與跟骨附著處的距離及比目魚肌的彈性無關(guān)。本研究結(jié)果表明跟腱發(fā)生斷裂后患側(cè)跟腱近端、遠端均較健側(cè)跟腱增厚,是由于跟骨結(jié)節(jié)上方2~6 cm處最窄,最為薄弱,由于跟腱長期慢性牽拉勞損,跟腱組織變脆,血運不豐富,因此跟腱發(fā)生斷裂后組織水腫增厚較為明顯,與以往研究[24] 結(jié)果一致。本研究結(jié)果還表明跟腱斷裂遠端較跟腱斷裂近端增厚明顯,可能是由于成人跟腱兩端血供豐富,但中段血管數(shù)量較少,管徑較小,存在血供差。因此,利用SWE技術(shù)可用于監(jiān)測肌腱的恢復(fù)情況,避免早期肌腱負荷導(dǎo)致的再次損傷。

SWE是近年來超聲領(lǐng)域的一項新技術(shù),可從生物力學(xué)的角度評估病變信息。在二維超聲圖像的基礎(chǔ)上顯示組織硬度的信息,選擇ROI精確定量評估組織硬度,分辨不同組織間以及同一組織不同病理狀態(tài)的硬度差異[8] 。SWE可以提供肌腱力學(xué)性能信息,正常跟腱發(fā)生損傷時,跟腱的生物學(xué)會發(fā)生改變,硬度降低。SWE結(jié)果顯示,跟腱斷裂后,跟腱斷裂近端及遠端的SWV均減低,且跟腱斷裂近端減低更為明顯,說明跟腱發(fā)生斷裂后,張力減低、組織血腫或積液會導(dǎo)致僵硬度降低,與以往研究[25-27] 結(jié)果一致;并且患側(cè)比目魚肌SWV與健側(cè)比目魚肌SWV的差異無統(tǒng)計學(xué)意義,表明跟腱斷裂的彈性改變僅局限于游離跟腱,而不涉及比目魚肌的近端肌腱結(jié)構(gòu),這與既往研究[28] 結(jié)果相同。本研究還發(fā)現(xiàn)患側(cè)跟腱斷裂遠端的SWV高于患側(cè)跟腱斷裂近端的SWV,且兩者有明顯的差異性,此結(jié)果在以往的研究中尚未報道。可能的原因有:跟腱的遠端有跟骨附著;跟腱的近端斷裂后張力減低,局部凹陷,此處的跟腱橫截面積小,偏心負荷大,血管少[29] 。

本研究存在一些局限性:本研究的樣本量偏少,且為單中心研究;本研究納入的均為需要手術(shù)的跟腱完全斷裂的患者,跟腱不完全斷裂未納入;跟腱斷裂后,由于局部組織水腫增厚,取樣框與斷裂跟腱之間無法保持完全垂直狀態(tài),測得的患側(cè)跟腱SWV值稍有偏差。在未來的研究中應(yīng)擴大樣本量及多中心性研究來提供參考標準。

綜上所述,閉合性跟腱完全斷裂大多累及左側(cè)跟腱,在跟腱發(fā)生斷裂后會出現(xiàn)水腫增厚,且患側(cè)斷裂跟腱遠端較患側(cè)斷裂跟腱近端增厚明顯;利用SWE技術(shù)測得患側(cè)斷裂跟腱近端、遠端的SWV均低于健側(cè)跟腱,且跟腱斷裂近端的SWV較跟腱斷裂遠端的SWV低,表明跟腱發(fā)生斷裂后,跟腱的彈性變化發(fā)生在游離跟腱,對比目魚肌近端肌腱的結(jié)構(gòu)不產(chǎn)生影響。采用SWE技術(shù)測得的SWV可以評估患者術(shù)前跟腱的軟硬程度,為手術(shù)治療提供支持。

參考文獻:

[1]" "Suchak AA, Bostick G, Reid D, et al. The incidence of Achilles tendon ruptures in Edmonton, Canada[J]. Foot Ankle Int, 2005, 26(11): 932-6.

[2]" "Park HG, Youn D, Baik JM, et al. Epidemiology of Achilles tendon rupture in South Korea: claims data of the national health insurance service from 2009 to 2017[J]. Clin Orthop Surg, 2021, 13(4): 539-48.

[3]" "郝云霞, 崔立剛, 孫" 洋. 剪切波彈性成像技術(shù)檢測正常人髕腱彈性特征的初步研究[J]. 中國超聲醫(yī)學(xué)雜志, 2019, 35(1): 69-72.

[4]" "Ooi CC, Malliaras P, Schneider ME, et al. “Soft, hard, or just right?” Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries[J]. Skeletal Radiol, 2014, 43(1): 1-12.

[5]" " 中國醫(yī)師協(xié)會超聲醫(yī)師分會. 中國二維剪切波彈性成像檢查肌骨組織操作規(guī)范指南[J]. 中華超聲影像學(xué)雜志, 2024, 33(3): 193-200.

[6]" "Payne C, Watt P, Cercignani M, et al. Reproducibility of shear wave elastography measuresof the Achilles tendon[J]. Skeletal Radiol, 2018, 47(6): 779-84.

[7] Klauser AS, Miyamoto H, Bellmann?Weiler R, et al. Sonoelastography: musculoskeletal applications[J]. Radiology, 2014, 272(3): 622-33.

[8]" Prado?Costa R, Rebelo J, Monteiro-Barroso J, et al. Ultrasound elastography: compression elastography and shear?wave elastography in the assessment of tendon injury[J]. Insights Imaging, 2018, 9(5): 791-814.

[9]" "Zhang LN, Wan WB, Wang YX, et al. Evaluation of elastic stiffness in healing Achilles tendon after surgical repair of a tendon rupture using in vivo ultrasound shear wave elastography[J]. Med Sci Monit, 2016, 22: 1186-91.

[10]" Ivanac G, Lemac D, Kosovic V, et al. Importance of shear-wave elastography in prediction of Achilles tendon rupture[J]. Int Orthop, 2021, 45(4): 1043-7.

[11] Breda SJ, van der Vlist A, de Vos RJ, et al. The association between patellar tendon stiffness measured with shear-wave elastography and patellar tendinopathy?a case?control study[J]. Eur Radiol, 2020, 30(11): 5942-51.

[12]Corrigan P, Zellers JA, Balascio P, et al. Quantification of mechanical properties in healthy Achilles tendon using continuous shear wave elastography: a reliability and validation study[J]. Ultrasound Med Biol, 2019, 45(7): 1574-85.

[13]" Snoj ?, Wu CH, Taljanovic MS, et al. Ultrasound elastography in musculoskeletal radiology: past, present, and future[J]. Semin Musculoskelet Radiol, 2020, 24(2): 156-66.

[14]" Dirrichs T, Quack V, Gatz M, et al. Shear wave elastography (SWE) for monitoring of treatment of tendinopathies: a double-blinded, longitudinal clinical study[J]. Acad Radiol, 2018, 25(3): 265-72.

[15] Dirrichs T, Schrading S, Gatz M, et al. Shear wave elastography (SWE) of asymptomatic Achilles tendons: a comparison between semiprofessional athletes and the nonathletic general population[J]. Acad Radiol, 2019, 26(10): 1345-51.

[16]" Mendes B, Firmino T, Oliveira R, et al. Hamstring stiffness pattern during contraction in healthy individuals: analysis by ultrasound-based shear wave elastography[J]. Eur J Appl Physiol, 2018, 118(11): 2403-15.

[17]" Shane AM, Reeves CL, Nguyen GB, et al. Revision surgery for the Achilles tendon[J]. Clin Podiatr Med Surg, 2020, 37(3): 553-68.

[18]Zhang XN, Deng LQ, Xiao SL, et al. Sex differences in the morphological and mechanical properties of the Achilles tendon[J]. Int J Environ Res Public Health, 2021, 18(17): 8974.

[19]" Lantto I, Heikkinen J, Flinkkil? T, et al. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period[J]. Scandinavian Med Sci Sports, 2015, 25(1): e133-8.

[20] Barrios-Cárdenas AL, Lazo-Vera JO. Epidemiological, clinical and therapeutic characteristics of Achilles tendon rupture[J]. Acta Ortop Mex, 2021, 35(3): 252-6.

[21] Dirrichs T, Quack V, Gatz M, et al. Shear wave elastography (SWE) for the evaluation of patients with tendinopathies[J]. Acad Radiol, 2016, 23(10): 1204-13.

[22]" Zellers JA, Cortes DH, Corrigan P, et al. Side-to-side differences in Achilles tendon geometry and mechanical properties following Achilles tendon rupture[J]. Muscles Ligaments Tendons J, 2017, 7(3): 541-7.

[23] Gatz M, Betsch M, Bode D, et al. Intra individual comparison of unilateral Achilles tendinopathy using B-mode, power Doppler, ultrasound tissue characterization and shear wave elastography[J]. J Sports Med Phys Fitness, 2020, 60(11): 1462-9.

[24]" 劉" 芳, 李殿城, 朱家安, 等. 剪切波彈性成像定量評估大鼠坐骨神經(jīng)卡壓的實驗研究[J]. 中國超聲醫(yī)學(xué)雜志, 2022, 38(8): 924-7.

[25]" 丁常偉, 張迎春, 宋" 馨, 等. 實時剪切波彈性成像評估強直型帕金森病患者早期上肢肌肉硬度的變化[J]. 中國醫(yī)學(xué)影像學(xué)雜志, 2021, 29(8): 826-30.

[26] Alfuraih AM, O'Connor P, Tan AL, et al. Muscle shear wave elastography in idiopathic inflammatory myopathies: a case-control study with MRI correlation[J]. Skeletal Radiol, 2019, 48(8): 1209-19.

[27] Li QR, Zhang Q, Cai YH, et al. Patients with Achilles tendon rupture have a degenerated contralateral Achilles tendon: an elastography study[J]. Biomed Res Int, 2018, 2018: 2367615.

[28] Crawford SK, Thelen D, Yakey JM, et al. Regional shear wave elastography of Achilles tendinopathy in symptomatic versus contralateral Achilles tendons[J]. Eur Radiol, 2023, 33(1): 720-9.

[29] Hess GW. Achilles tendon rupture: a review of etiology, population, anatomy, risk factors, and injury prevention[J]. Foot Ankle Spec, 2010, 3(1): 29-32.

(編輯:林" 萍)

主站蜘蛛池模板: 国产91线观看| 亚洲国产中文在线二区三区免| 亚洲成人播放| 久久这里只有精品66| 久久青青草原亚洲av无码| 免费看的一级毛片| 精品少妇人妻无码久久| 欧美h在线观看| 日韩欧美中文在线| 亚洲三级成人| 狠狠干欧美| 亚洲性一区| 亚洲Av综合日韩精品久久久| 国产99免费视频| 久久青草免费91线频观看不卡| 九九九国产| 熟女成人国产精品视频| 伊人福利视频| 丁香五月婷婷激情基地| 国产男女免费完整版视频| 国产99视频免费精品是看6| 国产欧美视频在线观看| 久久精品一卡日本电影| 欧美成人二区| 欧洲熟妇精品视频| 国产又大又粗又猛又爽的视频| 欧美日韩免费在线视频| 人妻中文字幕无码久久一区| 国产精品偷伦在线观看| 国产午夜一级淫片| 岛国精品一区免费视频在线观看| 色欲综合久久中文字幕网| 亚洲一区二区约美女探花| 亚洲国产欧洲精品路线久久| 精品91在线| 久久这里只有精品2| 久久久无码人妻精品无码| 特级欧美视频aaaaaa| 国产真实乱人视频| 欧美日本二区| 99爱在线| 国产第八页| 精品成人一区二区| 666精品国产精品亚洲| 婷婷激情亚洲| 亚洲最大看欧美片网站地址| 欧美有码在线观看| 五月丁香在线视频| h视频在线观看网站| 国产亚洲精品91| 人妻丰满熟妇AV无码区| 在线播放真实国产乱子伦| 免费看黄片一区二区三区| 国产福利免费视频| 日韩天堂在线观看| 亚洲不卡影院| 国产精品久久自在自线观看| 日本爱爱精品一区二区| 国产理论最新国产精品视频| 色香蕉网站| 激情六月丁香婷婷| 狠狠综合久久| 综合成人国产| 四虎亚洲精品| 色色中文字幕| 中文字幕在线免费看| av色爱 天堂网| 黄片在线永久| 亚洲经典在线中文字幕| 亚洲无码高清一区| 欧美特黄一级大黄录像| 国产精品女主播| 秋霞午夜国产精品成人片| 成人自拍视频在线观看| 国产精品护士| 日韩一级二级三级| 亚洲电影天堂在线国语对白| 免费看一级毛片波多结衣| 国产尹人香蕉综合在线电影 | 久久久久国产一级毛片高清板| 91久草视频| 国产福利拍拍拍|