999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

撫育間伐對小黑楊人工林非結(jié)構(gòu)性碳和氮磷鉀生態(tài)化學(xué)計量特征的影響

2024-10-24 00:00:00呂彥飛牛鑒祺王樹力
森林工程 2024年5期

摘 要:了解不同林齡階段小黑楊人工林各器官的非結(jié)構(gòu)性碳(NSC)含量和氮(N)磷(P)鉀(K)生態(tài)化學(xué)計量特征及其對撫育間伐的響應(yīng),從而為小黑楊人工林的科學(xué)經(jīng)營提供依據(jù)。以黑龍江省大慶市紅旗林場幼齡和中齡小黑楊人工林為研究對象,建立間伐強(qiáng)度為25%(以株數(shù)計)的撫育間伐樣地,調(diào)查分析撫育間伐對小黑楊人工林各器官NSC含量和NPK生態(tài)化學(xué)計量的影響特征。研究結(jié)果表明,2種林齡小黑楊人工林具有各自不同的NSC含量和NPK生態(tài)化學(xué)計量分布特征。中齡林樹葉、樹枝和樹根NSC含量較幼齡林分別降低31.76%、21.19%、38.98%(P<0.05)。中齡林樹葉N含量較幼齡林增加11.85% (P<0.05)。中齡林樹枝、樹干和樹根P含量分別較幼齡林分別降低17.57%、35.85%、60.11%(P<0.05),樹葉、樹枝、樹干和樹根K含量分別較幼齡林分別降低21.05%、34.67%、22.99%、46.22%(P<0.05)。撫育間伐顯著影響小黑楊幼齡林樹干和樹根的NSC含量、中齡林樹枝和樹根的NSC含量(P<0.05)。撫育后幼齡林樹干NSC含量增加29.35%,樹根NSC含量降低40.37%;中齡林樹枝和樹根NSC含量分別增加12.81%、33.51%。撫育間伐顯著影響小黑楊幼齡林各器官N含量、樹枝K含量、樹干P含量和中齡林樹葉、樹根K含量(P<0.05)。撫育后小黑楊幼齡林樹葉、樹枝、樹干和樹根N含量分別增加5.77%、15.68%、53.71%、10.85%,樹枝K含量增加36.90%,樹干P含量降低19.63%;小黑楊中齡林樹葉和樹根K含量分別增加20.86%、31.69%。樹葉NSC含量與N含量極顯著負(fù)相關(guān)(P<0.01),與K含量間顯著正相關(guān)(P<0.05);樹枝NSC含量與N含量顯著負(fù)相關(guān),與P含量顯著正相關(guān)(P<0.05),與K含量極顯著正相關(guān)(P<0.01);樹干NSC含量與N含量極顯著正相關(guān)(P<0.01);樹根NSC含量與N含量極顯著負(fù)相關(guān),與P含量極顯著正相關(guān)(P<0.01)。結(jié)果表明,林分未進(jìn)行撫育時,小黑楊幼齡林和中齡林NSC和N、P、K元素在各器官中的分配格局差異明顯;幼齡林碳資源更多地分配給根系,促使其生長延伸,中齡林更多地投入到樹木地上部分生長與競爭。撫育間伐會改變小黑楊NSC和N、P、K在各器官中的分布格局,撫育后,2種林齡小黑楊地上部分與地下部分碳資源比例均發(fā)生改變。對小黑楊中齡林進(jìn)行撫育間伐增加林木碳匯的同時也改善了P限制的狀況。

關(guān)鍵詞:小黑楊; 撫育間伐; 林齡; 非結(jié)構(gòu)性碳; N∶P∶K計量比

中圖分類號:S753 文獻(xiàn)標(biāo)識碼:A DOI:10.7525/j.issn.1006-8023.2024.05.007

Effects of Tending Thinning on Non-Structural Carbon and NPK Ecological Stoichiometric Characteristics in Populus×xiaohei Plantations

Abstract: In order to understand the non-structural carbon (NSC) content, nitrogen (N) phosphorus (P) potassium (K) ecological stoichiometric characteristics and their responses to tending thinning in different age stages of Populus×xiaohei, and to provide a basis for scientific management of Populus×xiaohei, the young and middle Populus×xiaohei plantation in Hongqi Forest Farm of Daqing City, Heilongjiang Provinc was studied, the effects of tending thinning on NSC content and NPK ecological stoichiometry in each organ of the plantation were investigated and analyzed by setting up thinning plots with thinning intensity of 25% (based on number of trees). The results showed that there were different NSC content and NPK ecological stoichiometric distribution characteristics of two kinds of Populus×xiaohei plantations. The contents of NSC in the leaf, branch and root of middle-aged forest were decreased by 31.76%, 21.19% and 38.98% compared with those of young forest, respectively (P < 0.05). The N content of leaf in the middle-aged forest was increased by 11.85% compared with that in the young forest (P < 0.05). Compared with young forest, the P content of branch, stem and root of middle-aged forest decreased by 17.57%, 35.85% and 60.11%, respectively (P < 0.05), and the K content of leaf, branch, stem and root decreased by 21.05%, 34.67%, 22.99% and 46.22%, respectively (P < 0.05). Tending thinning significantly affected the NSC content in the stem and root of young forest, and the NSC content in the branch and roots of middle-aged forest (P < 0.05). NSC content in stem of young forest increased by 29.35%, while NSC content in root decreased by 40.37%. The contents of NSC in branch and root of middle-aged forest increased by 12.81% and 33.51%, respectively. Tending thinning significantly affected N content in organs, K content in branch, P content in stem and K content in leaf and root of young forest (P < 0.05). After tending, N content in leaf, branch, stem and root of young forest increased by 5.77%, 15.68%, 53.71% and 10.85%, respectively, K content in branch increased by 36.90%, and P content in stem decreased by 19.63%. The K content in the leaf and root of the middle-aged forest increased by 20.86% and 31.69%, respectively. The NSC content in leaf was negatively correlated with N content (P < 0.01), and positively correlated with K content (P < 0.05); NSC content in branch was negatively correlated with N content, positively correlated with P content (P < 0.05), and significantly positively correlated with K content (P < 0.01); NSC content in stem was significantly positively correlated with N content (P < 0.01); NSC content in root was significantly negatively correlated with N content, and significantly positively correlated with P content (P < 0.01). The above results showed that the distribution pattern of NSC and N, P and K elements in the organs of young and middle-aged Populus×xiaohei were significantly different when the stands were not tended. The carbon resources of the young forest were more allocated to the root system to promote its growth and extension, and the middle-aged forest was more invested in the growth and competition of the aboveground part of the tree. The distribution pattern of NSC, N, P and K in each organ was changed by tending thinning. The proportion of carbon resources in the aboveground and underground parts of the two kinds of standing Populus×xiaohei changed after tending. Tending thinning of middle age Populus×xiaohei forest increased the carbon sink and improved the P limit.

Keywords: Populus×xiaohei; tending thinning; plantation age; non-structural carbon; N∶P∶K stoichiometric ratio

0 引言

非結(jié)構(gòu)性碳水化合物(NSC)主要由可溶性糖和淀粉組成[1],是植物體重要的能量供應(yīng)物質(zhì)和必要的臨時溶質(zhì)庫,在植物的生長代謝和滲透調(diào)節(jié)過程中起著十分重要的作用[2]。其含量通常可以反映植物體碳收支狀況及植物對生境變化的響應(yīng)狀況[3],是植物體碳匯研究過程中的重要指標(biāo)。氮(N)、磷(P)和鉀(K)是植物生長所必需的三大營養(yǎng)元素,在植物體不同器官中的含量和分配格局可以影響植物生長,其生態(tài)化學(xué)計量特征可以反映植物營養(yǎng)的內(nèi)穩(wěn)性,并可用來判斷植物生長的限制性元素和養(yǎng)分利用效率的高低[4]。因此,研究植物體非結(jié)構(gòu)性碳水化合物及NPK生態(tài)化學(xué)計量特征具有十分重要的生物學(xué)和生態(tài)學(xué)意義。撫育間伐是森林經(jīng)營的重要措施。不同強(qiáng)度的撫育間伐措施可以改善林分的結(jié)構(gòu)、調(diào)整物種組成并改變環(huán)境條件,從而影響林分生長和土壤理化性質(zhì)。如徐慶祥等[5]研究發(fā)現(xiàn),撫育間伐能有效促進(jìn)林分生長,并且不會對土壤理化性質(zhì)產(chǎn)生不良影響。朱玉杰等[6]研究得出,間伐可以增加林分物種多樣性,優(yōu)化林分冠層結(jié)構(gòu),增強(qiáng)光合作用并促進(jìn)林木生長。趙朝輝等[7]研究證明,間伐不僅可以增加林下植物種類和生物量,而且可以提高林地土壤溫度,加速死地被物的分解,改善土壤理化性質(zhì),提高土壤肥力。也有學(xué)者開展了關(guān)于植物營養(yǎng)元素與環(huán)境間的關(guān)系和植物生態(tài)化學(xué)計量特征對經(jīng)營措施響應(yīng)方面的研究,如于海玲等[8]研究發(fā)現(xiàn),物種組成會影響到草地植被N、P元素生態(tài)化學(xué)計量學(xué)特征,不同功能群植物N、P元素含量對溫度和降水變化的響應(yīng)不同。顧鴻昊等[9]對毛竹林的研究得出,不同經(jīng)營水平會顯著影響葉片C、N、P質(zhì)量分?jǐn)?shù)及化學(xué)計量比值。高宗寶等[10]研究發(fā)現(xiàn),不同物種養(yǎng)分含量和計量特征發(fā)生的改變可以預(yù)測未來養(yǎng)分富集情況下植物群落組成的改變。有些研究也得出植物對營養(yǎng)元素的分配在不同器官之間存在差異,植物的生態(tài)化學(xué)計量特征在不同年齡、季節(jié)和海拔情況下會有一定程度變化的結(jié)論[11-13],并認(rèn)為植物內(nèi)部NSC和N、P、K在不同器官的分配可以反映植物的生理活動以及對生境的適應(yīng)策略[12]。然而,相較于撫育間伐對林木生長、木材材性和林下植物多樣性影響方面的研究,有關(guān)撫育間伐對森林NSC和NPK生態(tài)化學(xué)計量特征的影響仍待深入研究。小黑楊(Populus×xiaohei)是以小葉楊(Populus simonii)為母本、歐洲黑楊(Populus nigra)為父本雜交培育的速生、耐寒、抗旱、材質(zhì)優(yōu)良品種,已在“三北”地區(qū)了進(jìn)行大面積種植,并產(chǎn)生了較大的經(jīng)濟(jì)和生態(tài)價值。已有專家開展了撫育間伐對楊樹人工林生長、土壤理化性質(zhì)影響方面的研究[14 -15],也有學(xué)者對楊樹人工林的NSC含量和生態(tài)化學(xué)計量特征分別展開過研究[16 -18]。但是,不同林齡小黑楊各器官NSC含量和NPK生態(tài)化學(xué)計量特征分布是否一致,不同林齡小黑楊人工林NSC含量和NPK生態(tài)化學(xué)計量特征響應(yīng)撫育間伐的程度是否存在差異,仍需進(jìn)一步確認(rèn)。因此,本研究以黑龍江省大慶市紅旗林場2種林齡(幼齡和中齡)小黑楊人工林為對象,研究撫育間伐對小黑楊人工林NSC含量和NPK生態(tài)化學(xué)計量特征的影響,闡明不同林齡小黑楊人工林對撫育間伐響應(yīng)的差異,為該區(qū)小黑楊人工林的科學(xué)經(jīng)營及碳匯管理提供依據(jù)。

1 研究區(qū)概況與研究方法

1.1 研究區(qū)概況

研究區(qū)位于松嫩平原南部的黑龍江省大慶市紅旗林場(46°14′N,124°40′E)。地屬中溫帶半干旱大陸性季風(fēng)氣候。春季干旱多風(fēng),夏季高溫少雨,年均氣溫4.3 ℃,年均降水量395 mm。該區(qū)地勢平坦開闊,平均海拔140 m,土壤多為中度堿性灰棕色沙土和碳酸鹽土,主要樹種有小黑楊(Populus×xiaohei)、樟子松(Pinus sylvestris var. mongolica)、落葉松(Larix gmelinii)、水曲柳(Fraxinus mandshurica)和黃檗(Phellodendron amurense)等。

1.2 樣地設(shè)置

2016年10月在立地條件大致相同的小黑楊幼齡林和中齡林中各設(shè)置6塊面積為30 m × 30 m的樣地,并進(jìn)行每木檢尺。次年實施間伐,設(shè)置間伐強(qiáng)度為25%(以株數(shù)計),分別對其中3塊按照去劣留優(yōu)、間密留勻、兼顧株間距的原則伐除林分內(nèi)密度過大、生長不良的林木,并保留其余3塊樣地作為未撫育組。

2022年10月再次對樣地內(nèi)林木進(jìn)行每木檢尺,樣地基本情況見表1。

1.3 樣品采集與測定

2022年7月,在各樣地中分別選擇3株平均木,采集樹葉、樹枝、樹干和樹根樣品。使用高枝剪對樣木樹冠四周上中下3個冠層隨機(jī)獲取樹枝和樹葉,分別均勻混合后作為樹枝和樹葉樣品。采用內(nèi)徑5 mm的生長錐在樣木胸高處(距地面1.3 m)于南向鉆取樹芯,去除樹皮后作為樹干樣品。采用挖掘法獲取樹根,洗凈后作為樹根樣品。所有樣品密封放入0~4 ℃冷藏箱中保存。樣品洗凈后在烘箱中105 ℃殺青15 min,65 ℃烘干至恒質(zhì)量。粉碎后過100目篩的樣品放入自封袋內(nèi)待測。可溶性糖和淀粉采用改進(jìn)的濃硫酸-苯酚法[19]測定,非結(jié)構(gòu)性碳水化合物(NSC)含量為可溶性糖和淀粉含量之和;H2SO4-H2O2消煮后,全N含量采用凱氏定氮法測定,全P含量采用鉬銻抗比色法測定,全K含量采用火焰分光光度法測定[20]。

1.4 數(shù)據(jù)處理與分析

利用Excel 2 013和SPSS25.0軟件統(tǒng)計分析試驗數(shù)據(jù),采用雙因素方差分析(two-way ANOVA)檢驗間伐和林齡及其交互作用對小黑楊各器官可溶性糖、淀粉、NSC、N、P和K含量的總體影響,進(jìn)一步利用單因素方差分析(one-way ANOVA)檢驗不同處理間各器官可溶性糖、淀粉、NSC、N、P和K含量的差異,并運用Duncan法進(jìn)行多重比較(α=0.05)。采用Pearson法分析小黑楊不同器官可溶性糖、淀粉和NSC含量與N、P、K生態(tài)化學(xué)計量特征間的相關(guān)關(guān)系。用Origin 2021軟件繪圖,圖表中數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)誤差。

2 結(jié)果與分析

2.1 小黑楊人工林NSC含量及NPK生態(tài)化學(xué)計量分布特征比較

2種林齡小黑楊人工林具有各自不同的NSC含量分布特征,如圖1和表2所示。2種林齡林木相比,中齡林較幼齡林樹葉可溶性糖、淀粉和NSC含量分別顯著降低了33.04%、24.69、31.76%,樹枝淀粉和NSC含量分別顯著降低了30.01%、21.19%,樹根的可溶性糖、淀粉和NSC含量分別顯著降低了19.21%、58.15%、38.98%,可溶性糖:淀粉顯著增加。中齡林較幼齡林器官可溶性糖、淀粉和NSC總組分含量顯著降低,地下部分與地上部分淀粉和NSC含量的比值也顯著降低。

不同齡組林木間可溶性糖、淀粉和NSC在不同器官中的分配格局不同。可溶性糖含量在幼齡林中由大到小表現(xiàn)為樹葉、樹根、樹枝、樹干,中齡林由大到小表現(xiàn)為樹葉、樹枝、樹根、樹干;淀粉含量幼齡林由大到小表現(xiàn)為樹根、樹枝、樹葉、樹干,中齡林由大到小表現(xiàn)為樹枝、樹根、樹葉、樹干;NSC含量幼齡林由大到小表現(xiàn)為樹根、樹枝、樹葉、樹干,中齡林由大到小表現(xiàn)為樹枝、樹根、樹葉、樹干(圖1)。

2種林齡小黑楊人工林也具有各自不同的NPK生態(tài)化學(xué)計量分布特征,如圖2所示。與幼齡林相比,中齡林樹葉N含量顯著增加了11.85%,樹枝、樹干和樹根P含量分別顯著降低了17.57%、35.85%、60.11%,樹葉、樹枝、樹干和樹根K含量分別顯著降低了21.05%、34.67%、22.99%、46.22%;樹葉和樹枝N∶P、N∶K,樹干N∶P,樹根N∶P、N∶K、K∶P均顯著增加,枝K∶P顯著降低。

不同齡組林木間N含量、N∶P和N∶K在不同器官中分配格局一致,由大到小均表現(xiàn)為樹葉、樹枝、樹根、樹干;P含量、K含量和K∶P在不同器官中分配格局不同。P含量在幼齡林由大到小表現(xiàn)為樹根、樹枝、樹葉、樹干,在中齡林由大到小表現(xiàn)為樹枝、樹葉、樹根、樹干;K含量在幼齡林由大到小表現(xiàn)為樹葉、樹根、樹枝、樹干,在中齡林由大到小表現(xiàn)為樹葉、樹枝、樹根、樹干;K∶P在幼齡林由大到小表現(xiàn)為樹葉、樹干、樹枝、樹根,在中齡林由大到小表現(xiàn)為樹干、樹葉、樹根、樹枝(圖2)。

2.2 撫育間伐對小黑楊人工林NSC含量的影響

撫育間伐和林齡的交互作用對樹根可溶性糖含量、樹枝淀粉含量有顯著影響,對樹枝NSC含量、樹干可溶性糖和NSC含量、樹根淀粉和NSC含量有極顯著影響,見表3。撫育間伐對小黑楊人工林NSC及其組分含量影響顯著(圖1)。幼齡林樹葉淀粉含量顯著增加了26.70%;樹枝淀粉含量顯著降低了14.96%,樹干可溶性糖、淀粉和NSC含量分別顯著增加了32.80%、25.09%、29.35%;樹根可溶性糖、淀粉和NSC含量分別顯著降低了16.28%、63.74%、40.37%,可溶性糖∶淀粉顯著增加。中齡林樹枝NSC含量顯著增加了12.81%;樹根淀粉和NSC含量分別顯著增加了79.87%和33.51%,可溶性糖∶淀粉顯著降低。撫育間伐對小黑楊地下部分與地上部分可溶性糖總量無顯著影響(表2)。撫育后幼齡林地下部分與地上部分淀粉和NSC總量顯著降低,地下部分與地上部分可溶性糖、淀粉和NSC含量的比值也顯著降低;中齡林地下部分與地上部分淀粉和NSC總量和比值均顯著增加。

撫育間伐改變了幼齡林可溶性糖、淀粉、NSC和中齡林淀粉在不同器官中的分配格局。幼齡林可溶性糖含量、淀粉含量和NSC含量分配格局由大到小分別變?yōu)闃淙~、樹枝、樹根、樹干,樹枝、樹根、樹葉、樹干,樹葉、樹枝、樹根、樹干;中齡林淀粉含量分配格局由大到小變?yōu)闃涓渲Α淙~、樹干(圖1)。

2.3 撫育間伐對小黑楊人工林N、P、K生態(tài)化學(xué)計量特征的影響

撫育間伐和林齡的交互作用對樹葉N∶P和 N∶K、樹枝N∶P、樹干P含量和樹根K含量有顯著影響,對樹葉N含量、樹枝N含量和K∶P、樹干N含量、N∶P和N∶K、樹根N含量、P含量、N∶P和N∶K有極顯著影響,見表4。撫育間伐對小黑楊人工林N、P、K及其化學(xué)計量特征有影響顯著,如圖2所示。其中,小黑楊幼齡林樹葉、樹枝、樹干和樹根N含量分別顯著增加了5.77%、15.68%、53.17%、10.85%;樹干P含量顯著降低了19.63%;樹枝K含量顯著增加了36.90%。中齡林樹葉和樹根K含量分別顯著增加了20.86%和31.69%。小黑楊幼齡林樹枝N∶P、 K∶P,樹干N∶P、N∶K和樹根K∶P均顯著增加;中齡林樹葉N∶P、N∶K,樹枝N∶K,樹干N∶P和樹根N∶P、 N∶K均顯著降低。

撫育間伐改變了幼齡林N∶P和中齡林K含量、N∶K、K∶P在不同器官中的分配格局。幼齡林N∶P由大到小變?yōu)闃淙~、樹枝、樹干、樹根;中齡林K含量、N∶K和K∶P由大到小分別變?yōu)闃淙~、樹根、樹枝、樹干,樹枝、樹葉、樹根、樹干,樹葉、樹干、樹根、樹枝(圖2)。

2.4 小黑楊人工林林木NSC含量與NPK生態(tài)化學(xué)計量特征間的關(guān)系

樹葉可溶性糖含量與N含量極顯著負(fù)相關(guān),與K含量和K∶P顯著正相關(guān),與N∶K顯著負(fù)相關(guān);淀粉含量與K含量和K∶P極顯著正相關(guān),與N∶K顯著負(fù)相關(guān);NSC含量與N含量、N∶K極顯著負(fù)相關(guān),與K含量、K∶P顯著正相關(guān)。樹枝可溶性糖含量與N含量極顯著負(fù)相關(guān),與N∶K顯著負(fù)相關(guān);淀粉含量與K含量極顯著正相關(guān),與P含量顯著正相關(guān),與N∶K 極顯著負(fù)相關(guān);NSC含量與N含量顯著負(fù)相關(guān),與 N∶P、N∶K極顯著負(fù)相關(guān),與P含量、K∶P顯著正相關(guān),與K含量極顯著正相關(guān);樹干可溶性糖含量與N含量、N∶P、N∶K極顯著正相關(guān),淀粉含量與N含量極顯著正相關(guān),與N∶K顯著正相關(guān);NSC含量與N含量、N∶K極顯著正相關(guān),與N∶P顯著正相關(guān)。樹根可溶性糖含量與N含量顯著負(fù)相關(guān),與N∶P、K∶P極顯著負(fù)相關(guān),與P含量極顯著正相關(guān);淀粉含量與N含量顯著負(fù)相關(guān),與N∶P、N∶K、K∶P極顯著負(fù)相關(guān),與P含量極顯著正相關(guān);NSC含量與N含量、N∶P、N∶K、 K∶P極顯著負(fù)相關(guān),與P含量極顯著正相關(guān),見表5。

3 討論

3.1 小黑楊人工林NSC含量和NPK生態(tài)化學(xué)計量分布格局及其相關(guān)性

碳資源是植物生長發(fā)育和物質(zhì)代謝的基礎(chǔ),在植物各器官中按照一定的比例分配[1]。本研究中,在未對林分進(jìn)行撫育時,2種林齡小黑楊林木可溶性糖、淀粉和NSC在不同器官中分配格局不同(圖1)。幼齡林可溶性糖含量由大到小為樹葉、樹根、樹枝、樹干,中齡林可溶性糖含量由大到小為樹葉、樹枝、樹根、樹干;糖類在器官間分配格局主要受“源—匯”關(guān)系和同化物利用的就近原則影響,在生長性強(qiáng)的葉中居多[21]。幼齡林NSC含量由大到小為樹根、樹枝、樹葉、樹干的格局與曹鵬鶴等[17]對楊樹的研究結(jié)果一致;中齡林木淀粉和NSC含量格局由大到小為樹枝、樹根、樹葉、樹干,淀粉作為暫時儲存物質(zhì),主要儲存在樹根和樹枝等儲存器官中,F(xiàn)urze等[22]對5個溫帶樹種的研究也發(fā)現(xiàn)樹根和樹枝中NSC含量較高的格局。小黑楊幼齡林可溶性糖、淀粉和NSC地上部分與地下部分總量顯著高于中齡林,可能是由于植物在幼齡階段需要儲存較多的碳資源來緩解未來快速生長時碳供需的不同步性[23],同時也可以抵御病蟲害或應(yīng)對不良環(huán)境提高存活率。幼齡林地下部分與地上部分NSC含量比值顯著高于中齡林,說明幼齡林木更傾向于投入根系生長與地下資源獲取,而中成年樹木更多的投入地上部分生長與競爭(表2)。

同一樹種不同生長階段對養(yǎng)分的需求及利用能力不同,導(dǎo)致樹木在不同生長階段營養(yǎng)元素利用策略的不同[24]。本研究中,在未對林分進(jìn)行撫育時,幼、中齡林木N含量在不同器官中分配格局均由大到小表現(xiàn)為樹葉、樹枝、樹根、樹干,P含量和K含量在不同器官中分配格局相異(圖2)。幼齡林K含量由大到小表現(xiàn)為樹葉、樹根、樹枝、樹干,中齡林K含量由大到小表現(xiàn)為樹葉、樹枝、樹根、樹干。樹葉是較活躍的同化和吸收器官,N元素是葉綠素的主要成分,而K元素能夠促進(jìn)葉綠素的合成[25],光合作用的進(jìn)行需要吸收大量N和K元素,因此樹葉中N和K含量較高。幼齡林P含量由大到小為樹根、樹枝、樹葉、樹干的格局與王麗娜等[26]對云南松的研究結(jié)果一致,而中齡林P含量由大到小表現(xiàn)為樹枝、樹葉、樹根、樹干的格局,樹根是植物生理代謝較為活躍的場所,而樹枝在運輸養(yǎng)分中起著重要的作用,造成這種分配差異的原因可能是由于土壤養(yǎng)分狀況不同;研究表明,隨著林齡的增加,根系和枯落物對土壤養(yǎng)分的歸還會發(fā)生改變[27]。小黑楊中齡林較幼齡林樹葉N含量顯著增加,K含量顯著降低,樹枝、樹干和樹根P含量和K含量顯著降低,這些結(jié)果說明小黑楊在不同生長階段N、P和K含量存在明顯的差異性,不同生長階段器官生長速率不同導(dǎo)致N、P和K的利用策略不同[24]。

小黑楊各器官可溶性糖、淀粉和NSC含量與N、P和K含量及其化學(xué)計量比之間存在關(guān)聯(lián)性(表5)。樹葉、樹枝、樹干和樹根NSC含量均與N含量和N∶K顯著相關(guān),樹葉和樹枝NSC含量與K含量顯著正相關(guān),樹枝和樹根NSC含量與P含量呈顯著正相關(guān),這些結(jié)果與李月靈等[28]對七子花和谷明遠(yuǎn)等[29]對雞爪槭的研究結(jié)果相似。說明小黑楊各器官NSC含量與N、P和K含量密切相關(guān)。

3.2 小黑楊人工林NSC分布格局對撫育間伐的響應(yīng)

撫育間伐是改善森林碳匯過程的重要措施[30]。本研究中,撫育間伐后小黑楊幼齡林器官淀粉和NSC總量顯著降低,中齡林淀粉和NSC總量顯著增加(表2)。一方面,可能是撫育間伐后小黑楊生長速率加快,從而增加了碳需求,當(dāng)植物生長增加速度高于碳同化增加速度時,會有更多的光合產(chǎn)物被消耗[31]。費本華等[32]對小黑楊人工林的研究發(fā)現(xiàn),幼齡林生長速率遠(yuǎn)遠(yuǎn)高于中齡林,導(dǎo)致幼齡林體內(nèi)NSC被消耗,而中齡林將更多的光合產(chǎn)物以NSC形式儲存。另一方面,撫育間伐后林分密度降低,可能會降低幼林葉片的光合作用。這與王寧寧等[33]研究發(fā)現(xiàn)楊樹幼林在高密度林分條件下樹冠具有較高的光合時間和光合效率的結(jié)果相似。駱丹等[34]對西南樺幼林的研究也發(fā)現(xiàn),較低的林分密度會增加林分內(nèi)光耗散,降低冠層光利用效率。小黑楊中齡林撫育間伐后,林分遮蔭程度明顯降低。劉青青等[35]研究發(fā)現(xiàn)遮蔭程度的增加會降低杉木NSC及其組分含量;霍常富等[36]研究得出遮蔭處理會顯著降低水曲柳的NSC含量,均與本研究中中齡林淀粉和NSC總量顯著增加的結(jié)果一致。撫育間伐顯著降低小黑楊幼齡林地下部分與地上部分可溶性糖、淀粉和NSC含量的比值,顯著增加中齡林地下部分與地上部分淀粉和NSC含量比值。證明撫育后小黑楊幼齡林更傾向于將碳資源向地上部分轉(zhuǎn)移,更多的為葉和干生長提供原料;而中齡林更多的將碳資源向地下部分轉(zhuǎn)移,促進(jìn)根系生長。

3.3 小黑楊人工林NPK生態(tài)化學(xué)計量特征對撫育間伐的響應(yīng)

植物不同器官氮、磷、鉀含量體現(xiàn)了植物對養(yǎng)分的吸收及需求,反映植物對不同環(huán)境的適應(yīng)能力。氮、磷和鉀的生態(tài)化學(xué)計量特征可反映植物器官的內(nèi)穩(wěn)性和元素在不同器官中的分配關(guān)系,并用來判斷限制性元素和養(yǎng)分利用效率的高低[36]。撫育間伐后,林木株數(shù)減少,林分郁閉度降低,林內(nèi)光照強(qiáng)度增加,林木也會改變器官內(nèi)部養(yǎng)分的分配格局來維持自身的生長發(fā)育[37-38]。本研究中,撫育間伐顯著影響小黑楊林木N、P、K養(yǎng)分的利用格局(圖2)。撫育間伐后小黑楊幼齡林各器官N含量均顯著提高,可能是撫育間伐改善了林內(nèi)光照,從而改變土壤微生物環(huán)境[39],加速林下凋落物的分解,增加了土壤中可供植物吸收的N元素;植物在遮蔭條件下為提高資源競爭能力,會增強(qiáng)對P養(yǎng)分的吸收[40]。未撫育的小黑楊郁閉度較高,生長速率遲緩,對P的利用效率低于吸收效率,因此其P含量高于撫育林木,這與王麗娜等[26]對云南松研究的結(jié)果相似;趙姣[41]對檸檬樟生長季養(yǎng)分吸收研究發(fā)現(xiàn),枝條在整個生長季對K元素的吸收高于N元素和P元素。撫育后小黑楊生長加快,當(dāng)N、P元素受限時,植物會通過多吸收K來維持生長代謝。撫育后小黑楊中齡林N含量均低于未撫育組,可能是光照增強(qiáng)后小黑楊N需求超過了N供應(yīng),使得各器官中N含量降低,這與谷明遠(yuǎn)等[29]對不同遮蔭程度下的雞爪槭N含量的研究結(jié)果相似;P含量和K含量均高于未撫育組,植物對P、K的吸收和運輸?shù)哪芰恳抗夂献饔锰峁庹赵鰪?qiáng)后N需求超過了N供應(yīng),植物為了維持生長會加強(qiáng)對養(yǎng)分的吸收,同時養(yǎng)分的利用效率也會降低[29],導(dǎo)致P、K含量增加。

植物N∶P、N∶K、K∶P變化可以反映植物對外界環(huán)境變化的適應(yīng)性,通常也可以作為判斷限制性元素的指標(biāo)。研究表明,當(dāng)N∶P<14時,植物生長主要受N的限制;當(dāng)N∶P>16時,植物生長主要受P的限制;當(dāng)14<N∶P<16時,受N和P的共同限制[42]。Venterink等[43]研究指出,當(dāng)N∶K>2.1、K∶P<3.4時,植物生長主要受K限制。本研究中,小黑楊幼齡林撫育組和未撫育組葉N∶P平均值分別為13.20(<14)和11.99(<14),均受N元素限制,撫育后葉N∶P增加,但并沒有改變N元素受限的情況;小黑楊幼齡林撫育組和未撫育組葉N∶K平均值分別為1.83(<2.1)和1.78(<2.1),葉K∶P分別為7.42(>3.4)和6.79(>3.4),由此表明研究區(qū)小黑楊幼齡林生長并未受到K元素限制。中齡林撫育組葉N∶P平均值為13.27(<14),受N元素限制,而未撫育組平均值為14.91,位于14~16,受N元素和P元素的共同限制,撫育后葉N∶P顯著降低,改善了小黑楊P元素受限的情況;中齡林撫育組和未撫育組葉N∶K平均值分別為2.01(<2.1)和2.57(>2.1),葉K∶P平均值分別為6.78(>3.4)和5.96(>3.4),小黑楊中齡林生長也未受到K元素限制。

4 結(jié)論

不同林齡小黑楊林木間可溶性糖、淀粉、NSC及P含量、K含量和K∶P在不同器官中的分配格局相異,而N含量、N∶P、N∶K在不同器官中的分配格局一致。小黑楊幼齡林地上部分與地下部分可溶性糖、淀粉和NSC組分含量顯著高于中齡林,小黑楊幼齡林更傾向于投入根系生長與地下資源獲取,而中齡林更多投入地上部分生長與競爭。與幼齡林相比,中齡林葉N含量顯著增加,枝、干和根P含量顯著降低,葉、枝、干和根K含量顯著降低。小黑楊器官NSC及其組分含量與N、P、K含量及其生態(tài)化學(xué)計量比之間存在明顯關(guān)聯(lián)性,推測各器官中N、P、K含量變化對NSC組成及分配具有決定作用。

撫育間伐對小黑楊幼齡林可溶性糖、淀粉、NSC含量和中齡林淀粉含量及其在不同器官中的分配格局影響顯著。撫育后小黑楊幼齡林淀粉和NSC含量顯著降低,并將碳資源向地上部分轉(zhuǎn)移;而小黑楊中齡林淀粉和NSC含量顯著增加,并將碳資源向根系轉(zhuǎn)移,對小黑楊中齡林進(jìn)行撫育有利于個體碳資源的積累,從而提升個體水平的碳匯能力。

撫育間伐改變了幼齡林N∶P及中齡林K含量、N∶K、K∶P在不同器官中的分配格局。撫育間伐后,小黑楊幼齡林各器官N含量和枝K含量顯著增加,樹干P含量顯著降低;小黑楊中齡林葉和根K含量顯著增加。小黑楊幼齡林林分生長受N元素限制,中齡林林分生長受N元素和P元素的共同限制,撫育間伐可改善中齡林分P受限的狀況。

本研究僅局限于一種強(qiáng)度撫育間伐對小黑楊人工林NSC含量和NPK生態(tài)化學(xué)計量特征的影響,未涉及到NSC含量和NPK生態(tài)化學(xué)計量與土壤養(yǎng)分之間的關(guān)系,也未涉及到不同撫育間伐強(qiáng)度影響的差異,未來應(yīng)繼續(xù)開展這些方面的研究,為培育小黑楊人工林提供更合理的理論依據(jù)。

【參 考 文 獻(xiàn)】

[1] SMITH M G,MILLER R E,ARNDT S K,et al.Whole-tree distribution and temporal variation of non-structural carbohydrates in broadleaf evergreen trees[J].Tree physiology,2018,38(4):570-581.

[2] HENRIK H,SUSAN T.Understanding the roles of nonstructural carbohydrates in forest trees-from what we can measure to what we want to know[J].The New phytologist,2016,211(2):386-403

[3] 韓發(fā),賁桂英,師生波.青藏高原不同海拔矮嵩草抗逆性的比較研究[J].生態(tài)學(xué)報,1998(6):92-97.

HAN F,BEN G Y,SHI S B.Comparative study on the resistance of Kobresia humilis grown at different altitudes in Qinghai-Xizang Plateau[J].Acta Ecologica Sinica,1998(6):92-97.

[4] 賀金生,韓興國.生態(tài)化學(xué)計量學(xué):探索從個體到生態(tài)系統(tǒng)的統(tǒng)一化理論[J].植物生態(tài)學(xué)報,2010,34(1):2-6.

HE J S,HAN X G.Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J].Chinese Journal of Plant Ecology,2010,34(1):2-6.

[5] 徐慶祥,衛(wèi)星,王慶成,等.撫育間伐對興安落葉松天然林生長和土壤理化性質(zhì)的影響[J].森林工程,2013,29(3):6-9.

XU Q X,WEI X,WANG Q C,et al.Impact of thinning on growth and soil properties of natural Larix gmelinii forest[J].Forest Engineering,2013,29(3):6-9.

[6] 朱玉杰,董希斌.大興安嶺地區(qū)落葉松用材林不同撫育間伐強(qiáng)度經(jīng)營效果評價[J].林業(yè)科學(xué),2016,52(12):29-38.

ZHU Y J,DONG X B.Evaluation of the effects of different thinning intensities on larch forest in Great Xing’an Mountains[J].Scientia Silvae Sinicae,2016,52(12):29-38.

[7] 趙朝輝,方晰,田大倫,等.間伐對杉木林林下地被物生物量及土壤理化性質(zhì)的影響[J].中南林業(yè)科技大學(xué)學(xué)報,2012,32(5):102-107.

ZHAO Z H,F(xiàn)ANG X,TIAN D L,et al.Effects of thinning on biomass of under-story,soil physical and chemical properties in Cunninghamia lanceolata plantation[J].Journal of Central South University of Forestry & Technology,2012,32(5):102-107.

[8] 于海玲,李愈哲,樊江文,等.中國草地樣帶不同功能群植物葉片氮磷含量隨水熱因子的變化規(guī)律[J].生態(tài)學(xué)雜志,2016,35(11):2867-2874.

YU H L,LI Y Z,F(xiàn)AN J W,et al.Leaf N and P contents of different functional groups in relation to precipitation and temperature in China Grassland Transect[J].Chinese Journal of Ecology,2016,35(11):2867-2874.

[9] 顧鴻昊,翁俊,孔佳杰,等.粗放和集約經(jīng)營毛竹林葉片的生態(tài)化學(xué)計量特征[J].浙江農(nóng)林大學(xué)學(xué)報,2015,32(5):661-667.

GU H H,WENG J,KONG J J,et al.Ecological stoichiometry of Phyllostachys edulis leaves with extensive and intensive management[J].Journal of Zhejiang A & F University,2015,32(5):661-667.

[10] 高宗寶,王洪義,呂曉濤,等.氮磷添加對呼倫貝爾草甸草原4種優(yōu)勢植物根系和葉片C:N:P化學(xué)計量特征的影響[J].生態(tài)學(xué)雜志,2017,36(1):80-88.

GAO Z B,WANG H Y,Lü X T,et al.Effects of nitrogen and phosphorus addition on C∶N∶P stoichiometry in roots and leaves of four dominant plant species in a meadow steppe of Hulunbuir[JA4gsfgHa+wCRyhj4yPqH2bRoAOv5E1LMqnC0epyJTw4=].Chinese Journal of Ecology,2017,36(1):80-88.

[11] SARDANS J,PE?UELAS J.Trees increase their P∶N ratio with size[J].Global ecology and Biogeography,2015,24(2):147-156.

[12] 陳嬋,王光軍,趙月,等.會同杉木器官間C、N、P化學(xué)計量比的季節(jié)動態(tài)與異速生長關(guān)系[J].生態(tài)學(xué)報,2016,36(23):7614-7623.

CHEN C,WANG G J,ZHAO Y,et al.Seasonal dynamics and allometric growth relationships of C,N,and P stoichiometry in the organs of Cunninghamia lanceolata from Huitong[J].Acta Ecologica Sinica,2016,36(23):7614-7623.

[13] 李紅林,貢璐,洪毅.克里雅綠洲旱生蘆葦根莖葉C、N、P化學(xué)計量特征的季節(jié)變化[J].生態(tài)學(xué)報,2016,36(20):6547-6555.

LI H L,GONG L,HONG Y.Seasonal variations in C,N,and P stoichiometry of roots,stems,and leaves of Phragmites australis in the Keriya Oasis,Xinjiang,China[J].Acta Ecologica Sinica,2016,36(20):6547-6555.

[14] 高陽.不同撫育間伐強(qiáng)度對楊樹人工林林分及土壤環(huán)境的影響[D].鄭州:河南農(nóng)業(yè)大學(xué),2014.

GAO Y.Effects of thinning intensity on poplar plantation and soil environment[D].Zhengzhou:Henan Agricultural University,2014.

[15] 崔光彩.間伐對楊樹生長、林下植物多樣性和土壤酶活性的影響[D].南京:南京林業(yè)大學(xué),2014.

CUI G C.Effect of thinning on growth and diversity of understory vegetation and enzyme activity in soils under poplar plantations[D].Nanjing: Nanjing Forestry University,2014.

[16] 王凱,高爽,劉煥彬,等.施氮與增水對楊樹幼苗不同器官碳氮磷化學(xué)計量的影響[J].生態(tài)學(xué)雜志,2021,40(12):3870-3880.

WANG K,GAO S,LIU H B,et al.Effects of nitrogen and water addition on C,N,P stoichiometry in different organs of poplar seedlings[J].Chinese Journal of Ecology,2021,40(12):3870-3880.

[17] 曹鵬鶴,徐璇,孫杰杰,等.林分密度和種植點配置對楊樹各器官非結(jié)構(gòu)性碳水化合物的影響[J].浙江農(nóng)林大學(xué)學(xué)報,2022,39(2):297-306.

CAO P H,XU X,SUN J J,et al.Effects of stand density and spacing configuration on the non-structural carbohydrate in different organs of poplar[J].Journal of Zhejiang A&F University,2022,39(2):297-306.

[18] 王凱,逄迎迎,呂林有,等.楊樹幼苗自然干旱過程中非結(jié)構(gòu)性碳水化合物變化[J].生態(tài)學(xué)雜志,2021,40(7):1969-1978.

WANG K,PANG Y Y,Lü L Y,et al.Changes of non-structural carbohydrates of Populus×xiaozhuanica cv.Zhangwu seedlings during process of natural drought[J].Chinese Journal of Ecology,2021,40(7):1969-1978.

[19] BUYSSE J,MERCKX R.An improved colorimetric method to quantify sugar content of plant tissue[J].Journal of Experimental Botany,1993,44(10):1627-1629.

[20] 鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國農(nóng)業(yè)出版社,2000.

BAO S D.Soil agrochemical analysis[M].3rd ed.Beijing: China Agricultural Press,2000.

[21] 章異平,曹鵬鶴,徐軍亮,等.秦嶺東段栓皮櫟葉片非結(jié)構(gòu)性碳水化合物含量的季節(jié)動態(tài)[J].生態(tài)學(xué)報,2019,39(19):7274-7282.

ZHANG Y P,CAO P H,XU J L,et al.Seasonal dynamics of non-structural carbohydrate contents in leaves of Quercus variabilis growing in the east Qinling Mountain range[J].Acta Ecologica Sinica,2019,39(19):7274-7282.

[22] FURZE M E,HUGGETT B A,AUBRECHT D M,et al.Whole-tree nonstructural carbohydrate storage and seasonal dynamics in five temperate species[J].The New phytologist,2019,221(3):1466-1477.

[23] CHAPIN F,SCHULZE E,MOONEY H A.The ecology and economics of storage in plants[J].Annual Review of Ecology Evolution and Systematics,1990,21(1):423-447.

[24] LAMBERS H,CHAPIN F S,PONS T L.Plant physiological ecology[M].New York: Springer,2009.

[25] 張鋒,王建華,余松烈,等.白首烏氮、磷、鉀積累分配特點及其與物質(zhì)生產(chǎn)的關(guān)系[J].植物營養(yǎng)與肥料學(xué)報,2006(3):369-373.

ZHANG F,WANG J H,YU S L,et al.Accumulation and distribution of nitrogen,phosphorus,and potassium in Cynanchum bungei Decne and their relationships to dry matter production[J].Plant Nutrition and Fertilizer Science,2006(3):369-373.

[26] 王麗娜,吳俊文,董瓊,等.撫育間伐對云南松非結(jié)構(gòu)性碳和化學(xué)計量特征的影響[J].北京林業(yè)大學(xué)學(xué)報,2021,43(8):70-82.

WANG L N,WU J W,DONG Q,et al.Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J].Journal of Beijing Forestry University,2021,43(8):70-82.

[27] 任悅,高廣磊,丁國棟,等.沙地樟子松人工林葉片-枯落物-土壤氮磷化學(xué)計量特征[J].應(yīng)用生態(tài)學(xué)報,2019,30(3):743-750

REN Y,GAO G L,DING G D,et al.Stoichiometric characteristics of nitrogen and phosphorus in leaf-litter-soil system of Pinus sylvestris var.mongolica plantations[J].Chinese Journal of Applied Ecology,2019,30(3):743-750

[28] 李月靈,金則新,羅光宇,等.干旱脅迫下接種叢枝菌根真菌對七子花非結(jié)構(gòu)性碳水化合物積累及C、N、P化學(xué)計量特征的影響[J].應(yīng)用生態(tài)學(xué)報,2022,33(4):963-971.

LI Y L,JIN Z X,LUO G Y,et al.Effects of arbuscular mycorrhizal fungi inoculation on non-structural carbohydrate contents and C: N: P stoichiometry of Heptacodium miconioides under drought stress[J].Chinese Journal of Applied Ecology,2022,33(4):963-971.

[29] 谷明遠(yuǎn),劉華,黃鋮,等.遮蔭對雞爪槭非結(jié)構(gòu)性碳和化學(xué)計量特征的影響[J].安徽農(nóng)業(yè)大學(xué)學(xué)報,2023,50(2):228-234.

GU M Y,LIU H,HUANG C,et al.Effects of shading on non-structural carbon and stoichiometric characteristics of Acer palmatum[J].Journal of Anhui Agricultural University,2023,50(2):228-234.

[30] 孫志虎,王秀琴,陳祥偉.不同撫育間伐強(qiáng)度對落葉松人工林生態(tài)系統(tǒng)碳儲量影響[J].北京林業(yè)大學(xué)學(xué)報,2016,38(12):1-13.

SUN Z H,WANG X Q,CHEN X W.Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem[J].Journal of Beijing Forestry University,2016,38(12):1-13.

[31] 李亞楠,張淞著,張?zhí)僮樱?干旱-高鈣對麻櫟幼苗非結(jié)構(gòu)性碳水化合物含量和分配的影響[J].生態(tài)學(xué)報,2020,40(7):2277-2284.

LI Y N,ZHANG S Z,ZHANG T Z,et al.Effects of drought-high calcium on non-structural carbohydrate contents of Quercus acutissima[J].Acta Ecologica Sinica,2020,40(7):2277-2284.

[32] 費本華,王小青,劉杏娥,等.栽植密度對小黑楊人工林幼齡材和成熟材生長量的影響[J].南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版),2007(5):44-48.

FEI B H,WANG X Q,LIU X E,et al.Effects of planting density on growth increment of juvenile and mature wood in Populus×xiaohei[J].Journal of Nanjing Forestry University (Natural Sciences Edition),2007(5):44-48.

[33] 王寧寧,黃娟,丁昌俊,等.不同栽植密度下歐美楊葉片耐蔭性與生物累積量的關(guān)系[J].林業(yè)科學(xué)研究,2015,28(5):691-700.

WANG N N,HUANG J,DING C J,et al.The relationship of shade tolerance of poplar and biomass production under different plantation density[J].Forest Research,2015,28(5):691-700.

[34] 駱丹,王春勝,曾杰.西南樺幼林冠層光合特征及其對造林密度的響應(yīng)[J].中南林業(yè)科技大學(xué)學(xué)報,2020,40(4):44-49.

LUO D,WANG C S,ZENG J.Photosynthetic characteristics in crown and its response to planting density of young Betula alnoides[J].Journal of Central South University of Forestry & Technology,2020,40(4):44-49.

[35] 劉青青,馬祥慶,黃智軍,等.光強(qiáng)對杉木幼苗形態(tài)特征和葉片非結(jié)構(gòu)性碳含量的影響[J].生態(tài)學(xué)報,2019,39(12):4455-4462.

LIU Q Q,MA X Q,HUANG Z J,et al.Effects of light intensity on the morphology characteristics and leaf non-structural carbohydrate content of Chinese fir seedlings[J].Acta Ecologica Sinica,2019,39(12):4455-4462.

[36] 霍常富,孫海龍,王政權(quán),等.光照和氮營養(yǎng)對水曲柳苗木生長及碳-氮代謝的影響[J].林業(yè)科學(xué),2009,45(7):38-44.

HUO C F,SUN H L,WANG Z Q,et al.Effects of light and nitrogen on growth,carbon and nitrogen metabolism of Fraxinus mandshurica seedlings[J].Scientia Silvae Sinicae,2009,45(7):38-44.

[37] 楊佳佳,張向茹,馬露莎,等.黃土高原刺槐林不同組分生態(tài)化學(xué)計量關(guān)系研究[J].土壤學(xué)報,2014,51(1):133-142.

YANG J J,ZHANG X R,MA L S,et al.Ecological stoichiometric relationships between components of Robinia Pseudoacacia forest in Loess Plateau[J].Acta Pedologica Sinica,2014,51(1):133-142.

[38] 智西民,何靖雯,王夢穎,等.遮蔭和土壤類型對青桐幼苗生長和養(yǎng)分含量的影響[J].生態(tài)學(xué)雜志,2020,39(12):3961-3970.

ZHI X M,HE J W,WANG M Y,et al.Effects of shading and soil types on growth and nutrient content of Firmiana platanifolia seedlings[J].Chinese Journal of Ecology,2020,39(12):3961-3970.

[39] 周燾,王傳寬,周正虎,等.撫育間伐對長白落葉松人工林土壤碳、氮及其組分的影響[J].應(yīng)用生態(tài)學(xué)報,2019,30(5):1651-1658.

ZHOU T,WANG C K,ZHOU Z H,et al.Effects of thinning on soil carbon and nitrogen fractions in a Larix olgensis plantation[J].Chinese Journal of Applied Ecology,2019,30(5):1651-1658.

[40] 熊靜,虞木奎,成向榮,等.光照和氮磷供應(yīng)比對木荷生長及化學(xué)計量特征的影響[J].生態(tài)學(xué)報,2021,41(6):2140-2150.

XIONG J,YU M K,CHENG X R,et al.Effects of light and N-P supply ratios on growth and stoichiometric of Schima superba[J].Acta Ecologica Sinica,2021,41(6):2140-2150.

[41] 趙姣.檸檬醛型樟枝葉氮磷鉀含量生長季動態(tài)變化特征[J].中南林業(yè)科技大學(xué)學(xué)報,2022,42(1):20-26.

ZHAO J.Analysis of nitrogen,phosphorus and potassium accumulation in leaves and branches of Cinnamomum spp.ct.citralifera Z.N.Jin[J].Journal of Central South University of Forestry & Technology,2022,42(1):20-26.

[42] KOERSELMAN W,MEULEMAN A.The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33(6):1441-1450.

[43] VENTERINK H O,WASSEN M J,VERKROOST W M,et al.Species richness-productivity patterns differ between N-,P-,and K-Limited wetlands[J].Ecology,2003,84(8):2191-2199.

主站蜘蛛池模板: 一级全免费视频播放| 国产午夜一级淫片| 成年人久久黄色网站| 色精品视频| 欧美日韩国产综合视频在线观看| 亚洲青涩在线| 97精品久久久大香线焦| 亚洲中文字幕久久无码精品A| 自拍欧美亚洲| 在线一级毛片| 亚洲国产综合精品一区| 欧美色视频日本| 亚洲色精品国产一区二区三区| 国产丝袜一区二区三区视频免下载| 日韩精品久久无码中文字幕色欲| 中文字幕久久亚洲一区| 亚洲AV无码久久天堂| 色噜噜中文网| 日本免费福利视频| 91亚洲影院| 国产综合另类小说色区色噜噜 | 亚洲天堂网视频| 日韩成人高清无码| 国产午夜无码片在线观看网站| 亚洲av日韩综合一区尤物| 亚洲精品波多野结衣| 伊人成人在线视频| 美女黄网十八禁免费看| av免费在线观看美女叉开腿| 国产精品久久久久久影院| 色老头综合网| av在线无码浏览| 日本一本正道综合久久dvd| 69国产精品视频免费| 日韩午夜伦| 茄子视频毛片免费观看| 在线播放国产99re| 一本一本大道香蕉久在线播放| 欧美影院久久| 中文字幕永久在线看| 凹凸精品免费精品视频| 91九色视频网| 无码高潮喷水在线观看| 亚洲色图综合在线| 另类综合视频| 色综合久久综合网| 99中文字幕亚洲一区二区| 九九精品在线观看| 亚洲午夜18| 成人午夜天| 久久影院一区二区h| 尤物精品国产福利网站| 成人午夜视频网站| 99这里精品| 强乱中文字幕在线播放不卡| 第一区免费在线观看| 国产精品亚洲а∨天堂免下载| 99无码熟妇丰满人妻啪啪| 波多野结衣久久高清免费| 亚洲侵犯无码网址在线观看| julia中文字幕久久亚洲| 中文字幕亚洲无线码一区女同| 538国产视频| 久久精品一卡日本电影| 综合色区亚洲熟妇在线| 91免费片| 狠狠色噜噜狠狠狠狠奇米777 | 久久久久亚洲精品无码网站| 日韩亚洲高清一区二区| 熟妇丰满人妻av无码区| 国产精品亚洲欧美日韩久久| 免费a在线观看播放| 亚洲精品天堂自在久久77| 91最新精品视频发布页| 99re经典视频在线| 尤物国产在线| 久久久久青草线综合超碰| 国产女人在线观看| 亚洲伊人天堂| 99精品一区二区免费视频| 亚洲最大综合网| 免费国产高清精品一区在线|